
Anti-Unification in λP
Gabriela Ferreira
Universidade de Brası́lia - PPG MAT
G.S.Ferreira@mat.unb.br

1 Introduction
The predicate calculus, in short λP, is a component of the Barendregt cube and is the
typing system that allows types to depend on terms. It is a powerful tool for expressing
lists, arrays and other structures used daily for typing structures. Moreover, dependent
types are implemented in functional programs like Agda and modern proof assistants like
Coq.

The anti-unification problem consists of comparing two structures t1 and t2, finding a
new one that represents the commonalities of t1 and t2. This problem was originally in-
vestigated by Plotkin in [4]. Later on, questions about anti-unification have been explored
in high-order terms, for example, Cerna and Kutsia [2] proposed a generic framework for
computing solutions that have no nested generalization variables and preserve the top
maximal communalities of the structures. The survey [3] gives more information about
equational and simply-typed anti-unification, including classification of the problem with
different variants.

The objective is to extend the frameworks of term generalization in high-order theories,
in special [2], to deal with dependent types. Since in this system we have no type-
variables, the proposal is to treat type-constants as rigid parts, allowing divergences only
in the terms that they depend on.

2 Preliminaries
The system λP is based on a set of pseudo-expressions T defined by the syntax

T = V | C | T T | λV : T .T T | ΠV : T T

Where V and C are infinite collections of variables and constants, respectively. Among
the constants C, two elements are selected and given names ⋆ and □, such elements are
called sorts.

A statement of λP is of the form t : τ , where t, τ ∈ T . A context (typi-
cally Γ) is a finite linearly ordered set of statements with distinct variables subjects,
if Γ =< x1 : τ1, . . . , xn : τn > then Γ, t : τ :=< x1 : τ1, . . . , xn : τn, t : τ >.
A signature (typically Σ) is a finite set of statements that assigning types and kinds to
constants. The rules for construct statements are given in Table 1, where the letter s
ranges over {⋆,□}. We omitted well-formedness of signatures. Moreover, ⊢ t : τ
denotes that the statement t : τ is derived in an empty context.

(cons) Γ ⊢Σ t : τ , where t : τ ∈ Σ Γ ⊢Σ τ : ⋆(var)
Γ, x : τ ⊢Σ x : τ

, where x is fresh variable in Γ

Γ ⊢Σ t : τ Γ ⊢Σ τ ′ : ⋆(weak)
Γ, x : τ ′ ⊢Σ t : τ

Γ ⊢Σ τ : ⋆ Γ, x : τ ⊢Σ τ ′ : s(form)
Γ ⊢Σ (Πx : τ.τ ′) : s

Γ ⊢Σ F : (Πx : τ.τ ′) Γ ⊢Σ a : τ(app)
Γ ⊢Σ Fa : τ ′{x 7→ a}

Γ, x : τ ⊢Σ b : τ ′ Γ ⊢Σ (Πx : τ.τ ′) : s
(abs)

Γ ⊢Σ (λx : τ.b) : (Πx : τ.τ ′)

Table 1: Rules for type-statements.

We are supposing that pseudo-expressions t are in η-long β-normal form, and we are
considering equality modulo α-equivalence.
Definition 2.1. The set ΘΓ′

Γ of well-typed substitutions from Γ to Γ′ is the set of those
substitutions θ such that for every v : ν ∈ Γ, we have Γ′ ⊢Σ vθ : νθ. The set ΘΓ of
well-typed substitutions over Γ is the union over all well-formed contexts Γ′ of ΘΓ′

Γ .
Definition 2.2. Given a signature Σ, two well-formed and consistent contexts Γ1, Γ2, a
statement Γ1 ⊢Σ t1 : τ1 is more general than Γ2 ⊢Σ t2 : τ2 if there exists a sub-
stitution θ ∈ ΘΓ2

Γ1
such that t1θ = t2 and τ1θ = τ2. This relation is denoted by

(Γ1 ⊢Σ t1 : τ1) ⪯ (Γ2 ⊢Σ t2 : τ2), and its strict part by ⪯. When no confusion is
created, Σ is omitted. The anti-unification problem in λP is defined as:
Given a signature Σ such that ⊢Σ t1 : τ1 and ⊢Σ t2 : τ2,
Find a context Γ and a statement r : ρ such that

• (Γ ⊢Σ r : ρ) ⪯ (⊢Σ ti : τi), with i ∈ {1, 2}, and
• there is no generalization Γ′ ⊢ r′ : ρ′ of ⊢Σ ti : τi such that (Γ ⊢Σ r′ : ρ′) ≺
(Γ′ ⊢Σ r : ρ).

Moreover, this statement Γ ⊢ r : ρ is called a least general generalization (shortly, lgg)
of ti : τi.

Example 1. Consider the anti-unification problem for ⊢Σ t1 : τ1 and ⊢Σ t2 : τ2,
where

t1 := (λx : Nat.λy : (Πa : Nat.Leq(a, x)). − (x, y))

τ1 : = (Πx : Nat.Πy : (Πa : Nat.Leq(a, x)).Nat)

t2 := (λx : Nat.λy : (Πa : Nat.Leq(a,+(x, x))). − (+(x, x), y))

τ2 := (Πx : Nat.Πy : (Πa : Nat.Leq(a,+(x, x))).Nat)

for a suitable Σ, it follows that a lgg is ⟨X : Πn : Nat.Nat⟩ ⊢Σ r : ρ, where

r := λx : Nat.λy : (Πa : Nat.Leq(a,X(x))). − (X(x), y))

ρ:= Πx : Nat.Πy : (Πa : Nat.Leq(a,X(x))).Nat

The colours red, orange and pink represent the respective divergence points in the com-
pared objects. Observe that divergences were the same, that is, all arise from compar-
ing x with +(x, x). Hence, they are represented by the same generalization X(x).
Concerning generalizers substitutions, they are θ1 = {X 7→ λ : Nat.x} and
θ2 = {X 7→ λx : Nat. + (x, x)}.
Example 2. Consider the anti-unification problem for

⊢Σ(λx : Nat.x) : (Πx : Nat.Nat), ⊢Σ (λy : Real.y) : (Πy : Real.Real)

with a suitable syntax Σ. Both have a similar structure; in fact, they are identity functions
of different types, the first one mapping naturals into naturals, and the second one reals
into reals. However, despite the commonalities, there is no answer for this problem. It
happens because λP is a non-polymorphic calculus (observe that the rule (var) in Table
1 forbids elements of sort ⋆ and □ from being variables). Hence, when the differences
are headed by type, there is no solution in our approach.

3 Generalization Rules
An Anti-Unification Triple (shortly, AUT) is of the form “X(x⃗) ‡ s ≜ t”, where
X(x) is a tentative generalization of s and t, with x⃗ being a list of variables, and
X a fresh variable called generalizable variable (shortly, genvar). Active AUTs rep-
resent problems of type statements that are pending to be solved, then they have the form
“X(x⃗) ‡ s : σ ≜ t : τ ”, where X is a meta-variable. Solved AUTs have the form
‘X(x⃗) ‡ s ≜ t” with s and t being terms, and they represent problems already solved.

A configuration is either ⊥ or a triple ⟨P ; S; θ⟩ where P contains active AUTs, S
stores solved AUTs, and θ is a substitution computed so far. In Table 2, a set of inference
rules that operate in configuration is presented.

To solve the anti-unification problem for ⊢Σ t1 : τ1 and ⊢Σ t2 : τ2, the sketch of
the proposal is:

1. Rewrite the statements in a way that the complete typing chains of terms appear when
they are relevant for anti-unification analysis, obtaining the expressions t′1 and t′2 (this
process was omitted due to lack of space).

2. with input ⟨{X ‡ t′1 ≜ t′2}; ∅; id⟩, apply the rules of Table 1, as far as possible.

3. if the last computed configuration is ⊥, then no solution was found; otherwise, if the
last computed solution is ⟨∅; S′, θ⟩, then the given generalization is Xθ.

The procedure is terminating, thus it is an algorithm. Moreover, it is sound in the sense
that it outputs a generalization of the input objects.

This algorithm is a generic framework for computing generalization, and more precise
(SOL) rules need to be given to obtain solutions for specific variants of the problem.

Rules for Anti-Unification in λP
(Generic rules)

Strbx: Starbox

⟨{X(x⃗) ‡ ⋆ : □ ≜ ⋆ : □} ⊎ P ; S; θ⟩
⟨P ; S; θ{X 7→ λx⃗.⋆ : □}⟩

Dec: Decomposition

⟨{X(x⃗) ‡ h((s1 : σ1), . . . , (sm : σm)) : σ ≜ h((t1 : τ1), . . . , (tm : τm)) : τ} ⊎ P ; S; θ⟩
⟨{Z(x⃗) ‡ σ ≜ τ, Y1(x⃗) ‡ s1 : σ1 ≜ t1 : τ1, . . . , Ym(x⃗) ‡ sm : σm ≜ tm : τm} ∪ P ; S; θθ′⟩

where h ̸= ⋆, Z, Y1, . . . , Ym are fresh meta-variables, and θ′ = {X 7→ λx⃗.(h(Y1(x⃗), . . . , Ym(x⃗)) : Z(x⃗))}.

Abs: Abstraction

⟨{X(x⃗) ‡ λy : σ.(s : σ′) ≜ λz : τ.(t : τ ′)} ⊎ P ; S; θ⟩
⟨{Y (x⃗) ‡ σ ≜ τ, Z(x⃗, w) ‡ (s : σ′)ν ≜ (t : τ ′)ν, } ∪ P ; S; θ{X 7→ λx⃗, w : Y (x⃗).Z(x⃗, w)}⟩

where Y , Z, are fresh meta-variabes, w is a fresh variable, and ν = {y 7→ w, z 7→ w}.

Prod: Product

⟨{X(x⃗) ‡ Πy : σ.(s : σ′) ≜ Πz : τ.(t : τ ′)} ⊎ P ; S; θ⟩
⟨{Y (x⃗) ‡ σ ≜ τ, Z(x⃗, w) ‡ sν : σ′ ≜ tν : τ ′} ∪ P ; S; θ{X 7→ λx⃗.Πw : Y (x⃗).Z(x⃗, w)}⟩

where ν = {y 7→ w, z 7→ w}, Y, Z are fresh meta-variables, w is a fresh variable.

Sol: Solve

⟨{X(x⃗) ‡ s : σ ≜ t : τ} ⊎ P ; S; θ⟩
⟨{Z(x⃗) ‡ σ ≜ τ} ∪ P ; {Y (y1, . . . , ym) ‡ (Cs y1 · · · ym) ≜ (Ct y1 · · · ym)} ∪ S; θθ′⟩

where head(s) ̸= head(t),σ ̸= (⋆ : □), τ ̸= (⋆ : □), θ′ = {X 7→ λx⃗.(Y (q1, . . . , qm) : Z(x⃗))}, q1, . . . , qm
are distinct subterms of t or s, Ct and Cs are terms such that (Ct q1 · · · qm) = t and (Cs q1 · · · qm) = s, Ct and Cs do

not contain any x ∈ x⃗, and Z,Y , y1, . . . , ym are distinct fresh variables.

Mer: Merge

⟨∅; {X(x⃗) ‡ s1 ≜ t1, Y (y⃗) ‡ s2 ≜ t2} ⊎ S; θ⟩
⟨∅; {X(x⃗) ‡ s1 ≜ t1} ∪ S; θ{Y 7→ λy⃗.X(x⃗π)}⟩,

where π : {x⃗} → {y⃗} is a bijection, extended as a substitution, with t1π = t2 and s1π = s2.

Fail: Fail

⟨A; S; θ⟩
⊥

where A ̸= ∅ and no other rules apply.

Table 2: Inference rules.

4 Work in Progress
We are investigating how to extend the notion of top maximal solutions for λP general-
izations. It is crucial for the work because Cerna and Buran [1] proved the nullarity of
anti-unification in the simply-typed lambda calculus for the unrestricted case. Since this
calculus is embedded in λP, the result also holds for the system we are interested in now.
Hence, restraining the form of the solutions is a way of ensuring that a minimal and com-
plete set of generalization can be computed. The challenges faced in this extension arise
from the dependence of the term trees on the definition of top-maximality. Since types
and terms occur nested in the structures of this system, it requires a way of designing
term trees in such a manner that terms, types, and type constructors can be identified just
by looking at the representation. After concluding this extension, we aim to prove that
our algorithm computes top-maximal solutions with no nested generalizable variables.

Another work in progress is the extension of the Common-Subterm variant (in short
CS-variant, see [2]), for λP generalizations. After reaching a divergence in the compared
objects, the procedure searches for subterms in common and represents them in the gen-
eralization. Therefore, with the extension being well established, we plan to adapt the
current algorithm by changing the solve rule in such a manner that the procedure will
produce CS-generalizations.

5 Future Work
Further on, we are planning to study the type of the problem (see [3]). The intuition says
that it is of type at least finitary, but probably unary. However, it is necessary to formally
prove it. Only them, we will investigate if the CS-variant procedure is complete.

References
[1] David M. Cerna and Michal Buran. One or nothing: Anti-unification over the simply-

typed lambda calculus. ACM Trans. Comput. Logic, 2024. Accepted.

[2] David M. Cerna and Temur Kutsia. A generic framework for higher-order generaliza-
tions. In Herman Geuvers, editor, 4th International Conference on Formal Structures
for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[3] David M. Cerna and Temur Kutsia. Anti-unification and generalization: A survey. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 6563–6573.
ijcai.org, 2023.

[4] Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence 5,
5:153–163, 1970.

Acknoledments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior – Brasil (CAPES) – Finance Code 001.

About the author
Gabriela Ferreira is a PhD candidate in Mathematics at Universidade de Brası́lia, work-
ing under the supervision of Professor Mauricio Ayala-Rincón (supervisor, UnB) and
Professor Temur Kutsia (cosupervisor, RISC/JKU).

