A Logical Framework Perspective on Conservativity

Florian Rabe

University Erlangen-Nuremberg

August 2024

2

What is a Conservative Extension?

Intuition

Concepts

- theory: list of declarations in some language
- extension E of T: like T but with additional declarations
- conservative: E is kind of the same as T

Example:

T = natural numbers with 0, successor

 $\mathbb{N}: \texttt{type} \quad 0: \mathbb{N} \quad s: \mathbb{N} \to \mathbb{N}$ Peano axioms

E = extension with addition

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.\forall n.x + s(n) = s(x + n)$

Kind of the same?

- same syntax?
- same semantics?
- same theorems?

conservativity in model theory condervativity in proof theory

new definition side note: not usually considered in logic

$$plusTwo := \lambda x.s(s(x))$$

new type

foo:type

new term of new type

 $bar: \mathbb{N} \to foo$

▶ new terms of existing types if \mathbb{N} is non-empty + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 with certain axioms encoding a definition ∀x.x + 0 = x, ∀x.∀n.x + s(n) = s(x + n)
 Skolemization, e.g., of ∀n.∃x.n = 0 ∨ s(x) = n pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n

new definition side note: not usually considered in logic

 $plusTwo := \lambda x.s(s(x))$

new type

foo:type

new term of new type

 $bar: \mathbb{N} \to foo$

▶ new terms of existing types if \mathbb{N} is non-empty + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

with certain axioms encoding a definition ∀x.x + 0 = x, ∀x.∀n.x + s(n) = s(x + n)
Skolemization, e.g., of ∀n.∃x.n = 0 ∨ s(x) = n pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n

new definition side note: not usually considered in logic

 $plusTwo := \lambda x.s(s(x))$

new type

foo:type

new term of new type

 $\mathit{bar}:\mathbb{N} \to \mathit{foo}$

▶ new terms of existing types if \mathbb{N} is non-empty + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 with certain axioms encoding a definition ∀x.x + 0 = x, ∀x.∀n.x + s(n) = s(x + n)
 Skolemization, e.g., of ∀n.∃x.n = 0 ∨ s(x) = n pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n

new definition side note: not usually considered in logic

 $plusTwo := \lambda x.s(s(x))$

new type

foo:type

new term of new type

 $\textit{bar}:\mathbb{N} \to \textit{foo}$

new terms of existing types if N is non-empty
 + : N × N → N
 ..., with certain axioms encoding a definition

 $\forall x.x + 0 = x, \quad \forall x.\forall n.x + s(n) = s(x + n)$

Skolemization, e.g., of $\forall n.\exists x.n = 0 \lor s(x) = n$

 $\texttt{pred}:\mathbb{N} o \mathbb{N}, \; \forall n.n = 0 \lor s(\texttt{pred}(n)) = n$

new definition side note: not usually considered in logic

 $plusTwo := \lambda x.s(s(x))$

new type

foo:type

new term of new type

bar : $\mathbb{N} \to foo$

▶ new terms of existing types if \mathbb{N} is non-empty + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 with certain axioms encoding a definition ∀x.x + 0 = x, ∀x.∀n.x + s(n) = s(x + n)
 Skolemization, e.g., of ∀n.∃x.n = 0 ∨ s(x) = n pred : N → N, ∀n.n = 0 ∨ s(pred(n)) = n

new definition side note: not usually considered in logic

 $plusTwo := \lambda x.s(s(x))$

new type

foo:type

new term of new type

bar : $\mathbb{N} \to foo$

▶ new terms of existing types if \mathbb{N} is non-empty + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

• ... with certain axioms encoding a definition $\forall x.x + 0 = x, \quad \forall x.\forall n.x + s(n) = s(x + n)$

Skolemization, e.g., of $\forall n. \exists x. n = 0 \lor s(x) = n$

 $\texttt{pred}:\mathbb{N} o \mathbb{N}, \; \forall n.n = 0 \lor s(\texttt{pred}(n)) = n$

Formal Definitions

Competing definitions

$T \hookrightarrow E$ is conservative

syntactically (SC)

everything added in ${\it E}$ can already be defined in ${\it T}$

proof-theoretically (PC)

E can't prove anything new about T

model-theoretically (MC)

T-models can be extended to E-models

definitions are from the literature, names are mine

preview:

 $\mathsf{SC} \Rightarrow \ldots \Rightarrow \mathsf{MC} \Rightarrow \ldots \Rightarrow \mathsf{PC}$

Competing definitions

$T \hookrightarrow E$ is conservative

syntactically (SC)

everything added in ${\it E}$ can already be defined in ${\it T}$

proof-theoretically (PC)

E can't prove anything new about T

model-theoretically (MC)

T-models can be extended to E-models

definitions are from the literature, names are mine

preview:

$$\mathsf{SC} \Rightarrow \ldots \Rightarrow \mathsf{MC} \Rightarrow \ldots \Rightarrow \mathsf{PC}$$

Definition 1: Syntactic Conservativity

Setting

formal system with theories and morphism

e.g., FOL, HOL, CoC, ZFC

• theory extension $T \hookrightarrow E$ is inclusion morphism

Syntactically conservative (SC) iff

- there is morphism $d: E \rightarrow T$ that is identity on T
- ▶ in other words: *T* can define all constants added in *E*

Example

- ▶ $T = Peano, E adds 1 : \mathbb{N}$
- define d by d(1) = s(0)

Adding terms with axioms is often not SC

 \blacktriangleright + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and axioms

 \blacktriangleright pred : $\mathbb{N} \to \mathbb{N}$ and axiom

Some patterns are always SC

• new definition $plusTwo := \lambda x : \mathbb{N}.s(s(x))$

d(plusTwo) = its definiens

new type foo : type

d(foo) = any type

▶ new term $bar : \mathbb{N} \to foo$

 $d(bar) = \lambda n : \mathbb{N}$.any term of type d(foo)

• new term of existing type $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 $d(+) = \lambda m : \mathbb{N}, n : \mathbb{N}.$ any term of type \mathbb{N}

Adding terms with axioms is often not SC

 \blacktriangleright + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and axioms

 \blacktriangleright pred : $\mathbb{N} \to \mathbb{N}$ and axiom

Some patterns are always SC

• new definition *plusTwo* := $\lambda x : \mathbb{N}.s(s(x))$

d(*plusTwo*) = its definiens

new type foo : type

d(foo) = any type

• new term $bar : \mathbb{N} \to foo$

 $d(bar) = \lambda n : \mathbb{N}$.any term of type d(foo)

• new term of existing type $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 $d(+) = \lambda m : \mathbb{N}, n : \mathbb{N}.$ any term of type \mathbb{N}

Adding terms with axioms is often not SC

 \blacktriangleright + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and axioms

 \blacktriangleright pred : $\mathbb{N} \to \mathbb{N}$ and axiom

 $\blacktriangleright \ + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and axioms

 \blacktriangleright pred : $\mathbb{N} \to \mathbb{N}$ and axiom

Are the Common Patterns SC? Some patterns are always SC lacktriangleright new definition *plusTwo* := λx : $\mathbb{N}.s(s(x))$ new type foo : type \blacktriangleright new term *bar* : $\mathbb{N} \rightarrow foo$ lacktriangleright new term of existing type $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Adding terms with axioms is often not SC

- $\blacktriangleright \ + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and axioms
- ▶ pred : $\mathbb{N} \to \mathbb{N}$ and axiom

Definition 2: Proof-Theoretic Conservativity

Setting

- Inclusion morphisms $T \hookrightarrow E$ as before
- ► Language has propositions *F* : prop and truth judgment ⊢ *F*

```
i.e., it's a logic
```

Proof-theoretically conservative (PC) iff

informally:

any E-provable T-proposition is also T-provable

```
for \vdash_T F : prop, if \vdash_E F, then also \vdash_T F
```

intuitively:

E doesn't change T-provability

Note that $\vdash_T F$ always implies $\vdash_E F$ independent of conservativity

Theorem: SC already implies PC Proof: Assume $d : E \to T$ and T-formula F. Any E-proof P of F yields a T-proof d(P) of d(F) = F.

Our other examples are PC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.x \forall n.x + s(n) = s(x + n)$

PC: axioms carefully chosen to rewrite new terms into old ones Skolemization of $\forall n. \exists x. n = 0 \lor s(x) = n$

 $pred: \mathbb{N} \to \mathbb{N}, \ \forall n.n = 0 \lor s(pred(n)) = n$

Theorem: SC already implies PC Proof: Assume $d : E \to T$ and T-formula F. Any E-proof P of F yields a T-proof d(P) of d(F) = F.

Our other examples are PC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.x \forall n.x + s(n) = s(x + n)$

PC: axioms carefully chosen to rewrite new terms into old ones Skolemization of $\forall n. \exists x. n = 0 \lor s(x) = n$

 $pred: \mathbb{N} \to \mathbb{N}, \ \forall n.n = 0 \lor s(pred(n)) = n$

Theorem: SC already implies PC Proof: Assume $d : E \to T$ and T-formula F. Any E-proof P of F yields a T-proof d(P) of d(F) = F.

Our other examples are PC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.x \forall n.x + s(n) = s(x + n)$

PC: axioms carefully chosen to rewrite new terms into old ones
Skolemization of ∀n.∃x.n = 0 ∨ s(x) = n

pred : $\mathbb{N} \to \mathbb{N}, \forall n.n = 0 \lor s(\text{pred}(n)) = n$

Theorem: SC already implies PC Proof: Assume $d : E \to T$ and T-formula F. Any E-proof P of F yields a T-proof d(P) of d(F) = F.

Our other examples are PC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.x \forall n.x + s(n) = s(x + n)$

PC: axioms carefully chosen to rewrite new terms into old ones

Skolemization of
$$\forall n. \exists x. n = 0 \lor s(x) = n$$

$$\texttt{pred}: \mathbb{N} \to \mathbb{N}, \ \forall n.n = 0 \lor s(\texttt{pred}(n)) = n$$

Formal Definitions

Definition 3: Model-Theoretic Conservativity

Setting

- Inclusion morphisms $T \hookrightarrow E$ as before
- Logic has sound+complete proof and model theory
- Forgetful functors |_T : Mod(E) → Mod(T) e.g., models are interpretation function; |_T restricts to T-syntax

Model-theoretically conservative (MC) iff

- Any *T*-model *M* ∈ Mod(*T*) can be extended to an *E*-model *N* ∈ Mod(*E*) such that *N*|_{*T*} = *M*.
- Intuitively: All old models can be extended to the extended syntax. in other words: forgetful functor is surjective

Theorem: SC implies MC Proof: Assume $d : T \rightarrow E$ and a *T*-model. "Composing" *d* and *T* yields an *E*-model.

Our other examples are (usually) MC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.\forall n : \mathbb{N} \cdot x + s(n) = s(x + n)$

MC: extend Peano models with addition function

 $pred: \mathbb{N} \to \mathbb{N} \quad \forall n.n = 0 \lor s(pred(n)) = n$

Theorem: SC implies MC Proof: Assume $d : T \rightarrow E$ and a *T*-model. "Composing" *d* and *T* yields an *E*-model.

Our other examples are (usually) MC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.\forall n : \mathbb{N} \cdot x + s(n) = s(x + n)$

MC: extend Peano models with addition function

 $pred: \mathbb{N} \to \mathbb{N} \quad \forall n.n = 0 \lor s(pred(n)) = n$

Theorem: SC implies MC Proof: Assume $d : T \rightarrow E$ and a *T*-model. "Composing" *d* and *T* yields an *E*-model.

Our other examples are (usually) MC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.\forall n : \mathbb{N}.x + s(n) = s(x+n)$

MC: extend Peano models with addition function

Skolemization of provable $\forall \exists$ formula

pred : $\mathbb{N} \to \mathbb{N}$ $\forall n.n = 0 \lor s(\operatorname{pred}(n)) = n$

Theorem: SC implies MC Proof: Assume $d : T \rightarrow E$ and a *T*-model. "Composing" *d* and *T* yields an *E*-model.

Our other examples are (usually) MC as well:

new terms with defining axioms

 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \forall x.x + 0 = x \quad \forall x.\forall n : \mathbb{N} \cdot x + s(n) = s(x + n)$

MC: extend Peano models with addition function

Skolemization of provable ∀∃ formula

 $\texttt{pred}: \mathbb{N} \to \mathbb{N} \quad \forall n.n = 0 \lor s(\texttt{pred}(n)) = n$

MC vs. PC

Proved so far

SC implies MC

Theorem: MC implies PC

Proof: Assume E-provable T-proposition F

- by soundness: F holds in all E-models
- by MC: F holds in all T-models
- ▶ by completeness: *F* is *T*-provable

Question: Does PC imply MC?

MC vs. PC

Proved so far

SC implies MC

Theorem: MC implies PC

Proof: Assume E-provable T-proposition F

- by soundness: F holds in all E-models
- by MC: F holds in all T-models
- by completeness: F is T-provable

Question: Does PC imply MC?

Degrees of MC between SC and PC

Example

- first-order logic with usual proof theory
- ► theory T

 $f: a \rightarrow b$ axiom that f surjective

extension E

 $r: b \rightarrow a$ axiom $\forall x.r(f(x)) = x$

•
$$T \hookrightarrow E$$
 is PC, but not SC

Questions: Is it MC?

Degrees of MC between SC and PC

Example

- first-order logic with usual proof theory
- ► theory T

 $f: a \rightarrow b$ axiom that f surjective

extension E

 $r: b \rightarrow a$ axiom $\forall x.r(f(x)) = x$

•
$$T \hookrightarrow E$$
 is PC, but not SC

Questions: Is it MC?

- using ZF: no
- using ZFC: yes

Results

Results

The Conservativity Spectrum

 $SC \Rightarrow MC$ for weaker sem. $\Rightarrow MC$ for stronger sem. $\Rightarrow PC$

SC

proved using only the syntax morphism d is syntactic witness

strongest reasonable definition

PC

- proved using arbitrary extra-logical means
- weakest reasonable definition

MC

- proved using model theory stronger than syntax, but still limited
- stronger model theory = more conservative extensions

Results

Background: Logics in the MMT Framework

Logics as theories, semantics as translations

no distinction between logic translation and semantics

 $\textit{FOL} \rightarrow \textit{HOL} \rightarrow \textit{ZF} \hookrightarrow \textit{ZFC} \rightarrow \textit{CoC} \ldots$

• semantics = translation sem : Logic \rightarrow Foundation

Logic = syntax+calculus *Foundation* = e.g., ZFC, CoC, ... *sem* = interpretation function + soundness proof

Example: Standard semantics of FOL

• MMT-theory for ZFC with set, \in , ...

▶ morphism FOL→ ZFC maps

types to sets

terms to elements

▶ formulas to Booleans {0,1}

theorems to Boolean 1

Unifying Definition

Given sem : Logic \rightarrow Foundation translates $T \hookrightarrow E$ to sem $(T) \hookrightarrow$ sem(E)Define: $T \hookrightarrow E$ sem-conservative if

exists retraction $d : sem(E) \rightarrow sem(T)$

must be identity on sem(T)

SC and PC as special cases

syntax as initial semantics: everything interpreted as itself

- ► MC: sem is model theory of the logic gradual refinement of syntax
- PC: models are maximal consistent theories

proof theory as terminal semantics

Theorem: conservativity preserved along translations

Conservativity of Morphisms

So far

- conservativity of an extension $T \hookrightarrow E$
- the typical case considered by the community
- but actually: needlessly specific

Generalization

- conservativity for arbitrary morphisms $m: T \rightarrow E$
 - SC: morphism $d: E \rightarrow T$ such that $m; d = id_T$
 - ▶ PC: if m(F) is *E*-provable, then *F* is *T*-provable
 - ► MC: *T*-models induce *E*-models by factoring through *m*
- all results carry over the general case

definitions/proofs actually slightly easier

Conservativity of Language Extensions

So far

- conservativity of theory extensions $E \hookrightarrow T$ in some logic L
- the typical case formalized by the community

Generalization

- \blacktriangleright conservativity of logic extension $L \hookrightarrow M$ in MMT: L, M represented as theories of the logical framework
- essentially: SC=derivable, PC=admissible all results carry over

examples:

- sequent calculus extended with cut rule
- \triangleright λ -calculus extended with product types
- set theory with description operator

Results

Completeness is Conservativity of Semantics

Putting both generalizations together

- given: semantics as language morphism sem : Logic \rightarrow Foundation
- define: SC and PC for sem

Main theorem

- logic+semantics is complete iff sem is PC
- proved in generality in the MMT framework

Conclusion

Key Takeaways

- logics are theories, semantics are morphisms in logical frameworks
- composing morphisms yields increasingly refined semantics
- conservativity spectrum of semantics
 - SC and PC as extreme points
 - conservativity preserved along refinement
- generalized conservativity to arbitrary morphisms in the framework

intra- or inter-logical

22

Conservativity = Completeness

What's in the paper?

- formal definition of arbitrary logic
- logic-independent in MMT framework
- definitions and theorems for arbitrary logics