
What is a Module?

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Sep 4, 2023 (Tetrapod workshop, Cambridge UK)



Overview

Modularity in software has been a key concern since Doug
McIlroy’s plea at the 1968 NATO conference on software
engineering.

The concept of a module appears to be fundamental to
programming and specification languages. Examples include
Ada and ML modules, C++ templates, Z schemas, PVS
theories, and SAL modules.1

Yet, it has a number of incarnations but no precise definition

A similar vagueness exists with respect to process, class,
object, method .

What is a module?

What is modularity?

Why do we need it?

How can we capture modularity in language?
1My perspective is informed by the module systems in PVS and SAL.

Natarajan Shankar Modularity 2/18



What is a module?

The dictionary definition might characterize a module as “a
self-contained unit or component that is part of a larger
assembly.”
For example, a lunar module, a course module, or a software
module.
A module is meant to be

1 Reusable within the same system and in other
systems/contexts.

2 Changeable, so that it can be independently
debugged/repaired/modified/adapted/improved

3 Interchangeable, so that one module can be replaced with
another that provides equivalent or better functionality.

From On-Line Data-Acquisition Systems in Nuclear Physics,
1969, by H. W. Fulbright et al. and National Research Council
(https:
//www.gutenberg.org/files/42613/42613-h/42613-h.htm)

Debugging of that unit was exceedingly laborious because
of the lack of modularity in its components.

Natarajan Shankar Modularity 3/18

https://www.gutenberg.org/files/42613/42613-h/42613-h.htm
https://www.gutenberg.org/files/42613/42613-h/42613-h.htm


The Art of the Module

Defining a module as a unit of reuse, change, and exchange,
does not solve the problem.

Designing a ‘good’ module involves:
1 Maximizing encapsulated functionality while minimizing the

interface, e.g., a compiler.
2 Maximizing versatility without overloading the interface or

dragging along unused functionality.
3 Maximizing locality so that the module can be independently

debugged and modified while minimizing duplication.
4 Maximizing adaptability so that the module can be reused in a

range of contexts.
5 Maximizing abstraction without compromising efficiency.

Natarajan Shankar Modularity 4/18



What is the Point of a Module?

Packaging: Entire module can be referenced instead of individual
components.
Naming: Names in a module can be distinguished from those in other
modules.
Reuse: Distinct copies of the module can be obtained by varying the
parameters.
Testing: A module is a unit of unit testing.
Abstraction: All interaction with the module instance must be through
an abstract interface.
Documentation: Modules capture concepts that need to be
documented together.
Information Hiding: Design and implementation of the module can vary
as long as the abstract interface is satisfied.
Separate Compilation: Modules are units of separate compilation.
Composition: A module calculus introduces composition operators to
define new modules from existing ones.

Compositional Design: Systems can be designed to have properties by

composing component and subsystem properties.

Natarajan Shankar Modularity 5/18



Some Language Design/Modularity Principles

Frege principle (Referential Transparency): Equal expressions
should be interchangeable.
Chomsky Principle: A name is merely an abbreviation for
something. The denotation of a name can be used in place of the
name.
Reynolds Principle: Language features should be orthogonal.
Scott Principle: Features should be nestable.
Occam Principle: Make no irrelevant distinctions.
Parnas Principle: Localize design decisions that change together.
Dijkstra Principle: Separate concerns between different aspects
of computation.
Lampson Principle: Practical modularity arises from composing
big components with small interfaces.
Berry Principle: Write everything (at most) once. (Predates
Berry. See Wikipedia: Abstraction Principle.
Corollary: Prove everything (at most) once.

Natarajan Shankar Modularity 6/18



What is the Problem with Modules?

The black box nature of the decision procedure is fre-
quently destroyed by the need to integrate it.

Boyer and Moore

Modules make incompatible assumptions

Communication overhead of communicating with a module is
high

Modularity gets in the way of fine-grained interaction

Modules interact through side-channels

Often, it is easier to reimplement than reuse.

Natarajan Shankar Modularity 7/18



Language Examples: C++ Templates

Allows type and value abstraction in the definition of classes and
functions.
Example (from Shapiro):

template <class T, int N> class Queue

T queueEntries[N];

int queueDepth;
...

;

Templates are used by macro-expansion.

Natarajan Shankar Modularity 8/18



Language Example: ML modules

Structures package a collection of declarations.
The “type” of a structure is a signature, i.e., the declarations
without the definitions.
Functors map structures to structures.
Example (from Munoz):

module type OrderSig =

sig

type t

val comp : t -> t -> int

end;;

module OrderedList(Order: OrderSig) =

struct

type element = Order.t

type olist = element list
...

end;;

Natarajan Shankar Modularity 9/18



Language Example: Z Schemas

A schema consists of a signature and some predicates.

The signature is the visible portion of the global state space.

Schemas can either assert invariants or transitions.

Schemas can be imported within other schemas and can take
sets as parameters.

Compatible schemas can be combined by logical operations.

Transition schemas can be sequenced.

Natarajan Shankar Modularity 10/18



Modularity Example: PVS Theories

A PVS theory is a collection of type, constant, and formula
declarations.
A theory can be parametric in certain types and constants.

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

extensionality: POSTULATE

(FORALL (x: D): f(x) = g(x)) IMPLIES f = g

congruence:

LEMMA f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

END functions

Theories can be instantiated (for parametric theories), extended,
combined, cloned, and interpreted.

Natarajan Shankar Modularity 11/18



Theory Interpretations

Theories can be imported with or without explicit parameters.

Theories can also be interpreted by assigning interpretations
to uninterpreted symbols.

group_homomorphism[G1, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)

hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

IMPORTING

group_homomorphism[group{{G := int, + := +, 0 := 0, - := -}},
group{{G := nzreal, + := *, 0 := 1,

- := LAMBDA (x: nzreal): 1/x}}]

Natarajan Shankar Modularity 12/18



Context is Everything

A module can be seen as a unit of composition for some
composition operator ‖.
Process algebras study the composition of processes through
such composition operators.
Such generic composition operators are semantically weak and
offer very little design guidance.
Composition frameworks or architectures that mediate
between components enhance the modularity of a system.
A good composition framework offers components an interface
through which they can interoperate with other components

1 Composability: Properties of well-behaved components are
preserved in the composition

2 Compositionality: System properties are composed from
component properties

3 Monotonicity: Components can be independently refined —
better component properties yield better system properties.

See Peter G. Neumann (2004). ’Principled Assuredly
Trustworthy Composable Architectures’.

Natarajan Shankar Modularity 13/18



Compositional Frameworks in the Real World

Currency: The exchange of goods and services is mediated by
the use of currency. The alternative, barter, is highly
non-compositional.

Stock Market: It makes the value of stocks public without
revealing the identities of the buyers and sellers.

Traffic: The system of lanes and signals makes it possible for
multiple vehicles to share the roads with minimal interaction
between vehicles.

EBay: Creates a market for the exchange of goods to the
mutual satisfaction of buyer and seller.

The key in these systems is that each component interacts
with other components through the framework.

Natarajan Shankar Modularity 14/18



Compositional Frameworks in Computation

Schedulers: It ensures that processes get allocated CPU time
and that their state is maintained between context switches.

Virtual Memory: Allows processes to share physical memory
without conflict.

Database Concurrency Control: Allows multiple database
transactions to operate simultaneously while guaranteeing
serializability.

Separation Kernel: Allows multiple processes to
inter-operate without covert channels.

Email: Allows transmission of electronic mail independent of
the physical constraints of medium and location.

Time-triggered Architecture: Allows a bus to be
synchronously shared by multiple nodes with real-time
guarantees.

Each of these frameworks is scalable with respect to the
number and quality of the components.

Natarajan Shankar Modularity 15/18



The Radler Architecture Definition Language

Radler is a model of computation and interaction for
real-time, distributed, sense-control-actuate systems.

A Radler architecture consists of a fixed set of nodes and
channels interacting through a publish/subscribe regime.

Each node executes at an approximately specified period
(quasi-periodicity).

In each round of execution, the node reads its subscription
mailboxes, executes a step function, and writes to its
published mailboxes.

Each topic has a message type and a single publisher node.

Each publish/subscribe channel has a upper latency bound.

Each publish/subscribe mailbox has a buffer width bound.

Critical safety and security properties can be ensured at the
architectural level independent of the components.

Yields designs with efficient arguments — any flaws in the
argument must be easy to find with a low amortized cost.

Natarajan Shankar Modularity 16/18



Radler Architecture

Natarajan Shankar Modularity 17/18



Questions for Discussion

What exactly is a module? A namespace, a unit of
specification/composition/reuse/separate compilation, a
mathematical concept, an engineering convenience?

Are modules primarily a design time aid for reusing definitions
and theorems, or do they have some first-class status in the
computation itself?

Can we usefully modularize knowledge? What
language+design principles do we need?

Can we usefully modularize in-the-small software design?

Are the composition mechanisms for decomposing designs
more critical than the modules themselves?

Think outside the module.

Natarajan Shankar Modularity 18/18


