Anti-Unification in \P

Gabriela Ferreira
Universidade de Brasilia - PPG MAT

G.S.Ferreira@mat.unb.br

1 Introduction

The predicate calculus, in short AP, is a component of the Barendregt cube and is the
typing system that allows types to depend on terms. It is a powerful tool for expressing
lists, arrays and other structures used daily for typing structures. Moreover, dependent
types are implemented in functional programs like Agda and modern proof assistants like
Coq.

The anti-unification problem consists of comparing two structures €1 and ¢9, finding a
new one that represents the commonalities of £1 and £9. This problem was originally in-
vestigated by Plotkin in [4]. Later on, questions about anti-unification have been explored
in high-order terms, for example, Cerna and Kutsia [2] proposed a generic framework for
computing solutions that have no nested generalization variables and preserve the top
maximal communalities of the structures. The survey [3] gives more information about
equational and simply-typed anti-unification, including classification of the problem with
different variants.

The objective is to extend the frameworks of term generalization in high-order theories,
in special [2], to deal with dependent types. Since in this system we have no type-
variables, the proposal is to treat type-constants as rigid parts, allowing divergences only
in the terms that they depend on.

2  Preliminaries

The system AP is based on a set of pseudo-expressions 7 defined by the syntax
T =V |C|TT|AXV:T.TT |11V : TT

Where V' and C are infinite collections of variables and constants, respectively. Among
the constants C, two elements are selected and given names x and [, such elements are
called sorts.

A statement of AP is of the form t : 7, where t, 7 € 7T. A context (typi-
cally I') 1s a finite linearly ordered set of statements with distinct variables subjects,
Hl'=<x1:711ye..on :™ >thenl',t: 7 :=< 1 : T1yeeeo®p : Tnt : T >.
A signature (typically X2) 1s a finite set of statements that assigning types and kinds to
constants. The rules for construct statements are given in Table 1, where the letter s
ranges over {*,[1}. We omitted well-formedness of signatures. Moreover, + ¢ : T
denotes that the statement £ : 7 1s derived 1in an empty context.

'y 7 %

, Where x 1s fresh variable in I'
r:ThkFryx:T

(cons) I' Fx t : 7, wheret : 7 € X (var) I
9

F''kxt:T Ty 1'%
Fe:7"Fst:T

FkFy1:% TDybx:7hks 7' :s
'y (Il : 7.77) t s

a )I‘I—EF:(Ha::T.T’) 'Fsa:T

PP 'ty Fa: 7'{x — a}

e:7kgb:7 T'ky (x:7.7"):s
'y (Axz:7.b) : (Ix : 7.77)

(weak)

(form)

(abs)

Table 1: Rules for type-statements.

We are supposing that pseudo-expressions ¢ are in 77-long 3-normal form, and we are
considering equality modulo a-equivalence.

Definition 2.1. The set @%l of well-typed substitutions from I' to I/ is the set of those
substitutions @ such that for every v : v € T', we have IV -y, v0 : v0. The set G),Iw of
well-typed substitutions over I' is the union over all well-formed contexts I'/ of @% :

Definition 2.2. Given a signature 3., two well-formed and consistent contexts I'1, I'o, a
statement I'y Fw» t1 : 71 1s more general than I'y =y to : 7o 1if there exists a sub-
stitution 6 € @Fi such that t10 = to and 710 = 7». This relation is denoted by
(T't Fx ty : 71) X (I'g F» ty : 7), and its strict part by <. When no confusion is
created, X2 1s omitted. The anti-unification problem in AP is defined as:
Given a signature 3J such that =y ¢ : 71 and Fx» 9 : T2,
Find a context I' and a statement r : p such that

c('kFyxr:p) X (Fxnt;:7;),wths € {1,2}, and

e there is no generalization IV + 7/ : p’ of s ¢; : 7; such that (T s, " : p’) <

(T Fx 7 : p).

Moreover, this statement I' = 7 : p is called a least general generalization (shortly, 1gg)
of t; : T;.

Example 1. Consider the anti-unification problem for Fx ¢1 : 71 and Fy» to : 79,
where

t1 := (Ax : Nat.A\y : (Ila : Nat.Leq(a, x)). — (=, y))
71 ¢ = (IIx : Nat.Ily : (Ila : Nat.Leq(a,x)).Nat)

ty := (Ax : Nat.\y : (Ila : Nat.Leq(a, +(x,x))). — ( s Y))
79 := (IIx : Nat.Ily : (Ila : Nat.Leq(a, +(x,x))).Nat)

for a suitable 3, it follows that a 1gg is (X : Iln : Nat.Nat) s, r : p, where

r := Ax : Nat. Ay : (Ila : Nat.Leq(a, X (x))). — ( s Y))
p:= Ilx : Nat.Ily : (Ila : Nat.Leq(a, X (x))).Nat

The colours red, orange and pink represent the respective divergence points in the com-
pared objects. Observe that divergences were the same, that 1s, all arise from compar-
ing & with 4+(ax, ). Hence, they are represented by the same generalization X (x).
Concerning generalizers substitutions, they are 87 = {X +— A : Nat.x} and
02 = {X — Ax : Nat. + (z, ) }.

Example 2. Consider the anti-unification problem for
Fsy(Ax : Nat.x) : (ITx : Nat.Nat), Fyx (Ay:Real.y): (Ily : Real.Real)

with a suitable syntax 3. Both have a similar structure; in fact, they are identity functions
of different types, the first one mapping naturals into naturals, and the second one reals
into reals. However, despite the commonalities, there is no answer for this problem. It
happens because AP is a non-polymorphic calculus (observe that the rule (var) in Table
1 forbids elements of sort x and LI from being variables). Hence, when the differences
are headed by type, there 1s no solution in our approach.

3 Generalization Rules

An Anti-Unification Triple (shortly, AUT) is of the form “X (&) 1 s = t7, where
X (x) is a tentative generalization of s and ¢, with & being a list of variables, and
X a fresh variable called generalizable variable (shortly, genvar). Active AUTSs rep-
resent problems of type statements that are pending to be solved, then they have the form
“X(Z)fs: 0 =t : 1’ where X is a meta-variable. Solved AUTs have the form
‘X (&) £ s = t” with s and ¢ being terms, and they represent problems already solved.

A configuration is either L or a triple (P; S; 6) where P contains active AUTs, S
stores solved AUTs, and 6 is a substitution computed so far. In Table 2, a set of inference
rules that operate in configuration is presented.

To solve the anti-unification problem for Fx ¢t1 : 71 and Fx» to : T2, the sketch of
the proposal 1s:

CICM+LSFA 2025

20th Logical and
Semantic Framewor ks
with Applications

Brasilia, DF
Brazil

061010
October
2025

1. Rewrite the statements in a way that the complete typing chains of terms appear when
they are relevant for anti-unification analysis, obtaining the expressions t'1 and t'2 (this
process was omitted due to lack of space).

2. with input ({X ¢} = th}; 0; id), apply the rules of Table 1, as far as possible.

18th Conference on
Intelligent Computer
Mathematics

3. if the last computed configuration is _L, then no solution was found; otherwise, if the
last computed solution is {(@; S’, @), then the given generalization is X 6.

The procedure 1s terminating, thus it 1s an algorithm. Moreover, it 1s sound in the sense
that 1t outputs a generalization of the input objects.

This algorithm 1s a generic framework for computing generalization, and more precise
(SOL) rules need to be given to obtain solutions for specific variants of the problem.

Rules for Anti-Unification in AP
(Generic rules)

Strbx: Starbox

{X (@) ix:0 £=x:0} W P; S; 0)
(P; S; 0{X — A\Z.x:0})

Dec: Decomposition

X (@) 1h((81:01)y s (Bm:iom)) o =h((t1:T1)seeey(tm:Tm)) : TIW P; S; 0)
HZ(@) 1o 271, Yi(@)ts1:01 2t : 71y ooy Y @) 1 St O =t : T} U P; S; 00')
where h # x, Z,Y1, ..., Yy, are fresh meta-variables, and 8’ = {X — AZ.(h(Y1(Z),..., Y (X)) : Z(X))}.

Abs: Abstraction

{UX (@)1 dy:o.(s: ) EXz:7(t: T} W P; S; 0)
HY (@) i1o 27, Z(E,w)i(s:0)w=t: v, }UP; S; 0{X — \Z,w: Y (Z).Z(Z,w)})
where Y, Z, are fresh meta-variabes, w is a fresh variable, and v = {y — w, z — w}.

Prod: Product

{X (@) 1My :0.(s: 0 )2 Mz:7.(t: )} W P; S; 0)
Y (@) 1o =27, Z(B,w)isv:o' 2tv: T} UP; S; 0{X — A\&.Ilw : Y (Z).Z(Z, w)})
where v = {y — w, z — w}, Y, Z are fresh meta-variables, w is a fresh variable.

Sol: Solve

{X(®)i1s:0=t: T} W P; S; 0)
{Z(@) 10 217U P; {Y(Y1,---,Ym) 1 (Csy1-+-Ym) = (Cry1- - ym)} U S; 06')
where head(s) # head(t),0c # (x :0), 7 # (x: 1), 0 = {X — AZ.(Y(q15++++qm) : Z(Z))}, @15+, qm
are distinct subterms of ¢ or s, C; and C are terms such that (Cy qy +++ @) = tand (Csqy -+ - @) = 8, Cy and Cy do
not contain any x € &, and Z.Y, y1, . . . , Yn, are distinct fresh variables.

Mer: Merge

0; {X(Z)1s1 =t} US; 0{Y — \j. X (Zm)}),
where 7 : {£} — {¥} is a bijection, extended as a substitution, with t;7r = t5 and s17 = ss.

Fail: Fail

(A; S; 6)

T where A # () and no other rules apply.

Table 2: Inference rules.

4 Work in Progress

We are investigating how to extend the notion of top maximal solutions for AP general-
1zations. It 1s crucial for the work because Cerna and Buran [1] proved the nullarity of
anti-unification in the simply-typed lambda calculus for the unrestricted case. Since this
calculus 1s embedded in AP, the result also holds for the system we are interested in now.
Hence, restraining the form of the solutions is a way of ensuring that a minimal and com-
plete set of generalization can be computed. The challenges faced in this extension arise
from the dependence of the term trees on the definition of top-maximality. Since types
and terms occur nested in the structures of this system, it requires a way of designing
term trees in such a manner that terms, types, and type constructors can be identified just
by looking at the representation. After concluding this extension, we aim to prove that
our algorithm computes top-maximal solutions with no nested generalizable variables.

Another work in progress 1s the extension of the Common-Subterm variant (in short
CS-variant, see [2]), for AP generalizations. After reaching a divergence in the compared
objects, the procedure searches for subterms in common and represents them in the gen-
eralization. Therefore, with the extension being well established, we plan to adapt the
current algorithm by changing the solve rule in such a manner that the procedure will
produce CS-generalizations.

S Future Work

Further on, we are planning to study the type of the problem (see [3]). The intuition says
that 1t 1s of type at least finitary, but probably unary. However, it is necessary to formally
prove it. Only them, we will investigate if the CS-variant procedure 1s complete.

References

[1] David M. Cerna and Michal Buran. One or nothing: Anti-unification over the simply-
typed lambda calculus. ACM Trans. Comput. Logic, 2024. Accepted.

[2] David M. Cerna and Temur Kutsia. A generic framework for higher-order generaliza-
tions. In Herman Geuvers, editor, 4th International Conference on Formal Structures
for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 10:1-10:19. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2019.

[3] David M. Cerna and Temur Kutsia. Anti-unification and generalization: A survey. In

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 6563—6573.
1jcai.org, 2023.

[4] Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence 5,
5:153-163, 1970.

Acknoledments

This study was financed 1n part by the Coordenacdo de Aperfeicoamento de Pessoal de
Nivel Superior — Brasil (CAPES) — Finance Code 001.

About the author

Gabriela Ferreira 1s a PhD candidate in Mathematics at Universidade de Brasilia, work-
ing under the supervision of Professor Mauricio Ayala-Rincon (supervisor, UnB) and
Professor Temur Kutsia (cosupervisor, RISC/JKU).



