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LJT

Sequents σ ::= Γ ⊢ A τ ::= Γ|A ⊢ p

Inference rules

Γ, x : A ⊢ B

Γ ⊢ A ⊃ B
RI

Γ, x : A|A ⊢ p

Γ, x : A ⊢ p
CTR

Γ ⊢ A Γ|B ⊢ p

Γ|A ⊃ B ⊢ p
LI

Γ|p ⊢ p
AX



LJT NJT Focusing vs intercalation Final

LJT with proof terms

Proof terms and proof lists

t, u ::= λxA.t | x̂ l
l ::= ⋆ | u :: l

Sequents Γ ⊢ t : A Γ|A ⊢ l : p

Inference rules

Γ|p ⊢ ⋆ : p
AX

Γ, x : A|A ⊢ l : p

Γ, x : A ⊢ x̂ l : p
CTR

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A ⊃ B
RI

Γ ⊢ u : A Γ|B ⊢ l : p

Γ|A ⊃ B ⊢ u :: l : p
LI
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LJT : proof search (focusing)

Γ, x : A ⊢ B

Γ ⊢ A ⊃ B
RI

Γ, x : A|A ⊢ p

Γ, x : A ⊢ p
CTR

Γ ⊢ A Γ|B ⊢ p

Γ|A ⊃ B ⊢ p
LI

Γ|p ⊢ p
AX

1 Eagerly invert RI to decompose implications in the RHS

2 When the RHS becomes atomic, apply CTR to decide a
formula in the LHS to focus on

3 As long as the focus is an implication, apply LI , keeping the
focus on the succedent formula, and launching sub-problems

4 When the focus becomes atomic, compare with the atom in
the RHS; if equal, finish with AX , otherwise return to 2.
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From LJT to LJT∂

Partial derivations: incomplete derivations found in the proof
search process

Recall sequent forms of LJT :
σ ::= (Γ ⊢ A) τ ::= (Γ|A ⊢ p)

Formal sequents σ ::= (Γ ⊢ A) τ ::= (Γ|A ⊢ p)

Partial proof terms: proof terms with occurrences of formal
sequents, they represent partial derivations

Reduction relation on partial proof terms expressing proof
search, such that total terms are normal forms

Aim: proof search as normalization

LJT derives Γ ⊢ t : A︸ ︷︷ ︸
proof search succeds

iff (Γ ⊢ A) ↠ t︸ ︷︷ ︸
the formal sequent

normalizes
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LJT∂: partial proof terms

(Partial proof terms) t, u ::= λxA.t | x̂ l |σ
(Partial proof lists) l ::= ⋆ | u :: l | τ

(Formal term sequents) σ ::= Γ ⊢ A
(Formal list sequents) τ ::= Γ|A ⊢ p
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LJT∂: partial sequents

Partial sequents Ξ ⊩ t : σ Ξ ⊩ l : τ (proof state)

Ξ list of formal sequents (proof obligations)

t (resp. l ) partial proof term (resp. list) (record of the search)

σ (resp. τ) (goal sequent)
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LJT∂: partial derivations

Inference rules

[σ] ⊩ σ : σ
∂

[τ ] ⊩ τ : τ
∂

ϵ ⊩ ⋆ : (Γ|p ⊢ p)
AX

Ξ ⊩ l : (Γ, x : A|A ⊢ p)

Ξ ⊩ x̂ l : (Γ, x : A ⊢ p)
CTR

Ξ ⊩ t : (Γ, x : A ⊢ B)

Ξ ⊩ λxA.t : (Γ ⊢ A ⊃ B)
RI

Ξ1 ⊩ u : (Γ ⊢ A) Ξ2 ⊩ l : (Γ|B ⊢ p)

Ξ1@Ξ2 ⊩ u :: l : (Γ|A ⊃ B ⊢ p)
LI
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LJT∂: reduction rules

(IR) Γ ⊢ A ⊃ B → λxA.(Γ, x : A ⊢ B)

(SFL) Γ, x : A ⊢ p → x̂ (Γ, x : A|A ⊢ p)

(KFL) Γ|A ⊃ B ⊢ C → (Γ ⊢ A) :: (Γ|B ⊢ C )

(FFL) Γ|p ⊢ p → ⋆



LJT NJT Focusing vs intercalation Final

Example

⊢ (p ⊃ p) ⊃ p ⊃ p

Below let Γ := {f : p ⊃ p, x : p}

⊢ (p ⊃ p) ⊃ p ⊃ p

→2
IR λf p⊃pλxp.(Γ ⊢ p)

→SFL λf p⊃pλxp.f (̂Γ|p ⊃ p ⊢ p)

→KFL λf p⊃pλxp.fˆ
(
(Γ ⊢ p) :: (Γ|p ⊢ p)

)
→FFL λf p⊃pλxp.fˆ

(
(Γ ⊢ p) :: ⋆

)
→SFL λf p⊃pλxp.fˆ

(
(x̂ (Γ|p ⊢ p)) :: ⋆

)
→FFL λf p⊃pλxp.fˆ((x̂ ⋆) :: ⋆)

Cf λf p⊃pλxp.fx (≡ 1)
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Results

Proposition (Conservativity)

1 LJT derives Γ ⊢ t : A iff LJT∂ derives ϵ ⊩ t : (Γ ⊢ A).

2 LJT derives Γ|A ⊢ l : p iff LJT∂ derives ϵ ⊩ l : (Γ|A ⊢ p).

Lemma (Record of search)

1 If LJT∂ derives Ξ ⊩ t : σ then σ ↠ t.

2 If LJT∂ derives Ξ ⊩ l : τ then τ ↠ t.

Proposition (Subject reduction)

1 If Ξ ⊩ t : σ and t → t ′, then Ξ′ ⊩ t ′ : σ, for some Ξ′.

2 If Ξ ⊩ l : τ and l → l ′, then Ξ′ ⊩ l ′ : τ , for some Ξ′.
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Main result

Theorem (Proof search as normalization)

1 LJT derives Γ ⊢ t : A iff Γ ⊢ A ↠ t.

2 LJT derives Γ|A ⊢ l : B iff Γ|A ⊢ p ↠ l .

Proof.

LJT derives Γ ⊢ t : A
⇒ LJT∂ derives ϵ ⊩ t : (Γ ⊢ A) (by conservativity)
⇒ Γ ⊢ A ↠ t (by record of search)

[Γ ⊢ A] ⊩ Γ ⊢ A : (Γ ⊢ A) (by rule ∂)
⇒ Ξ ⊩ t : (Γ ⊢ A) (by subject reduction)
⇒ ϵ ⊩ t : (Γ ⊢ A) (since t is total)
⇒ LJT derives Γ ⊢ t : A (by conservativity)
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NJT

Sequents σ ::= Γ ⊢ A ρ ::= Γ▷ A

Inference rules

Γ, x : A ⊢ B

Γ ⊢ A ⊃ B
I

Γ, x : A▷ A
A

Γ▷ A ⊃ B Γ ⊢ A
Γ▷ B

E
Γ▷ p

Γ ⊢ p
C
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NJT with proof terms

Proof terms and head terms

M,N ::= λxA.M | app(H)
H ::= x |HN

Sequents Γ ⊢ M : A and Γ▷ H : A
Inference rules

Γ, x : A▷ x : A
A

Γ▷ H : p

Γ ⊢ app(H) : p
C

Γ, x : A ⊢ M : B

Γ ⊢ λxA.M : A ⊃ B
I Γ▷ H : A ⊃ B Γ ⊢ N : A

Γ▷ HN : B
E
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NJT : proof search (intercalation)

Inference rules

Γ, x : A ⊢ B

Γ ⊢ A ⊃ B
I

Γ, x : A▷ A
A

Γ▷ A ⊃ B Γ ⊢ A
Γ▷ B

E
Γ▷ p

Γ ⊢ p
C

1 Implications in the RHS are decomposed by the bottom-up
application of rule I

2 When an atom p is computed, choose an assumption (rule A)
and start the top-down phase

3 Decompose implications by top-down application of rule E ,
launching sub-problems

4 If the atom computed top-down is p, then finish with rule C ,
else return to 2.
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NJT∂: partial proof terms

(Partial proof terms) M,N ::= λxA.M | app(H)
| σ | app(H, ρ, p)

(Partial head terms) H ::= x |HN
(Formal term sequents) σ ::= Γ ⊢ A
(Formal head sequents) ρ ::= Γ▷ H : A
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NJT∂: partial derivations

Sequents Ξ ⊩ M : σ Ξ ⊩ H : ρ

Inference rules

[σ] ⊩ σ : σ
∂

Ξ ⊩ H : ρ ρ = (Γ▷ A)

Ξ@[ρ] ⊩ app(H, ρ, p) : (Γ ⊢ p)
∂

ϵ ⊩ x : (Γ, x : A▷ A)
A

Ξ ⊩ H : (Γ▷ p)

Ξ ⊩ app(H) : (Γ ⊢ p)
C

Ξ ⊩ M : (Γ, x : A ⊢ B)

Ξ ⊩ λxA.M : (Γ ⊢ A ⊃ B)
I

Ξ1 ⊩ H : (Γ▷ A ⊃ B) Ξ2 ⊩ N : (Γ ⊢ A)

Ξ1@Ξ2 ⊩ HN : (Γ▷ B)
E
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NJT∂: reduction rules

(IR) Γ ⊢ A ⊃ B → λxA.(Γ, x : A ⊢ B)

(SFD) Γ, x : A ⊢ p → app(x , Γ, x : A▷ A, p)

(KFD) app(H, Γ▷ A ⊃ B, p) → app(H(Γ ⊢ A), Γ▷ B, p)
(FFD) app(H, Γ▷ p, p) → app(H)



LJT NJT Focusing vs intercalation Final

Focusing vs intercalation
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LJT ∼= NJT

Proof terms of LJT and NJT are in bijective correspondence

x̂ (u1 :: (u2 :: ⋆)) corresponds to app((xN1)N2)

Let Θ : LJT → NJT be this bijection with inverse Ψ

These maps are sound, they lift to a sound bijection of proofs

LJT∂
∼= NJT∂

The bijections Θ and Ψ extend to partial proof terms

By soundness they lift to sound bijection of partial proofs

New: they establish an isomorphism between the rewriting
relations
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Translations Θ : LJT∂ → NJT∂

Θ(t) = M

Θ(λx .t) = λx .Θt
Θ(x̂ l) = Θ(x , l)
Θ(σ) = σ

Θ(H, l) = M

Θ(H, u :: l) = Θ(H(Θu), l)
Θ(H, ⋆) = app(H)

Θ(H, Γ|A ⊢ p) = app(H, Γ▷ A, p)
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Translations Ψ : NJT∂ → LJT∂

Ψ(M) = t

Ψ(λx .M) = λx .ΨM
Ψ(app(H)) = Ψ(H, ⋆)

Ψ(σ) = σ
Ψ(app(H, Γ▷ A, p)) = Ψ(H, Γ|A ⊢ p)

Ψ(H, l) = t
Ψ(HN, l) = Ψ(H, (ΨN) :: l)
Ψ(x , l) = x̂ l
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Soundness

Soundness of Θ

Ξ ⊩ t : σ
Ξ′ ⊩ Θt : σ

Ξ1 ⊩ H : (Γ▷ A) Ξ2 ⊩ l : (Γ|A ⊢ p)

Ξ1@Ξ
′
2 ⊩ Θ(H, l) : (Γ ⊢ p)

Soundness of Ψ

Ξ ⊩ M : σ
Ξ′ ⊩ ΨM : σ

Ξ1 ⊩ H : (Γ▷ A) Ξ2 ⊩ l : (Γ|A ⊢ p)

Ξ′
1@Ξ2 ⊩ Ψ(H, l) : (Γ ⊢ p)
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LJT∂
∼= NJT∂

Theorem

1 ΘΨM = M and ΨΘt = t.

2 t → t ′ in LJT∂ iff Θt → Θt ′ in NJT∂ .

3 M → M ′ in NJT∂ iff ΨM → ΨM ′ in LJT∂ .
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1 Contributions

Modeling of proof search at a level of abstraction that still
belongs to proof theory
NJT as a reformulation of Sieg’s intercalation calculus
Folklore (?) theorem: focusing equivalent to intercalation

2 Related work

Type theories with meta-variables and explicit substitutions
(e. g. Muñoz 2001, Nanevski et al 2008)
Open proofs and open terms (Geuvers-Jojgov 2002)
Specification in rewriting logic (Olarte et al 2023)

3 Ongoing work

Extend the results beyond the toy case studies
Approach less idealized proof search
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