Llama-PVS: A Lightweight decoder-only LLM for Proof
Recommendation system

Nikson Bernardes Fernandes Ferreira

Universidade de Brasilia - UnB

niksonberd@gmail.com

Abstract

Interactive theorem provers (ITPs) are crucial for certifying the correct be-
havior of systems. ITPs require a higher level of expertise and present a
steep learning curve, even for individuals with a strong background in both
practical and theoretical aspects. In recent years, considerable research has
been conducted to promote the use of machine learning techniques for sug-
gesting proof commands and providing hints to I'TP users. Such research
builds recommendation models based on exhaustive training over transla-
tions of proof data history generated from a core of mechanized theorems.
Subsequently, the ITP user can profit from the model recommendations
by translating the status of a proof in progress to obtain feedback from
the trained model after it i1s translated back to the proof language of the
I'TP. This double translation implies an extensive consulting preprocessing,
consuming considerable resources. The present work skips the translation
process and trains an autoregressive language model receiving the proof
state directly. The approach evaluates the capability of these models to
“understand” and extract patterns from raw proof, achieving competitive
answer quality and performance.

Introduction

Machine Learning (ML) has been advancing for decades. In particular, ad-
vances 1n parallel computational resources have allowed the development
and scaling up of complex deep learning techniques, such as Large Lan-
guage Models (LLMs). Such models have been successtully applied to
a diverse range of applications, including translation, question-answering,
and code generation, giving rise to attractive application opportunities in
automated reasoning and assisted theorem proving [2].

This work focuses on the integration of ML techniques and interactive
proof assistants to improve the grade of automation through the generation
of proof recommendations. The integration of deep learning and theorem
proving has the potential to advancing proot techniques, such as a neuro-
symbolic therem proving, enable development of more efficient and user-
frindly proof assistant that could help the advance of a diverse range of
fields, such as number theory, criptography, and even, can be used for ed-
ucation proposes allowing the development of tools to teach formal meth-
ods.

Objectives

In summary, this work presents the following Objectives:

1. A methodology that integrates LLLM 1nto the proof assistant PVS to pro-
duce proof commands recommendations during the interactive proving
eXercise.

2. In addition to guiding users in the interactive, effective selection of ad-
equate proof commands, the methodology also proposes proof-step pa-
rameters, such as correct identification for a universal quantifier or ev-
1dence for existential, and lemma usage suggestion selected from the
core of available lemmas in the NASA PVS library.

3.The 1model integration with VScode using the extensions of
llama.cpp and PVS.

4. The validation of the need for extensive preprocessing used in other
works that integrate Machine Learning and Interactive Theorem provers.

5. Compare the present work that proposes an integration of LLMs and
PVS [[7]

Background

LLM

Language Models (LMs) model statistical patterns in human-like lan-
guages. Fundamentally, they aim to predict the probability of the occur-
rence of a given token (word or sub-word) 1n a given context (text). Most
modern LMs leverage a deep neural network architecture called Trans-
formers. The Transformer architecture introduced 1n [6] 1s based on the
self-attention concept used to update the meaning of tokens based on the
meaning of context tokens. The self-attention mechanism 1s a major in-
novation in Transformer architecture. It enables learning the impact of
tokens on other ones’ meaning in parallel, allowing scaling performance
on the so-called Large Language Models (LLMs), by extracting complex
statistical patterns and language nuances on unprecedented levels.

LLMs are usually trained in two stages: an extensive self-supervised
training on a huge corpus and a supervised fine-tuning on smaller and
task-specific datasets. In the first self-supervised training phase, the model
learns complex token relations, and 1n the fine-tuning phase, it transfers the
previous knowledge to learn specific tasks, such as question-answer, trans-
lation, coding, etc. Besides being used for text-to-text tasks, LL.Ms do not
generate text themselves, but they only predict the probability of the next
token 1n a sequence. An external algorithm integrates LL.Ms to select and
concatenate text pieces, constructing text interactively.

Training or getting outputs from these LLLMs demands exhaustive com-
putational power. In this way, several works have been proposed aiming
to reduce the resources required to adjust the model to intended behavior
[1]. LoRa (LOw Rank AdAptation) allows fine-tuning a model, adjusting
only a small set of added parameters corresponding fraction of the orig-
inal weights [4]. The main 1dea of the approach 1s to fit a decomposed
matrix into a low rank through matrix multiplication, which 1s added to
the original weights that remain frozen. Aiming to reduce the computa-
tional power required for model inference, researchers proposed quanti-

zation techniques, such as GPTQ [3], reducing precision for representing
certain weights.

ITPs: PVS

Interactive theorem provers (ITPs) are sophisticated software systems de-
signed to assist in the formal verification of mathematical theorems, hard-
ware designs, and critical software systems. Introduced by SRI Inter-
national in 1996, the Prototype Verification System (PVS) is a complete
formal specification and verification environment. Mainly composed of a
strongly-typed specification language supporting higher-order logic and an
interactive theorem prover with a robust automated deduction engine [J].
Unlike other ITPs, such as Isabel, PVS does not have high-level of proof
automation.

Proposed Integration: Llama-PVS

The Figure |1| shows the workflow proposed in the present work for proof-
step prediction. The approach can be separated into two phases delimited
by the boxes: Training (occurs offline) and Inference (occurs online, 1.e.,
during proof). The first step of the training phase uses consolidated proof
libraries jointly with the ITP Tool PVS Traces to execute consolidated
proofs and collect proof goals and steps (proof traces). The data com-
prises all intermediary proof goals and steps of formulas from the selected
library. This data 1s used to fine-tune a pre-trained LL.M model using the
framework t ransformers. The output of this phase is a Trained LLM
that learned the structure patterns of PVS proofs. The Inference Phase is
responsible for obtaining an actual proof-step recommendation from the
system. An integrated development environment (IDE) 1s used to integrate
the ITP PVS interface and model predictions. In this work, we propose
the use of the widely used IDE Visual Studio Code (VSCode) and its PVS
extension as the PVS Interface. The current proof goal 1s submitted to the
model through an intermediary server to obtain a list of proot-step recom-
mendations according to model certainty. Here, the inference framework
llama.cpp is used for low-level interaction with the Trained LLM.

PVS Libs’ PVS

Proot Treu:-:}:-laﬁ PVS IDE

Python
A transformers
lib

FI’EtI’HiIlE‘:LP
LLM

Curren Proof
Goal recommendation

Trniuﬂd""
LLM

{ llama.cpp |

Figure 1: Workflow for training and integrating LLM for
proof step prediction i1n an interactive theorem prover.

Additionally, Figure 2| outlines the workflow to train and develop a sys-
tem for lemma recommendations. The workflow 1s also separated into the
training and inference phases. As in the previous worktlow, we first collect
proof traces from selected libraries, but all lemmas used in the proofs in the
selected library are identified, and their respective specifications (in their
corresponding libraries) are collected and indexed. Then, all pairs of lem-
mas with their respective specifications are associated with the proof goals
where the proof step invoked them. In the second training, the model learns
to transform the text into a semantic vectorial space where proof sequent
and lemma definition that can be used are approximated as the projection
of its vectors. During interference, all lemmas are previously represented
and stored in the vector space. The PVS interface provides the current se-
quence 1s also vectorized, then using cosine similarity between vectors, the
system proposes the most similar ones to user’s usage.

PVS Libs 1 PVS

Python 1 N
script | Proof Traces

indexer

l

Assoc
Formulas - T PVS IDE

Proof sequent

Python
el e Pretrainec
Ir .I'l'ﬂ I LLM
Lib

Curren Lemma
(Goal recommendation

Trained B
LLM Lemma

A llama.cpp

N~
nB

Figure 2: Workflow for training and integrating LLM for
Lemma prediction in an interactive theorem prover.

Results

Following the proposal in the previous section, the models were trained
using LoRA. The command prediction was evaluated in terms of accuracy,
1.e., comparing the rate of predictions that match with the expected com-
mand, that 1s, the one used in the actual proof stored. Accuracy @k, means
that the correct command 1s in the top-k commands suggested. The present
work was compared to [[/], a approach that uses a extensive preprecessing
in proof sequent, ware in the present work, we use the raw sequent as input.

Metric CoProver CoProvelﬂ PVS-Llama
(our data)
Accuracy@top 1 | 23.37 48.33 55.56
Accuracy@top 3 | 45.95 76.43 82.72
Accuracy@top 5 | 57.82 85.91 90.92
Accuracy@top 7 | 66.27 91.39 95.21
Accuracy@top 10| 72.50 95.32 97.17

Table 1: Comparing CoProver and PVs-Llama command pre-
diction results.

For lemma suggestion, the MRR (Mean Reciproval rank), Recall, and
MAP were used to compare the approaches. For comparison, one limit the
search to a specific library (sorting) and all ones.

: PVS—Llama PVS-Llama

Metric CoProver| Sorting (ours)

All (ours)
(our data)

MRR 0.51 0.75 0.63
Recall@top 3 : 0.61 0.52
Recall@top 5 - 0.88 0.68
Recall@top 7 : 0.95 0.80

Recall@top 10 - 0.99 0.84
MAP@100 : 0.75 0.63

Table 2: Comparing CoProver and PVs-Llama lemma predic-
tion results.

Conclusion and Future Works

A distinguished feature of the methodology is that the training is performed
over raw proof states, 1.e., the PVS proof sequents, applying QLoRA
(Quantized Low-Ranking Adaptation) to an LLM. And subsequently, the
model iteratively generates proof recommendations based on the current
raw proof states. Besides of removing the pre-processing, we are able to
get stronger results.

Still pending experiments with a bigger set of libraries and perform rep-
etitions of experiments.

References

[1] Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Be1 Chen, Qiang Fu,
Weizhu Chen, Nanning Zheng, and Jian-Guang Lou. Input-tuning:

Adapting unfamiliar inputs to frozen pretrained models. arXiv preprint
arXiv:2203.03131, 2022.

[2] Lasse Blaauwbroek, David M. Cerna, Thibault Gauthier, Jan Jakubuv,
Cezary Kaliszyk, Martin Suda, and Josef Urban. Learning guided auto-
mated reasoning: A brief survey. In Venanzio Capretta, Robbert Kreb-
bers, and Freek Wiedijk, editors, Logics and Type Systems in Theory
and Practice - Essays Dedicated to Herman Geuvers on The Occasion
of His 60th Birthday, volume 14560 of Lecture Notes in Computer Sci-
ence, pages 54-83. Springer, 2024.

[3] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh.
Gptq: Accurate post-training quantization for generative pre-trained
transformers. arXiv preprint arXiv:2210.17323, 2022.

[4] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
L1, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adapta-
tion of large language models. In International Conference on Learning
Representations, 2022.

[5]S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification
system. In Proceedings of the 11th International Conference on Auto-
mated Deduction, CADE, pages 748—752. Springer, 1992.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
1s all you need. CoRR, abs/1706.03762, 2017.

[7] Eric Yeh, Briland Hitaj, Sam Owre, Maena Quemener, and Natarajan
Shankar. CoProver: A Recommender System for Proof Construction.
In Catherine Dubois and Manfred Kerber, editors, Intelligent Computer
Mathematics - 16th International Conference, CICM 2023, Cambridge,

UK, September 5-8, 2023, Proceedings, volume 14101 of Lecture Notes
in Computer Science, pages 237-251. Springer, 2023.

Acknoledgments

This work was founded by CNPq.

