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A mathematician’s toolbox



SAT Solvers?
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SAT Solvers
• Hyper-optimized programs for solving a single problem: Boolean satisfiability
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SAT Solvers
• Hyper-optimized programs for solving a single problem: Boolean satisfiability



• Because of NP-completeness, it can encode a variety of combinatorial problems!

 

x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0

5

SAT Solvers
• Hyper-optimized programs for solving a single problem: Boolean satisfiability
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Some success stories:
• (2014) Boolean Erdős Discrepancy Problem 

• (2016) Boolean Pythagorean Triples  

• (2018) Schur Number 5 

• (2019) Keller’s Conjecture 

• (2023) Packing Chromatic Number of the Grid 

• (2024) An Empty Hexagon in every 30 points
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Some success stories:
• (2014) Boolean Erdős Discrepancy Problem 

• (2016) Boolean Pythagorean Triples  

• (2018) Schur Number 5 

• (2019) Keller’s Conjecture 

• (2023) Packing Chromatic Number of the Grid 

• (2024) An Empty Hexagon in every 30 points

These all follow a common pattern: 

Using SAT solvers to tackle a hard 
combinatorial problem that brute force 
computation (i.e., backtracking) would 

take forever on

SAT solvers can be used at different 
stages of mathematical research; to build 

examples, get ideas and ellicit 
conjectures.

Today we will talk about a different use:
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SAT Solvers in Math



Given an integer ,  what is,  the minimum number of convex pentagons 
we can get by placing  points in the Euclidean plane without 3 on a line?

N μ5(N)
N

Problem: Minimizing Convex Pentagons
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Given an integer ,  what is,  the minimum number of convex pentagons 
we can get by placing  points in the Euclidean plane without 3 on a line?

N μ5(N)
N

Problem: Minimizing Convex Pentagons

N = 4

Answer = 0

N = 8

Answer = 0

4 0

8 0

9 1

15 77

μ5(N)N
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Case 3: 3 points in Convex HullCase 2: 4 points in Convex HullCase 1: 5 points in Convex Hull

How many points without 3 on a line guarantee a convex quadrilateral?
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Let’s do something easier first…
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Case 3: 3 points in Convex HullCase 2: 4 points in Convex HullCase 1: 5 points in Convex Hull

How many points without 3 on a line guarantee a convex quadrilateral?

Answer: 5, Klein, “Happy Ending Theorem” 

Insight: we can reason by cases in 
terms of which points are above or 
below lines formed by other points!
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Let’s do something easier first…
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Counterclockwise turn
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Combinatorial Structure: Triple Orientations



a

b

c

Counterclockwise turn

 

 

σ(a, b, c) = true

⟺

det
ax bx cx

ay by cy

1 1 1
> 0
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Combinatorial Structure: Triple Orientations



Szekeres and Peters: 8 cases for convex pentagons
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Szekeres and Peters: 8 cases for a convex pentagon

Encoding Example:

¬σ(a, b, d) ∧ ¬σ(b, d, e) ∧ σ(a, c, e)
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Szekeres and Peters: 8 cases for a convex pentagon

Encoding Example:

¬σ(a, b, d) ∧ ¬σ(b, d, e) ∧ σ(a, c, e)

So to forbid that pentagon in one clause we do

σ(a, b, d) ∨ σ(b, d, e) ∨ ¬σ(a, c, e)
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¬σ(a, b, d) ∧ ¬σ(b, d, e) ∧ σ(a, c, e)
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We just said:



¬σ(a, b, d) ∧ ¬σ(b, d, e) ∧ σ(a, c, e)

Question: is the converse               also true? 
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We just said:



¬σ(a, b, d) ∧ ¬σ(b, d, e) ∧ σ(a, c, e)

Question: is the converse               also true? 

Not necessarily! We don’t know if a -assignment 
corresponds to an actual pointset !

σ
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We just said:



SAT algorithm that minimize falsified clauses by flipping variables. 
 No guarantees!
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Stochastic Local Search



We add, for each ordered five tuple , 
the 8 clauses that forbid the (mutually exclusive) 
different ways those points could form a convex pentagon 

(a, b, c, d, e)

SAT algorithm that minimize falsified clauses by flipping variables. 
 No guarantees!
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We add, for each ordered five tuple , 
the 8 clauses that forbid the (mutually exclusive) 
different ways those points could form a convex pentagon 

(a, b, c, d, e)

Number of falsified clauses  Number of convex pentagons*≈

SAT algorithm that minimize falsified clauses by flipping variables. 
 No guarantees!
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Stochastic Local Search



Stochastic Local Search Results
N Best Time
9 1 0.00 s
10 2 0.00 s
11 7 0.00 s
12 12 0.00 s
13 27 0.01 s
14 42 0.01 s
15 77 0.01 s
16 112 0.02 s

N Best Time
23 1254 12 s
24 1584 472  s
25 2079 64 s
26 2574 5269 s
27 3289 1556 s
28 4004 1792 s
29 5005 467 s
30 6007 18244 s

…

Note: these are not necessarily optimal
18



c5 = lim
N→∞

μ5(N)

(N
5 )

We would like to know: ̂c5(N)
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c5 = lim
N→∞

μ5(N)

(N
5 )

We would like to know: N Best
9 1 0.007936
10 2 0.007936
11 7 0.015151
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13 27 0.020979
14 42 0.020979
15 77 0.025641
16 112 0.025641
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SAT Inspired 
Math Idea!
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SAT Inspired Math 
Idea!
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We need to solve the Realizability problem (  complete): 
Given a set of orientations, can they all be realized by a configuration 

of points in the plane

∃ℝ

22

How do these solutions look like?

(Only available at the in-person talk, sorry)



Demo

We need to solve the Realizability problem (  complete): 
Given a set of orientations, can they all be realized by a configuration 

of points in the plane

∃ℝ

22

How do these solutions look like?

(Only available at the in-person talk, sorry)



23

How do these solutions look like?
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Generalize them as constructions!



ParabolicPinwheel
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μ5(N) ≤ (⌊n/2⌋
5 ) + (⌈n/2⌉

5 )Theorem
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μ5(N) ≤ (⌊n/2⌋
5 ) + (⌈n/2⌉

5 )Theorem

We conjecture this bound to be tight! ($500)
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General Upper Bound
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We need to be careful though!



N Best
9 1 0.007936
10 2 0.007936
11 7 0.015151
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N Best
9 1 0.007936
10 2 0.007936
11 7 0.015151
12 12 0.015151
13 27 0.020979
14 42 0.020979
15 77 0.025641
16 112 0.025641
17 182 0.029411
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SAT 
Inspired 

Math Idea!

Theorem: Odd-Even

If the conjecture holds for 
, 

Then it must hold for 

2N + 1

2N + 2

27

Remember something odd?



A major benefit of SAT (or its optimization variant MaxSAT) is 
the community emphasis on verification
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We generate independently-checkable proofs for the optimal 
bounds up to N = 15

28

MaxSAT Verification



A major benefit of SAT (or its optimization variant MaxSAT) is 
the community emphasis on verification

We generate independently-checkable proofs for the optimal 
bounds up to N = 15

Therefore we verify the conjecture up to N = 16  :)
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MaxSAT Verification
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