# Reusing Learning Objects via Theory Morphisms

Michael Kohlhase, Marcel Schütz

FAU Erlangen-Nürnberg

CICM 2024, Montréal, Québec, Canada, August 5 - 9, 2024

August 7, 2024

| Marco   | Schütz  |       |
|---------|---------|-------|
| ivialce | JUIIULZ | (170) |

э

Learning Objects

|         |          | /             |
|---------|----------|---------------|
| Narco   | L Schutz |               |
| IVIALLE |          | 11 AU         |
|         |          | · · · · · · · |

э.



**Theorem.** Propositional logic  $\langle \mathcal{L}_{PL^0}, \mathcal{K}_{PL^0}, \models_{PL^0} \rangle$  naturally forms a logical system  $\langle \mathcal{L}, \mathcal{K}, \models \rangle$ .

**Definition.** Let A be a formula of propositional logic. A is satisfiable iff there exists a model  $\mathcal{I}$  such that  $\mathcal{I}(A) = T$ .

**Exercise.** Is the formula  $p \land (q \Rightarrow \neg p)$  satisfiable?  $\Box$  Yes  $\Box$  No

| A 4     | C      |      |
|---------|--------|------|
| iviarce | SCHUTZ | FAUL |
|         |        | (    |

3





- $\mathcal{L}$  is a formal language, whose elements are called formulas,
- $\mathcal{K}$  is a set, whose elements are called models,
- $\bullet \models \subseteq \mathcal{K} \times \mathcal{L}.$

**Definition.** Propositional logic is the triple  $\langle \mathcal{L}_{PL^0}, \mathcal{K}_{PL^0}, \models_{PL^0} \rangle$ , where

- $\mathcal{L}_{PL^0}$  is the set of all propositional formulas,
- $\mathcal{K}_{PL^0}$  is the set of all Boolean interpretation functions,
- $\mathcal{I} \models_{\mathsf{PL}^0} A$  iff  $\mathcal{I}(A) = \mathsf{T}$ .

**Theorem.** Propositional logic  $\langle \mathcal{L}_{PL^0}, \mathcal{K}_{PL^0}, \models_{PL^0} \rangle$  naturally forms a logical system  $\langle \mathcal{L}, \mathcal{K}, \models \rangle$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Recontextualizing Statements

Logical Systems:

**Definition.** Let *F* be a formula of a logical system. A model  $\mathcal{M}$  satisfies *F* iff  $\mathcal{M} \models F$ .

# $\mathbf{1}$

Propositional Logic:

**Definition.** Let A be a formula of propositional logic. A model  $\mathcal{I}$  satisfies A iff  $\mathcal{I} \models_{\mathsf{PI}^0} A$ .

**Definition.** Let A be a formula of propositional logic. A model  $\mathcal{I}$  satisfies A iff  $\mathcal{I}(A) = \mathsf{T}$ .

イロン イ団 とく ヨン イヨン

э

### Recontextualizing Exercises



#### Logical Systems:

```
Exercise. Is the formula F := \text{definiens}(F) satisfiable?

\Box Yes

\Box No

Feedback: Actually, there is a model \mathcal{M} that satisfies F:

\text{definiens}(\mathcal{M}). Then \text{conclusion}(\Phi):

Indeed, \text{proof}(\Phi).
```

#### **Propositional Logic:**



э

イロン イ団 とく ヨン イヨン

Theory Morphisms

|         |          | /             |
|---------|----------|---------------|
| Narco   | L Schutz |               |
| IVIALLE |          | 11 AU         |
|         |          | · · · · · · · |

2

#### What is a Theory Morphism?

**Definition.** A theory morphism  $\varphi: S \rightsquigarrow T$  between two theories S and T is a mapping of the symbols in S to expressions in T such that

$$s: \tau \implies \varphi(s): \varphi(\tau)$$

for all symbols s and types  $\tau$  in S.



# Representing Theory Morphisms in STEX

```
1 \begin{mathstructure}{logsys}[logical system]
 2
     . . .
 3
    % The satisfaction relation:
    \symdef{satrel}[
 4
      args=2,
 5
 6
      type={\powerset{\cart{\modcls,\flang}}}
 7
    ]{#1\vDash#2}
 8
   \end{mathstructure}
 9
  \begin{mathstructure}{proplog}[propositional logic]
 2
 3
    % The satisfaction relation:
    \symdef{psat}[
 4
 5
      args=2.
      def={\textrm{$\psat{\Ivar!}{\Avar}$ iff $\eq{\Ivar{\Avar}, \semtrue}$}}
 6
 7
    ]{\#1\vDash_{\textrm{PL}^0} \#2}
8
     . . .
9
10
    % The theory morphism from logical systems to propositional logic:
11
    \begin{realization}{logsvs}
12
       . . .
13
      \assign{satrel}{\psat!}
14
15
    \end{realization}
16 \end{mathstructure}
```

(日) (四) (日) (日) (日)



### Presenting Theory Morphisms





**Theorem.** (target concept) (target structure) naturally forms a (source concept) (source structure).



| Marcel Schütz (FAU) | Reusing Learning Objects | 2024-08-07 | 10 / 16 |
|---------------------|--------------------------|------------|---------|

Recontextualizing Learning Objects Along Theory Morphisms

|          |          | (     |
|----------|----------|-------|
| N/I Drco | L Schutz |       |
| IVIALLE  |          | 11 AU |
|          |          |       |

2

・ロト ・四ト ・ヨト ・ヨト





イロン イ団 とく ヨン イヨン

э

**Definition Expansion** 



"A model  $\mathcal{I} \in \mathcal{K}_{\mathsf{PL}^0}$  satisfies A iff  $\mathcal{I} \models_{\mathsf{PL}^0} A$ ."

 $\downarrow$ 



 $\downarrow$ 

"A model  $\mathcal{I} \in \mathcal{K}_{\mathsf{PL}^0}$  satisfies A iff  $\mathcal{I}(A) = \mathsf{T}$ ."

| Marce     | Schütz - | (EALL) |
|-----------|----------|--------|
| I viai CC | Jenutz   | (170)  |

2024-08-07

2

< □ > < □ > < □ > < □ > < □ >

13/16

# Recontextualizing Exercises (Revisited)





Conclusion and Future Work

|          |          | (     |
|----------|----------|-------|
| N/I Drco | L Schutz |       |
| IVIALLE  |          | 11 AU |
|          |          |       |

2

# Reusing Learning Objects via Theory Morphisms



- We can automatically ....
  - ... present theory morphisms in natuaral language.
  - ... recontextualize statements along theory morphisms.
  - ... recontextualize exercises with solutions and feedback along theory morphisms.

https://gitos.rrze.fau.de/voll-ki/fau/system/relocalization/

• We have a growing corpus of theory morphisms and templates that are suited for automatic recontextualization.

- Future Work:
  - Properly handling the intricacies of natural language.
  - Integrating the recontextualization processes in our adaptive learning assistant ALEA.

 $\longrightarrow https://courses.voll-ki.fau.de/$ 

| Marce | l Schütz | (FAU) |  |
|-------|----------|-------|--|
|       |          |       |  |

16/16