Automated
Mathematical Discovery and Verification

@

Minimizing Pentagons in the Plane

Bernardo Subercaseaux, John Mackey, Marijn Heule, and Ruben Martins

Carnegie Mellon University

Automated Reasoning (CS) meets Math

|
|
|
! J
|
|
|
!
[
\ 2

Marijn Heule Ruben Martins ’,
CMU CS CMU CS 5

Me

.3 John Mackey
CMU CS : CMU Math

A mathematician's toolbox

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N.]. A. Sloane

1.3,5.7,9
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search = Hints

Search: seq:1,3,5,7,9
Displaying 1-10 of 450 results found. page12345678910...
___Sort: relevance | references | pumber | medified | created ~ Format: long | short | data
A005408 The odd numbers: a(n) = 2*n + 1. u-’,g
(Formerly M2400)
1,3,5,7,9,11, 13,15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 161,

163, 165, 167, 169, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 (list: graph: refs: listen:
history: text: internal format)
OFFSET 0,2

A mathematician's toolbox

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA (- NP
OF INTEGER SEQUENCES®

founded in 1964 by N.]. A. Sloane

T ———— S r1 V a9 Vg

(Greetings from

Search: seq:1,3,5,7,9
Displaying 1-10 of 450 results found. page12345678910...45

___Sort: relevance | references | pumber | modified | created ~ Format: long | short | data R i _| Sy Sy Sy
2 ‘
A005408 The odd numbers: a(n) = 2*n + 1. e ._I/ 1 qI/ 1 o_.I./ '2 e A 3
(Formerly M2400) LA
Li 3B T509, 23,1517, 09,7°2); 23, 25, 2729523033 ::35:: 37,39, 41, 43,45 - 47 . 49, 52,
53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 161,
163, 165, 167, 169, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 (list: graph: refs: listen:
history: text: internal format)
OFFSET 0,2
R ——————

SAT Solvers?

SAT Solvers

e Hyper-optimized programs for solving a single problem: Boolean satisfiability

(1 Ve VTZ5) A (22 VT3V xy) AN(T1VTg) A (ZL VT2V T3)

SAT Solvers

e Hyper-optimized programs for solving a single problem: Boolean satisfiability

(1 Ve VTZ5) A (22 VT3V xy) AN(T1VTg) A (ZL VT2V T3)

SAT Solvers

e Hyper-optimized programs for solving a single problem: Boolean satisfiability

(1 VzaVIZ5) A (2o VI3V ay) N(T1VTs) AN (Z1 VI3V a3)

SAT Solvers

e Hyper-optimized programs for solving a single problem: Boolean satisfiability

(1 Ve VZ5) A (22 VI3V xs) AN(Z1VIe) AN(ZT1 VI3V xs)

e Because of NP-completeness, it can encode a variety of combinatorial problems!

def encode(clues):

Encode a sudoku puzzle as a SAT problem.

Parameters

clues : List of Lists of ints
Ox9 1nt matrix, non-zero values represent clues

Returns

model : eznf.Model
A SAT model representing the sudoku puzzle.

Z = modeler.Modeler()

for 1 1n range(9):
for j in range(9):
for n in range(1l, 10):
Z.add_var(f"x_{i1, j, n}", description=f"Cell ({1}, {j}) gets number {n}")

for 1 1n range(9):
for j 1n range(9):
Z.exactly one([f"x {1, j, n}" for n in range(1l, 10)])

1L 1n range(9):
for 3 1n range(9):
if clues[i][j] !'= 0:
Z.constraint(f"x {i, j, clues[il][]j]}")

n in range(l, 10):
for 1 in range(9):

Z.exactly one([f"x {1, j, n}" for j in range(9)])

for j i1n range(9):
Z.exactly one([f"x {1, j, n}" for 1 in range(9)])

sub_grids = [[[] for sj in range(3)] for si in range(3)]
for 1 in range(9):
for j in range(9):
sub_grids[i//3]1[j//3].append((i, j))
for st in range(3):
for sj i1n range(3):
Z.exactly_one([f"x {*cell, n}" for cell in sub_grids[si][sj]])

SAT Solvers in Math

Some success stories:
¢ (2014) Boolean Erdos Discrepancy Problem

¢ (2016) Boolean Pythagorean Triples

¢ (2018) Schur Number 5
e (2019) Keller's Conjecture
e (2023) Packing Chromatic Number of the Grid

e (2024) An Empty Hexagon in every 30 points

These all follow a common pattern:

Using SAT solvers to tackle a hard
combinatorial problem that brute force
computation (i.e., backtracking) would

take forever on

Today we will talk about a different use:

These all follow a common pattern:

Using SAT solvers to tackle a hard SAT solvers can be used at different
combinatorial problem that brute force stages of mathematical research; to build

computation (i.e., backtracking) would examples, get ideas and ellicit
take forever on conjectures.

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

~ ' 4

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

~ ' 4

Answer = (

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

g | H H H = | H = 5 = | 5 = =5 H = 5 H = = = = H = =B = = = = n - - EE = = E E E E E HEH HE B =B B B B B B =B B =B B =B =B = =B =B =B = m
L 4 L J - L]

~ ' < v’
--

Answer = (

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

g | H H H = | H = 5 = | 5 = =5 H = 5 H = = = = H = =B = = = = n - - EE = = E E E E E HEH HE B =B B B B B B =B B =B B =B =B = =B =B =B = m
L 4 L J - L]

N=4 N =28 °
® ®
° ®
®
®
®
o * %
Answer = 0 Answer = 0

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

~ ' < v’
--

Answer = (Answer = (

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

~ ' < v’
--

Answer = (Answer = (

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

~ ' < v’
--

Answer = (Answer = (

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

, - : , — : .
® ®
° ®
®
®
®
o * %
Answer = 0 Answer = 0

10

Problem: Minimizing Convex Pentagons

Given an integer N, what is, y5(N) the minimum number of convex pentagons

we can get by placing /NV points in the Euclidean plane without 3 on a line?

, - : , — : .
® ®
° ®
®
®
®
o * %
Answer = 0 Answer = 0

10

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Case 1: 5 points in Convex Hull Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Case 1: 5 points in Convex Hull Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Answer: b, Klein, “Happy Ending Theorem”

Case 1: 5 points in Convex Hull

Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Answer: b, Klein, “Happy Ending Theorem”

Case 1: 5 points in Convex Hull

Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Answer: b, Klein, “Happy Ending Theorem”

Case 1: 5 points in Convex Hull Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Answer: b, Klein, “Happy Ending Theorem”

Case 1: 5 points in Convex Hull Case 2: 4 points in Convex Hull Case 3: 3 points in Convex Hull

11

Let’'s do something easier first...

How many points without 3 on a line guarantee a convex quadrilateral?’

Case 1: 5 points in Convex .. - points in Convex Hull

12

Combinatorial Structure: Triple Orientations

Counterclockwise turn

13

Combinatorial Structure: Triple Orientations

o(a, b, c) = true

13

Szekeres and Peters: 8 cases for convex pentagons

b

a/" N\
N,/

b

C

.\

|

d

\e
/e

d

14

Szekeres and Peters: 8 cases for a convex pentagon

Encoding Example:

a /'\'

\/‘ —l

-o(a,b,d) A o(b,d,e) A o(a, c, e)

15

Szekeres and Peters: 8 cases for a convex pentagon

Encoding Example:

—o(a,b,d) AN o(b,d,e) A\ o(a,c,e)

So to forbid that pentagon in one clause we do

o(a,b,d)V o(b,d,e)V —o(a,c,e)

15

We just said:

g,
\‘/'

C

b
o—
CL‘ /

q _lﬂ(a, b, d) A\ _'U(b, d, e) A G(aa C, e)

16

VWe just sald:

16

VWe just said:

d

b
“./\\‘C}.e —— | ~o(a,b,d) A—o(b,d,e) A o(a,c, e)

Question: is the converse o lso true?

Not necessarily! We don't know if a o-assignment
corresponds to an actual pointset !

16

Stochastic Local Search

17

Stochastic Local Search

~

~
SAT algorithm that minimize falsified clauses by flipping variables.

No guarantees!

We add, for each ordered five tuple (a, b, c,d, e),

the 8 clauses that forbid the (mutually exclusive)

different ways those points could form a convex pentagon

17

Stochastic Local Search

~

SAT algorithm that minimize falsified clauses by flipping variables.
No guarantees!

~

We add, for each ordered five tuple (a, b, c,d, e),

the 8 clauses that forbid the (mutually exclusive)

different ways those points could form a convex pentagon

e

Number of falsified clauses * Number of convex pentagons®

™

v

17

Stochastic Local Search Results

Best Time
9 1 0.00 s
10 2 0.00 s
11 I 0.00 s
12 12 0.00 s
13 21 0.01 s
14 47 0.01 s
15 (r 0.01 s
16 112 0.02 s

\ Best Time
23 1254 12 s
24 1584 472 S
25 2079 04 s
20 2574 5209 s
21 3289 1556 s
28 4004 1792 s
29 5005 407 s
30 6007 18244 s

Note: these are not necessarily optimal

18

Notice something odd?

We would like to know:

19

Notice something odd?

We would like to know:

19

Notice something odd?

We would like to know: N Best C5(V)
9 1 0.007930
10 ? 0.007930
11 I 0.015151
12 12 0.015151
13 2/(0.020979
14 47 0.020979
15 ((0.025041
10 112 0.025041
17 1382 0.029411
13 252 0.029411

We would like to know:

Notice something odd?

\ Best C5(IV)

9 1 0.007930
10 ? 0.007930
11 I 0.015151
12 12 0.015151
13 2/(0.020979
14 47 0.020979
15 (f 0.025641
10 112 0.025041
17 182 0.029411
13 252 0.029411

SAT Inspired
Math Ideal

19

Plug SAT results into Mathematical

In671:= (xDefine the pointsx)
points = {{10, 2}, {12, 12}, {14, 42}, {16, 112}, {18, 252}, {20, 504}, {22, 924},
{24, 1584}};

(xCompute the interpolating polynomial of degree 5x)
poly = InterpolatingPolynomial[points, n];

(xSimplify the polynomial to make it easier to readx)

simplifiedPoly = Simplify[poly];

(xDisplay the simplified polynomialx)
simplifiedPoly

n (384—400n+140n2 -20n3 +n4)

Out[70]= 1920

n (384—400n+140n2 -20n3 +n4)
1920]

In[71]:= FullSimpIify[

(-8+n) (-6+nNn) <~ (-4+n) (-2+Nn)n

Out[71]= 1920

20

Plug SAT results into Mathematical

(-8+nNn) ~(-6+nNn) ~ (-4+n) (-2+nNn)n

Out[71]= 1920

in[72:= Binomial[n, 5]

1
Out[72lz —— -4 +n -3 4+nN -2 +nN -1+n)n
ut[72] 126 () < () < () < ()

21

Plug SAT results into Mathematical

(-8+nNn) - (-6+n) (-4+nNn) ~(-2+Nn)n

Out[71]= 1920

n[72l:= Binomial[n, 5]

1
Out[72lz —— -4 +n -3 4+nN -2 +nN ~-1+n)n
ut[72] 126 () < () < () < ()

n-(n—1)-(n—2)-(n—3) - (n—4)
120

- 2n-(2n—2)-(2n—4)-(2n—6) - (2n — 8)
; 120 - 32
2n-(2n—2)-(2n—4)-(2n —6) - (2n — 8)
; 2-1920

21

Plug SAT results into Mathematical

(-8 +n)

(-6+n) (-4 +n)

1920

(-2+nNn)n

Out[71]=

n[72l:= Binomial[n, 5]

Out[72]= i (-4+n) (-3+nNn) <~ (-2+nNn) « (-1+

120 SAT Inspired Math

[e[cE]
n-(n—1)-(n—-2)-(n—3)(n—4)
D 120

- 2n-(2n—2)-(2n—4)-(2n —6) - (2n — 8)
120 - 32
_ 2n-2n—2)-2n—4)-2n—6) - (2n —8) u(2n)

2-1920 2

21

How do these solutions look like?

We need to solve the Realizability problem (dR complete):

Given a set of orientations, can they all be realized by a configuration
of points Iin the plane

(Only available at the in-person talk, sorry)

22

How do these solutions look like?

We need to solve the Realizability problem (dR complete):

Given a set of orientations, can they all be realized by a configuration
of points Iin the plane

(Only available at the in-person talk, sorry)

Demo

22

How do these solutions look like?

N /‘
N
“ /
o2 /
\ - @
\ SRS FaL
\ R I
8 + \ ®
o
6
4
o
\
== \
=TT \
/Q .\
\
/ \
4—: ! ! o
2 4 6 8 10

10

o)
\
\
\
‘e
\
= \
\
‘e
T \
- _ \
— -~ - _ \
~
~ .\
~
~
~
~
~
~
o
Y 1 2 3

23

eneralize them as constructions!

o
/
/
/
.
.\
\
\
\
.\
\

N\
o »
10

10

24

Generalize them as constructions!

t A
10 v /. 10 Q\
N
e / \\
/
\ _ - \
\ - == ®
\ ..-—'"—‘—‘ \
8 \ 8 \
O \
\
1 O\
lo- _ N
=~ \
6 1 6 N \
~ .\
~ \\\
~ -~
~ ‘.“
~ o
~ ~ - .
Y Q
4+ 4 - o
~
~
~
~
.\
\
\
‘e
\
\
\
| | I\
| | | I. »
1 2 3 4 5 6

Pinwheel . Parabolic

General Upper Bound

Theorem Us(N) < (

25

General Upper Bound

25

General Upper Bound

We conjecture this bound to be tight! ($500)

N € . d

25

We need to be careful though!

Remember something odd?

9 1 0.007936
10 2 0.007936
11 I 0.015151
12 12 0.015151
13 217 0.020979
14 42 0.020979
15 (7 0.025641
16 112 0.025641
Lr 132 0.029411
13 252 0.029411

21

Remember something odd?

9 1 0.007936
10 2 0.007936
11 I 0.015151
12 12 0.015151

SAT
Inspired
Math Ideal

13 217 0.020979
14 42 0.020979
15 ([0.025641
16 112 0.025641
Lr 132 0.029411
13 252 0.029411

Remember something odd?

9 1 0.007936
10 2 0.007936
11 I 0.015151
12 12 0.015151
13 217 0.020979
14 42 0.020979
15 (7 0.025641
16 112 0.025641
Lr 132 0.029411
13 252 0.029411

SAT
Inspired
Math ldeal

Theorem: Odd-Even

If the conjecture holds for

2N + 1,

Then 1t must hold for
2N + 2

21

MaxSAT Verification

28

MaxSAT Verification

A major benefit of SAT (or its optimization variant MaxSAT) is
the community emphasis on verification

We generate independently-checkable proofs for the optimal

bounds up to N = 15

28

MaxSAT Verification

A major benefit of SAT (or its optimization variant MaxSAT) is
the community emphasis on verification

We generate independently-checkable proofs for the optimal
bounds up to N = 15

Therefore we verify the conjecture up to N =16 :)

28

Automated
Mathematical Discovery and Verification

@

Minimizing Pentagons in the Plane

Bernardo Subercaseaux, John Mackey, Marijn Heule, and Ruben Martins

Carnegie Mellon University

29

