
Towards computer-assisted semantic markup of
mathematical documents
CICM 2024, Montreal, Canada

Luka Vrečar, Joe Wells, Fairouz Kamareddine

Heriot-Watt University

August 8, 2024

Outline

I Introduction
I Background – λ-calculus (our testing ground) and STEX
I Grammar generation
I Disambiguation GUI – includes a demo
I Conclusion and future

Introduction

I Documents written in LATEX often contain ambiguous formulas
(e.g., $P \times Q$).

I We can disambiguate them with STEX (e.g., $\cart{P}{Q}$).

I Other advantages - interaction with computer algebra systems,
interactive theorem provers, screen readers, etc.

I Semantic markup via STEX (“STEX-ification”) is more involved,
so we hope to somewhat automate the process.

Proposed approach

For a given document we wish to STEX-ify:
1. Generate all the prerequisites

1.1 Identify which macros are needed and define any missing ones.
1.2 Generate a context-free grammar.

2. Produce semantic markup
2.1 Parse all the formulas in the document with the grammar from

step 1b.
2.2 Disambiguate any ambiguous parses with a graphical user

interface (GUI).
2.3 Create a copy of the original document, with formulas replaced

by their STEX counterparts.

Outline

I Introduction
I Background – λ-calculus (our testing ground) and STEX
I Grammar generation
I Disambiguation GUI – includes a demo
I Conclusion and future work

Background – λ-calculus (variables)

Let V be the set of variables, defined as V = {v, v’, v”, . . .}. We
will denote the meta-variables that range over V with lowercase
letters (e.g., x , y , z), that can have apostrophes or subscripted
index attached (e.g., x ′, y1, z ′′2).

Background – λ-calculus (terms)

Let Λ be the set of all λ-terms. We will denote the meta-terms
that range over Λ with uppercase letters (e.g., A, B, C), that can
have apostrophes or subscripted index attached (e.g., A′, B1, C ′′

2).
We define Λ inductively as follows:
I If x ∈ V, then x is in Λ.
I If A,B ∈ Λ, then the application of A to B, denoted by (AB),

is in Λ.
I If x ∈ V and A ∈ Λ, then the abstraction in A over x , denoted

by (λx .A), is in Λ.

Background – λ-calculus (notational conventions)

We employ some notational conventions when writing out λ-terms.
We follow the conventions from our Foundations course notes:
I We can remove the outermost parentheses in a term: we can

write AB instead of (AB).
I Application is left-associative: we can write (AB)C as ABC .
I The scope of an abstraction extends as far to the right as

possible: λx .xy is equivalent to λx .(xy), NOT (λx .x)y .
I Multiple consecutive abstractions can be “compressed”: we

can write λx .(λy .(λz.A)) as λxyz.A.

Background – STEX

I Developed by the KWARC research group
I Semantic macros to preserve structure and meaning of

formulas
I Still human readable when compiled to PDF

I Hundreds of macros already exist for mathematics and CS

Macros for λ-terms

I \symdef{var}[name=variable, args=i]{#1}
I \symdef{abs}[name=abstraction, args=ai]{

\maincomp{\lambda}\argsep{#1}{}\comp{.}#2}
I \symdef{app}[name=application, args=ii]{#1 #2}

Outline

I Introduction
I Background – λ-calculus (our testing ground) and STEX
I Grammar generation
I Disambiguation GUI – includes a demo
I Conclusion and future work

Grammar generation - initial approach

1. Find STEX macro definitions and replace argument
placeholders with a special nonterminal, arg.

2. Create a main rule, with arg on the LHS and all other
nonterminals on the RHS.

3. Add a simple text-recognizing regex if all else fails
Macro definition Grammar rule
\symdef{var}[args=1]{
#1}

var → arg

\symdef{app}[args=2]{
#1 #2}

app → arg arg

\symdef{abs}[args=2]{
\lambda#1.#2}

abs → “\lambda′′ arg “dot′′ arg

Main rule arg → var | app | abs | [a-z]+?

Grammar generation - issues with the initial approach

I The grammars would over-generate, i.e., they produced many
non-sensical trees

I Assuming anything can be an argument to any macro does
not make sense mathematically
I For abstraction for example, the first argument should only be

a variable

Grammar generation - adding types
I Some STEX macro definitions also contain types
I \symdef{natplus}[args=2, type=\funspace{\Nat,

\Nat}{\Nat}]{#1 + #2}
I This macro has type N→ N→ N - it takes in two natural

numbers (input types) and returns a natural number (output
type)

I We can restrict grammar rules by matching output types with
arguments of the correct input type for each notation rule

natplus → natArg1 + natArg2
natArg1 → natType
natArg2 → natType
natType → natplus | . . .

Grammar generation - adding types

I Not a lot of macros actually provide types, so we need a
different solution

I Possibly, we can create an interface for editing grammars
where users can select which macros can be arguments to
other macros

I In this way we add types to macros in a more “loose” sense

Grammar generation - adding precedence

I In STEX, we can add precedence to macros for things like
automated bracketing

I We can use them as precedences during parsing

Grammar generation - issues and improvements

I Grammars sometimes contain cycles, which our GLR parser
cannot work with
I We can address this with a different parser, like DynGenPar

I There is currently no way to generate a grammar from more
than one STEX archive at a time - addressed in future work

I Grammars must sometimes be manually edited
I Improving the code might solve this to some extent
I Developing an interface for creating/merging/editing

grammars will also help

Outline

I Introduction
I Background – λ-calculus (our testing ground) and STEX
I Grammar generation
I Disambiguation GUI – includes a demo
I Conclusion and future work

A GUI for disambiguation during parsing - motivation

I Formulas may parse ambiguously, and comparing terminal
printouts is not easy

I We can visualise all parses side by side in a nicer way
I This tool can then evolve into a program for all steps of

STEX-ification, from grammar generation to producing the
actual STEX-ified documents

A GUI for disambiguation during parsing - design

1
2

3

4

5

6

7

8

A GUI for disambiguation during parsing - tree visualisation

abs
varlist

var
x

var
y

app
var

x
var

y

abs
varlist

var
x

var
y

app
var

x
var

y

A GUI for disambiguation during parsing - example

I will now show the GUI in practice on a small example file

A GUI for disambiguation during parsing - improvements

I Currently, it would be hard to use it with large complex
formulas
I Adding more compact visualisations
I Joining parse trees as much as possible

I “α-equivalent” formulas must be disambiguated separately
(e.g., λx .xz and λy .yz)

I Context is important, but the GUI just shows formulas
I Showing a PDF with highlighted ambiguous formulas that

users can interact with to show parse trees

Outline

I Introduction
I Background – λ-calculus (our testing ground) and STEX
I Grammar generation
I Disambiguation GUI – includes a demo
I Conclusion and future work

Conclusion and future work

I We showed that our approach has advantages
I There are limitations (cyclical grammars, the GUI design)
I We have been working on addressing the limitations and hope

to share our results with you in the near future!
I We have found a solution for cyclical grammars
I Work on the new GUI is already underway

