
1

A Logical Framework Perspective on
Conservativity

Florian Rabe

University Erlangen-Nuremberg

August 2024



What is a Conservative Extension? 2

What is a Conservative Extension?



What is a Conservative Extension? 3

Intuition

Concepts
▶ theory: list of declarations in some language

▶ extension E of T : like T but with additional declarations

▶ conservative: E is kind of the same as T

Example:
T = natural numbers with 0, successor

N : type 0 : N s : N → N Peano axioms

E = extension with addition

+ : N× N → N ∀x .x + 0 = x ∀x .∀n.x + s(n) = s(x + n)

Kind of the same?
▶ same syntax?

▶ same semantics? conservativity in model theory

▶ same theorems? condervativity in proof theory
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Common Patterns for Conservative Extensions
▶ new definition side note: not usually considered in logic

plusTwo := λx .s(s(x))

▶ new type
foo : type

▶ new term of new type

bar : N → foo

▶ new terms of existing types if N is non-empty

+ : N× N → N
▶ . . . with certain axioms encoding a definition

∀x .x + 0 = x , ∀x .∀n.x + s(n) = s(x + n)

▶ Skolemization, e.g., of ∀n.∃x .n = 0 ∨ s(x) = n

pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n
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Formal Definitions
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Competing definitions

T ↪→ E is conservative
▶ syntactically (SC)

everything added in E can already be defined in T

▶ proof-theoretically (PC)

E can’t prove anything new about T

▶ model-theoretically (MC)

T -models can be extended to E -models

definitions are from the literature, names are mine

preview:

SC ⇒ . . . ⇒ MC ⇒ . . . ⇒ PC
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Definition 1: Syntactic Conservativity

Setting

▶ formal system with theories and morphism
e.g., FOL, HOL, CoC, ZFC

▶ theory extension T ↪→ E is inclusion morphism

Syntactically conservative (SC) iff

▶ there is morphism d : E → T that is identity on T

▶ in other words: T can define all constants added in E

Example
▶ T=Peano, E adds 1 : N
▶ define d by d(1) = s(0)
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Are the Common Patterns SC?
Some patterns are always SC
▶ new definition plusTwo := λx : N.s(s(x))

d(plusTwo) = its definiens

▶ new type foo : type

d(foo) = any type

▶ new term bar : N → foo

d(bar) = λn : N.any term of type d(foo)

▶ new term of existing type + : N× N → N

d(+) = λm : N, n : N.any term of type N

Adding terms with axioms is often not SC
▶ + : N× N → N and axioms
▶ pred : N → N and axiom

no way to define d(+) or d(pred) that satisfies the axioms
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Definition 2: Proof-Theoretic Conservativity

Setting
▶ Inclusion morphisms T ↪→ E as before

▶ Language has propositions F : prop and truth judgment ⊢ F
i.e., it’s a logic

Proof-theoretically conservative (PC) iff

▶ informally:

any E -provable T -proposition is also T -provable

▶ formally:

for ⊢T F : prop, if ⊢E F , then also ⊢T F

▶ intuitively:

E doesn’t change T -provability

Note that ⊢T F always implies ⊢E F
independent of conservativity
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Are the Common Patterns PC?

Theorem: SC already implies PC
Proof: Assume d : E → T and T -formula F .
Any E -proof P of F yields a T -proof d(P) of d(F ) = F .

Our other examples are PC as well:

▶ new terms with defining axioms

+ : N×N → N ∀x .x +0 = x ∀x .x∀n.x + s(n) = s(x + n)

PC: axioms carefully chosen to rewrite new terms into old ones

▶ Skolemization of ∀n.∃x .n = 0 ∨ s(x) = n

pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n

PC: equivalent to soundness of Skolemization
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Definition 3: Model-Theoretic Conservativity

Setting
▶ Inclusion morphisms T ↪→ E as before

▶ Logic has sound+complete proof and model theory

▶ Forgetful functors |T : Mod(E ) → Mod(T )
e.g., models are interpretation function; |T restricts to T -syntax

Model-theoretically conservative (MC) iff

▶ Any T -model M ∈ Mod(T )
can be extended to an E -model N ∈ Mod(E )
such that N|T = M.

▶ Intuitively: All old models can be extended to the extended syntax.
in other words: forgetful functor is surjective
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Are the Common Patterns MC?

Theorem: SC implies MC
Proof: Assume d : T → E and a T -model.
“Composing” d and T yields an E -model.

Our other examples are (usually) MC as well:

▶ new terms with defining axioms

+ : N×N → N ∀x .x+0 = x ∀x .∀n : N.x+s(n) = s(x+n)

MC: extend Peano models with addition function

▶ Skolemization of provable ∀∃ formula

pred : N → N ∀n.n = 0 ∨ s(pred(n)) = n

MC: extend Peano models with predecessor function
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MC vs. PC

Proved so far
▶ SC implies PC

▶ SC implies MC

Theorem: MC implies PC
Proof: Assume E -provable T -proposition F

▶ by soundness: F holds in all E -models

▶ by MC: F holds in all T -models

▶ by completeness: F is T -provable

Question: Does PC imply MC?
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Degrees of MC between SC and PC

Example
▶ first-order logic with usual proof theory

▶ theory T
f : a → b axiom that f surjective

▶ extension E
r : b → a axiom ∀x .r(f (x)) = x

▶ T ↪→ E is PC, but not SC

Questions: Is it MC?
▶ using ZF: no

▶ using ZFC: yes
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Results
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The Conservativity Spectrum

SC ⇒ MC for weaker sem. ⇒ MC for stronger sem. ⇒ PC

SC

▶ proved using only the syntax morphism d is syntactic witness

▶ strongest reasonable definition

PC
▶ proved using arbitrary extra-logical means

▶ weakest reasonable definition

MC

▶ proved using model theory stronger than syntax, but still limited

▶ stronger model theory = more conservative extensions
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Background: Logics in the MMT Framework

Logics as theories, semantics as translations
▶ no distinction between logic translation and semantics

FOL → HOL → ZF ↪→ ZFC → CoC . . .

▶ semantics = translation sem : Logic → Foundation
Logic = syntax+calculus

Foundation = e.g., ZFC, CoC, . . .
sem = interpretation function + soundness proof

Example: Standard semantics of FOL
▶ MMT-theory for ZFC with set, ∈, . . .
▶ morphism FOL→ ZFC maps

▶ types to sets
▶ terms to elements
▶ formulas to Booleans {0, 1}
▶ theorems to Boolean 1
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Unifying Definition

Given sem : Logic → Foundation
translates T ↪→ E to sem(T ) ↪→ sem(E )

Define: T ↪→ E sem-conservative if

exists retraction d : sem(E ) → sem(T )

must be identity on sem(T )

SC and PC as special cases

▶ SC: sem = identity
syntax as initial semantics: everything interpreted as itself

▶ MC: sem is model theory of the logic gradual refinement of syntax

▶ PC: models are maximal consistent theories
proof theory as terminal semantics

Theorem: conservativity preserved along translations
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Conservativity of Morphisms

So far
▶ conservativity of an extension T ↪→ E

▶ the typical case considered by the community

▶ but actually: needlessly specific

Generalization
▶ conservativity for arbitrary morphisms m : T → E

▶ SC: morphism d : E → T such that m; d = idT

▶ PC: if m(F ) is E -provable, then F is T -provable
▶ MC: T -models induce E -models by factoring through m

▶ all results carry over the general case
definitions/proofs actually slightly easier
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Conservativity of Language Extensions

So far
▶ conservativity of theory extensions E ↪→ T in some logic L

▶ the typical case formalized by the community

Generalization

▶ conservativity of logic extension L ↪→ M
in MMT: L, M represented as theories of the logical framework

▶ essentially: SC=derivable, PC=admissible all results carry over

▶ examples:
▶ sequent calculus extended with cut rule
▶ λ-calculus extended with product types
▶ set theory with description operator
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Completeness is Conservativity of Semantics

Putting both generalizations together
▶ given: semantics as language morphism sem : Logic → Foundation

▶ define: SC and PC for sem

Main theorem
▶ logic+semantics is complete iff sem is PC

▶ proved in generality in the MMT framework
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Conclusion

Key Takeaways
▶ logics are theories, semantics are morphisms in logical frameworks

▶ composing morphisms yields increasingly refined semantics

▶ conservativity spectrum of semantics
▶ SC and PC as extreme points
▶ conservativity preserved along refinement

▶ generalized conservativity to arbitrary morphisms in the framework
intra- or inter-logical

▶ Conservativity = Completeness

What’s in the paper?
▶ formal definition of arbitrary logic

▶ logic-independent in MMT framework

▶ definitions and theorems for arbitrary logics
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