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Theoretical study of proof search

The use of proof terms in proof search

Certain level of abstraction: idealized proof search
Partial proofs are first-class citizens

Generalization of the proof term representation of proofs
Partial proof terms have occurrences of formal sequents
Proof search as rewriting of partial proof terms

Test the approach with different proof formats: sequent
calculus and natural deduction

Proof search in sequent calculus: focusing
Proof search in natural deduction: intercalation

A theorem in IPS: focusing and intercalation are isomorphic
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Sequentso :=T+A 7:=T|AFp

Inference rules

F,X:AI—BRI r,x:A\AI—pCTR
I'FA>B Mx:AFp
A T|BEp

AX

NMNAD>DBEDP LI Mptp
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LJT with proof terms

Proof terms and proof lists

t,u = AAt|xX]
[ o= *|ul

SequentsHt: A T|AFI:p
Inference rules

AX Mx:AAFT:p
MNpkE*:p Mx:AEXT:p

CTR

MNx:AFt:B Pl NlFu:A T|BFI:p
rEXxAt:ADB MADBFu:x:l:p
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LJT: proof search (focusing)

Lx:ARB . Lx:AAFPp
rcase X Tx Arp CIR
A TBFp

AX

NMNADBFP Mpkp
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LJT: proof search (focusing)

F,X:AFBRI r,X:A|A|—pCR
FASB Fx-Arp 7
A [BFp

AX
NMNADBFP Mpkp

@ Eagerly invert Rl to decompose implications in the RHS

@ When the RHS becomes atomic, apply CTR to decide a
formula in the LHS to focus on

© As long as the focus is an implication, apply L/, keeping the
focus on the succedent formula, and launching sub-problems

@ When the focus becomes atomic, compare with the atom in
the RHS; if equal, finish with AX, otherwise return to 2.
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From LJT to LJTj

@ Partial derivations: incomplete derivations found in the proof
search process

@ Recall sequent forms of LJT:
oc:=TFA) 7:=(|AFp)

e Formal sequents ¢ ::= ([ = A) 7= (TAF p)

@ Partial proof terms: proof terms with occurrences of formal
sequents, they represent partial derivations

@ Reduction relation on partial proof terms expressing proof
search, such that total terms are normal forms

Aim: proof search as normalization

LJT derives T t: A iff (TEA) -t
——

proof search succeds

the formal sequent

normalizes
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LJTy: partial proof terms

(Partial proof terms
(Partial proof lists
(Formal term sequents
(Formal list sequents

— — —

N 1Q < <

A X o
*x|usl|T
A
MAE p
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LJTy: partial sequents

Partial sequents =ZI-t:o =ZI-1:7 (proof state)

@ = list of formal sequents (proof obligations)
@ t (resp. |) partial proof term (resp. list) (record of the search)

@ o (resp. 7) (goal sequent)
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LJTy: partial derivations

Inference rules

0

[Q]Il—g:a8 [T]IFT:7

IE1:(F,x:AAF p)
IFx1:(Tyx: Ak p)

AX

elbx:(Tpkp) CTR

IFt:(M,x:AF B)
- AxA.t: (T=ADB)

SilFu:(FTEA) =1 (TBF p)
Z10=Fu:(TADBF p)

Ll



LJT
000000008000

LJTy: reduction rules

(IR) rFA>B — MA(M,x:AFB)
(SFL) MNx:AtFp — X(I',x:AAFp)
(KFL) NMNA>BFC — (TEA):=:(TBFC)
(FFL) MNpFp — *
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Example

F(p2opP)DpPOP
Below let I :={f : p D p,x: p}

F(p2DpP)DpPOP
=2 APOPAXP (T F p)
—>SFL /\fp:)p/\xp.f'\(np Dphk )
— KFL )\prp)\Xp.fA< rl—p (r‘pl—p))
—FFL )\prp)\Xp.fA rl—p )
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Example

F(p2opP)DpPOP
Below let I :={f : p D p,x: p}
F(p2DpP)DpPOP

—2. AFPOPAXP (T F p)
—SFL /\pr)p/\Xp.f"‘( DPF )

Mp
—kr MFPOPAPF((TE p) = (Tp - p))
M=
(6

—FFL )\prp)\Xp.fA(( )
—SFL /\prp/\Xp.fA

FpF
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Example

F(p2opP)DpPOP
Below let I :={f : p D p,x: p}

F(p2DpP)DpPOP
=2, AFPOPAXP (T F p)
—sr. AMFPPPAXP F(T[p D pF p)
—kr MFPOPAPF((TE p) = (Tp - p))
—FFL )\fPDP)\xP.f“((F )
—sp1 AfPRPAXP. f“( X F\p Fp
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Example

F(p2opP)DpPOP
Below let I :={f : p D p,x: p}

F(p2DpP)DpPOP
=2, AFPOPAXP (T F p)
—sr. AMFPPPAXP F(T[p D pF p)
—kr MFPOPAPF((TE p) = (Tp - p))
—FFL )\fPDP)\xP.f“((F )
—sp1 AfPRPAXP. f“( X F\p Fp
—SEEL AFPOPAXP F((X%) o %)

CF AFPRPAXP.fx (= 1)
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Results

Proposition (Conservativity)
Q@ LJT derives '+t : Aiff LJTy derives el t: (I - A).
@ LJT derives T|AF [ : piff LJTy derives e -1 : (T|AF p).

Lemma (Record of search)

Q If LJTy derives = |-t : o then o — t.
Q If LJTy derives = I- | : 7 then 7 — t.

Proposition (Subject reduction)

Q@ If=IFt:ocandt—t/, then =/ It : o, for some =,
Q@ If=I-/:7and | — /', then =" IF /' : T, for some ='.
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Main result

Theorem (Proof search as normalization)
@ LJT derives'=t: AiffT A — t.
@ LJT derivesT|AF:BiffT|AFp—|.

LJT derivesTHt: A
= LJTy derives el-t: (= A) (by conservativity)
= [FA—>t (by record of search)

[CEAIFTEA:(THA) (by rule d)
= Zkt:(TFA) (by subject reduction)
= elkt:(IT'+A) (since t is total)
= LJT derivesT-t: A (by conservativity)
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Sequentsoc :=TFA p:=TD>A

Inference rules

MNx:AFB

r-A>B8 ! Tx AsAR
M

r>ASB THA P,

r>B r-p
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NJT with proof terms

Proof terms and head terms
M,N = MA.M|app(H)
H == x|HN

SequentsT'-M:AandT>H: A
Inference rules

Fr>H:p
r,XZADXZAA I app(H):p

Lx:AFM:B  [>H:ASB TEN:A
M-AxAM:ADB >HN:B

E
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NJT: proof search (intercalation)

Inference rules

Nx:AFB A

r’FA>B Fx:A> A

I>A>B THA N>p
> B E rep€

@ Implications in the RHS are decomposed by the bottom-up
application of rule /

@ When an atom p is computed, choose an assumption (rule A)
and start the top-down phase

© Decompose implications by top-down application of rule E,
launching sub-problems

Q |If the atom computed top-down is p, then finish with rule C,
else return to 2.
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NJTy: partial proof terms

(Partial proof terms) M, N MAM | app(H)

a|app(H, p, p)

(Partial head terms) H x| HN
(Formal term sequents) g == [EA
(Formal head sequents) p = I>H:A
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NJTjy: partial derivations

Sequents =I-FM:o =IFH:p
Inference rules
ZElkEH:p p=(T>A
Elirc:o?  ZClapp(H.p.p): (TF p)

I-H:(T'>p)
ell—x:(l‘,x:ADA)A I app(H) : (T F p)

IFM:(I'x:AkF B)
- AxAM: (THADB)

SIFH:(T>ADB) Sk N:(THA)
=105, IF HN : (T > B)
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NJTy: reduction rules

) rHADB
) MNx:Abkp
(KFD) app(H,'>A D B, p)
) app(H,T' > p,p)

MA(M, x : Al B)
app(x,I,x: A A, p)
app(H(C = A),I > B, p)
app(H)

Ll
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LJT = NJT
@ Proof terms of LJT and NJT are in bijective correspondence
@ x(uy iz (up i %)) corresponds to app((xNy)No)
@ Let ©: LJT — NJT be this bijection with inverse W

@ These maps are sound, they lift to a sound bijection of proofs
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LJT =2 NJT

@ Proof terms of LJT and NJT are in bijective correspondence

@ x(uy iz (up i %)) corresponds to app((xNy)No)

@ Let ©: LJT — NJT be this bijection with inverse W

@ These maps are sound, they lift to a sound bijection of proofs
LITy = NJTy

@ The bijections © and W extend to partial proof terms

@ By soundness they lift to sound bijection of partial proofs

@ New: they establish an isomorphism between the rewriting
relations
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Translations © : LJTy — NJT,

o(t)y=M
O(Ax.t) = Ax.Ot

O(x1) = ©O(x,/)

Oc) = ¢
O(H,I) =M

O(H,u:: 1) = ©(H(Ou),l)
O(H,x) = app(H)
O(H,T|AFp) = app(H,[ > A, p)
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Translations W : NJTy — LJTy

V(M) =t
VAx.M) = Ax.UM
V(app(H)) = W(H,*)
V() = ¢
V(app(H,[>A,p)) = V(H,T|AF p)
V(H, )=t
W(HN, 1) W(H, (WN) : /)

A

X

=
x
[
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Soundness

Soundness of ©

St SilFH:(T>A) =1 (TAE p)
=ZIFOt:o Z10=L FO(H, ) (T p)

Soundness of ¥

S-M:o S1FH:(T>A) =1 (TIAF p)
= WMo =10=, IF W(H, 1) : (T - p)
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LITy = NJTy

Q@ OVM =M and VOt = t.
Q@ t—tinLJTyiff ©t — Ot in NJT.
QO M— M in NJTy iff WM — WM’ in LJT5.
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@ Contributions
e Modeling of proof search at a level of abstraction that still
belongs to proof theory
e NJT as a reformulation of Sieg's intercalation calculus
o Folklore (?) theorem: focusing equivalent to intercalation

@ Related work
o Type theories with meta-variables and explicit substitutions
(e. g Mufioz 2001, Nanevski et a/ 2008)
e Open proofs and open terms (Geuvers-Jojgov 2002)
e Specification in rewriting logic (Olarte et al 2023)
© Ongoing work
e Extend the results beyond the toy case studies
e Approach less idealized proof search
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