Managing Naproche Formalizations with STEX and F\M∫

Marcel Schütz

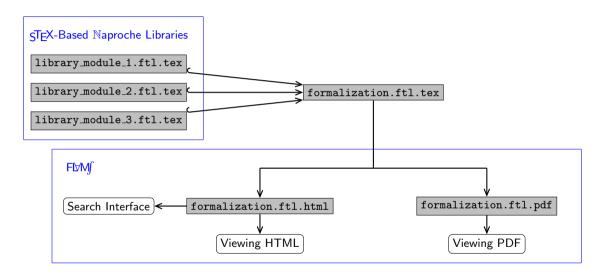
FAU Erlangen-Nürnberg

06 October 2025

NatFoM 2025, 6 October 2025 at CICM 2025, Brasilia, Brazil, 6–10 October 2025

Overview

Overview



Motivation

Motivation

NatFoM 2023:

Introduced libraries of Naproche formalizations

⇒ Focussed on the "logical level"

Remaining Challenges on the "Presentational Level":

For Formalization Authors:

- ► Importing TEX macro definitions from a library
- Referencing assertions stated in a library
- Searching symbols/notions/assertions across libraries

For Formalization Readers:

▶ Retrieving definitions/statements of symbols/notions/assertions imported from a library

Solution Approach: Integrating sTeX and FIMM into the $\mathbb{N}\mbox{aproche ecosystem}$

STEX

STEX: A Module System for LATEX Documents

https://github.com/slatex/stex

- ► STEX provides a module system for LATEX documents
 - ⇒ Structure Naproche libraries as STEX modules
- ► TEX macros defined STEX modules can be reused in other LATEX documents
 - \Rightarrow Define Naproche symbols as STEX macros
- Assertions defined in STEX modules can be referenced in other LATEX documents
 - \Rightarrow Provide Naproche assertions as components of STEX modules

STEX: Naproche Libraries as STEX Modules

```
\begin{smodule}{congruency.ftl}
 \importmodule[libraries/arithmetics]{modulo.ftl}
 \symdef{Cong}[args=3]{#1 \equiv #2 (\text{mod} #3)}
 \symdecl*{congruency of sum}
 \begin{definition} [forthel, for=Cong]
   Let $n, m, k$ be natural numbers such that
   $k \NotEq \Zero$.
   \alpha_n{m}{k}$ iff $n \Mod k \Eq m \Mod k$.
 \end{definition}
 \begin{lemma} [forthel, name=congruency of sum]
   Let $n. k$ be natural numbers such that
   $k \NotEq \Zero$.
   Then Cong\{n \} k}{n}{k}.
 \end{lemma}
\end{smodule}
```

Definition. Let n, k be natural numbers such that $k \neq 0$. $n \equiv m \pmod{k}$ iff $n \mod k = m \mod k$.

Lemma. Let n, m, k be natural numbers such that $k \neq 0$. Then $n + k \equiv n \pmod{k}$.

STEX: Reusing STEX Macros & Referencing Assertions

Reusing \Cong & Referencing congruency of sum:

```
\usemodule[libraries/arithmetics]{congruency.ftl}
...
Then $\Cong{\One \Plus p}{\One}{p}$ (by \sn{congruency of sum}).
```

⇒ Interactive HTML Rendering:

```
Then 1+p \equiv 1 \mod p (by congruency of sum).
```

Definition Let n, m, k be natural numbers such that $k \neq 0$. $n \equiv m \mod k$ iff $n \mod k = m \mod k$.

```
Then 1 + p \equiv 1 \mod p (by congruency of sum).
```

Assertion Let n, k be natural numbers such that $k \neq 0$. Then $n + k \equiv n \mod k$.

2025-10-06

8

FM

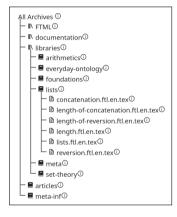
F☑M: The Flexiformal Annotation Management System

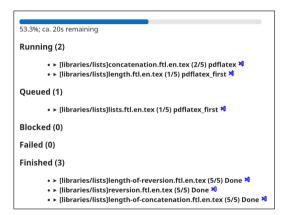
https://github.com/FlexiFormal/FLAMS

FI₂M∫ provides a webinterface to . . .

- ▶ ... render LATEX documents as PDF and interactive HTML.
 - ⇒ Render Naproche formalizations in FbM
- view PDF and interactive HTML documents.
 - \Rightarrow View Naproche formalizations in FVM
- ... search STEX symbols.
 - \Rightarrow Search Naproche symbols/notions/assertions in FIM

F\M∫: Rendering Formalizations

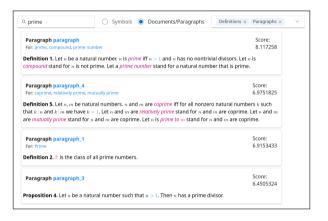




F\rightarrow M\overline{\colonic \text{Viewing Formalizations}}

```
Theorem 18 (Furstenberg), P is infinite.
Proof. \cup P is a subset of N. Let us show that for any n \in \mathbb{N} we have
n \in \bigcup P iff n has a prime divisor. Let n \in \mathbb{N}. If n has a prime divisor then
n belongs to \cup P.
Proof. Assume n has a \operatorname{\mathbb{F}} Definition 2. \operatorname{\mathbb{F}} is the class of all prime numbers.
have N_{0,n} \in P. Hence
If n belongs to \bigcup_{I} Definition 15. P = \{N_{0,p} \mid p \in \mathbb{F}\}.
Proof. Assume that n belongs to \bigcup P. Take a prime number r such that
n \in N_{0,n}. Hence n \equiv 0 \pmod{r}. Thus n \mod r = 0 \mod r = 0. Therefore r
is a prime divisor of n. \square
End. Hence For all n \in \mathbb{N} we have n \in \bigcup P^{0} iff n has no prime divisor.
has no prime divisor and any natural number having no prime divisor is
equal to 1. Therefore \cup P^{\mathbb{C}} = \{1\}, Indeed \cup P^{\mathbb{C}} \subset \{1\} and \{1\} \subset \cup P^{\mathbb{C}}, P
is infinite.
Proof by contradiction. Assume that P is finite. Then \cup P is closed and
\cup P^{\mathbb{C}} is open. Take a p such that N_{1,p} \subset \cup P^{\mathbb{C}}, 1+p is an element of
N_{1,p}. Indeed 1+p \equiv 1 \pmod{p} (by congruency of sum), 1+p is not
equal to 1. Hence 1+p \notin \bigcup P^{\mathbb{C}}. Contradiction. \square
```

FIM: Searching Symbols/Notions/Assertions



Conclusion

Conclusion: Managing Naproche Formalizations with STEX and F⋈M

Challenges wrt. Naproche Libraries:

- ▶ Importing T_EX macros and referencing assertions from a Naproche library
 - \Rightarrow Structure Naproche libraries as STEX modules
- ► Searching symbols/notions/assertions across libraries
 - ⇒ Use the search interface of F\\M\
- Retrieving definitions/statements of symbols/statements

Links:

```
\label{lem:naproche} $$\mathbb{N}$ a proche: $$ $ $ \text{https://github.com/naproche/naproche/} $$
```

STEX: https://github.com/slatex/stex

FbM: https://github.com/FlexiFormal/FLAMS

