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Introduction

An anti-unification problem for a family of objects of a certain type in a certain context
consists in finding commonalities between those objects in order to construct general-
1zers that uniformly abstract over their differences subject to a preference relation for
comparing them according to what constitutes a good generalization relative to the con-
text (Cerna and Kutsia [2023]). Anti-unification 1s a vital component in mathematical
formalisms regarding different deductive frameworks such as proof assistants, systems
for numerical, symbolic and algebraic computations, automatic deduction, and automa-
tion (Cerna and Kutsia [2023]]), to cite a few.

Considering those applications and the development of the field of equational reason-
ing, it 1s pertinent to formalize, 1n interactive theorem provers, the mathematical prop-
erties ensuring the termination, soundness, and completeness of computational solutions
for the anti-unification problem modulo various algebraic theories. The only formaliza-
tion of an anti-unification algorithm known to date is due to |Ayala-Rincon et al. [20235]
for syntactic anti-unification. The algorithm Antiunify (Ayala-Rincén et al. [2025])
presented in Figure [I], together with its termination and soundness, was formalized and
verified in PVS (Prototype Verification System, Owre et al.| [1992]).

{fs = f3UU | S| o)

{s 230U | S| (X fY)o)

(Decompose-Function)

{(s;u) = (tv)}UU" | S| o)

({S%t,u%v}UU’ S | (X = (V,2)) o)

(Decompose-Pair)

{s=t}uU | S | o)
X if s2tissolvedand s £ t€ S

US| (X=>X)a) X x
{s2yuU’ | S | o)

X if s £t is solved and non-repeated in S

U | {s2pus | o)

(Solve-Repeated)

(Solve-Non-Repeated)

({s2s}uU’' | S | o)
. if s 2 s is trivial

U | S| (Xws)o) "

(Syntactic)

Figure 1: Rules of the algorithm Antiunify (Ayala-Rincon et al. [2025]).

Although useful, algorithms for syntactic anti-unification alone cannot provide all the
preferred solutions for the instances present in equational theories such as the commu-
tative (C), associative (A) (Alpuente et al. [2014]), idempotent (I) (Cerna and Kutsia
[2020b]), unital (U) (Cerna and Kutsia [2020a]), absorptive (a) (Ayala-Rincon et al.
[2024]) theories as well as their combinations. A very favourable aspect of the algo-
rithm’s construction and specification in PVS developed by Ayala-Rincon et al.| [2025] 1s
that the work done so far provides a very solid ground upon which algorithms for solving
the anti-unification problems 1n first-order equational theories of extensive use can also
be specified and formally mechanized.

Aims and Questions

Since March 2025, I have been working with Professor Mauricio Ayala-Rincon, Profes-
sor Temur Kutsia, Dr. Mariano Moscato, Professor Thaynara Arielly de Lima, and Maria
Julia Dias Lima on the completeness proof of the Antiunify algorithm. Such work dealt
also with certain conjectures proved for substitutions and renamings. For the PhD the-
sis, the main goal 1s the extension of the algorithm Antiunify to a complete and sound
algorithm for dealing with anti-unificatiom modulo (aC)(a)(C). That extension and its
mathematical properties will be also specified and verified in PVS. Important issues re-
garding the extension of the current specification in PVS are the following:

1. The specifications for first-order terms (Figure 2) and first-order
substitution must be extended in order to provide specifications for terms and
substitutions modulo commutativity and absorption;

2. The notion of configuration must be extended in order to deal with delayed sets
of AUTs (Ayala-Rincon et al.| [2024]);

3. The algorithm Antiunify for syntactic anti-unification must be extended to a sound and
complete algorithm for anti-unification modulo (aC)(a)(C).

Regarding those 1ssues, some important questions are the following:

a. How can such extensions be constructed in PVS 1n a way that preserves the previ-
ously developed proofs of results that are independent of the axioms of that equational
theory?

b. Regarding algorithms, how can such extensions be constructed in PVS in order to pre-
serve certain branches of previously developed proofs for rule applications that are
independent of the axioms of that equational theory?

Example

For a concrete example, let us consider the specifications for first-order terms
presented in Figure 2. In order to deal with absorptive-commutative theories, we must
deal with the axioms governing such theories.

first order term[constant:TYPE, variable:TYPE+, f symbol:TYPE]: DATATYPE
BEGIN
const (a: constant): const?
variable (V: variable): var?
unit: unit?
palr (terml: first order term, term2: first order term): pair?
app (f sym: f symbol, arg: first order term): app?
END first order term

Figure 2: Abstract datatype for first order terms (Ayala-Rincon et al.
[2025]).

If we add more structure to the abstract data type, then new proof obligations will oc-
cur 1nside proofs that do not depend on such algebraic properties (for instance, proofs
of results concerning the action of substitutions on terms as syntactic objects). That is
undesirable.

AUT: TYPE = [# lhs, rhs : Term , label : variable #]

Configuration: TYPE = [# unsolved, solved: List AUT, substitution: (nice?) #]

Figure 3: Specifications of configurations and anti-unification triples in
PVS (Ayala-Rincén et al. [\2025\]).

Another important change will happen in the specification of configuration in order
to accommodate delayed sets of AUTs (Ayala-Rincon et al. [2024]), which play an im-
portant role in the case of anti-unification in absorptive theories. See Figure [3] for their
specifications in PVS. Considering the approach used by |Ayala-Rincon et al. [2024] for
solving the problem in absorptive theories, the AUTs must also be adapted in order to
accommodate wild cards, which in turn will require further modifications on the specifi-
cations of first-order terms.

Partial Results

We are working on the proof of completeness for the algorithm Antiunify (see Figure {)).
The proof of completeness 1s divided into four lemmata, each dealing with a rule:

e The branch dealing with the rule Decompose-Function is already closed;
e The branch dealing with the rule Decompose—Pair i1s similar to the previous one;

e We are currently proving the Solve—-Repeated and Solve-Non-Repeated
branches.

The proof of completeness for the syntactic algorithm i1s an important step for the main
goal, not just because of completeness itself, but also for the insights on how to deal with
rules that will not be changed during the course of the specification of an algorithm for
dealing with absorptive-commutative theories (for instance, the rule Syntactic).

antiunify(c: (validConfiguration?)): recursive (validConfiguration?)
= IF cons?(c unsolved)

THEN
IF match DecF conf?(c)
THEN % Apply "Decompose-Function" rule

antiunify(DecF(c))

ELSIF match DecP conf?(c)

THEN % Apply "Decompose-Pairs" rule
antiunify(DecP(c))

ELSIF match Synt conf?(c)

THEN % Apply "Syntactic" rule
antiunify(Synt(c))

ELSE % Apply "Solve" rule
antiunify(Solve(c))

ENDIF

ELSE C

ENDIF

MEASURE size(c unsolved)

Figure 4: Algorithm Antiunify in PVS (Ayala-Rincon et al. [2025]).

Conclusion and Future Work

e We are currently working on the proof of completeness for the algorithm Antiunity.
We closed the branches dealing with decomposition rules;

 We must extend the specifications of first-order terms, first-order substitution, AUTSs,
and configurations in a conservative way in order to avoid undesirable proof obliga-
tions.

e Rules must be extended in order to deal with absorptive-commutative theories: For
instance, the rules Solve-Repeated and Solve-Non-Repeated must be able do deal with
equality modulo absorptive-commutative theories.
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