#### Isomorphisms and Interoperability

Catherine Dubois

ENSIIE, Samovar, INRIA, France

Contributors : Raphaël Cauderlier (Nomadic labs, France), Alain Giorgetti (Univ. Franche-Comté, France) and Nicolas Magaud (Univ. Starsbourg, France)

(4) (日本)

#### Isomorphisms

**In Maths**, common practice to have several constructions for the same objects, identified later modulo isomorphisms

**In Computer Science, in proof assistants**, also common practice to have several representations for the same objects

- formal verification of Maths constructions
- alternative representations to dependent types
- reuse of formal developments in the same or another proof assistant (to bridge two different representations)
- data refinement (one rep. well suited for proving while another one allows more efficient representation, e.g. Peano vs binary natural numbers)
- random generation (testing before proving)

(4 何) トイヨト イヨト

- Prove that the several representations are isomorphic (transformation functions and roundtrip lemmas)
- Pransfer theorems from one representation to another one Definition : let A, B, two isomorphic structures, φ<sub>A</sub> a formula on A, φ<sub>B</sub> the corresponding formula on B, φ<sub>A</sub> ⇒ φ<sub>B</sub> : a transfer theorem, e.g. transfer tactic in Isabelle (Huffman, Kuncar), transfer tactic in Coq (Zimmermann, Herbelin), transfer tactic in Dedukti (Cauderlier)

### Proof Interoperability

Motivations

- Proof development is *expensive* 
  - ▶ 4-color theorem, Kepler conjecture, Feit-Thomson theorem
- Proof assistants are *specializing* 
  - Counterexamples, proof by reflection, decision procedures, ...

Obstacles

• Logical problem :

We need to combine the logics of PA A and PA B in a consistent way.

 Mathematical problem : L and L are not identical Theories such as arithmetic are independently defined in System A and System B.

We need to identify similar concepts (through isomorphisms)

#### In the rest of the talk

#### We need to identify similar concepts (through isomorphisms)

- Illustration 1 : Composite checked proofs in DEDUKTI (presented in detail inTetrapod 2018)
   Use case : a composite (HOL/Coq) checked proof of correctness of Eratosthenes Sieve
- Illustration 2 : Practical isomorphisms for families of objects in Coq Use case : transfer a theorem about a family f from System A (here Coq) to System B

- f is defined using a dependent pair (rec\_P) in A while B lacks dependent types .

- fortunately there exists a simpler isomorphic type P that can implemented in  $\ensuremath{\mathsf{B}}.$ 

- so we have to provide the transformation functions and roundtrip lemmas in A and then go ahead with our favorite framework for interoperability.

イロト イポト イヨト イヨト

# Illustration 1 : Composite checked proofs with DEDUKTI [CD17]



 $[{\rm CD17}]{\rm Raphaël}$  Cauderlier, Catherine Dubois : FoCaLiZe and Dedukti to the Rescue for Proof Interoperability. ITP 2017

< ロ > < 同 > < 回 > < 回 >

### Composite checked proofs with DEDUKTI [CD17]

DEDUKTI (http://dedukti.gforge.inria.fr/) : a universal proof checker / logical framework developed by Dowek and his group based on  $\lambda\Pi$ -calculus modulo theory = dependent types à *la* LF + (user-defined) rewriting rules

DEDUKTI can check proofs from iProverModulo (resolution proofs) : Zenon modulo (f.o. tableaux proofs), HOL provers (open theory format), Matita and Coq (CIC proofs), FoCaLiZe, thanks to translators.

< □ > < 同 > < 回 > < 回 > < 回 >

## Composite checked proofs with DEDUKTI [CD17]



 $\label{eq:matrix} MathTransfer = a \ FoCaLiZe \ library \ of \ transfer \ theorems \ about \ natural \ number \ arithmetic$ 

| Tetranod | CI  | CM   | 2023 |
|----------|-----|------|------|
| retrapou | C I | CIVI | 2025 |

э

< □ > < 同 > < 回 > < 回 > < 回 >

Composite checked proofs with DEDUKTI [CD17]

- A = HOL (OpenTheory)
- **B** = Coq
- T = correctness of the Sieve of Eratosthenes
- L = prime divisor lemma

 $L := \forall n \neq 1. \exists p. prime(p) \land p \mid n$ 

proved in HOL/OpenTheory natural-prime library

< 4 **⊡** ► <

## Illustration 2 : Isomorphic representations for families of objects in Coq [DMG22]

In this work :

- study of several families related to lambda terms
- family = subset of a larger type = aka PVS predicate subtypes
- for each family 2 different *isomorphic* representations, roundtrip theorems
- implemented in Coq
- random generators (using QuickChick, testing before proving)
- functors to deal with isomorphic representations for some families of objects

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

<sup>[</sup>DMG22] Catherine Dubois, Nicolas Magaud, Alain Giorgetti. Pragmatic Isomorphism Proofs Between Coq Representations : Application to Lambda-Term Families. In *TYPES* 2022 : 11 :1-11 :19

#### Pure lambda terms in de Bruijn form

$$T ::= \mathbb{N} \mid \lambda T \mid T T$$

Implemented in Coq with an inductive type : unary-binary trees, aka labeled Motzkin trees

```
Inductive lmt : Set :=

| var : nat \rightarrow lmt

| lam : lmt \rightarrow lmt

| app : lmt \rightarrow lmt \rightarrow lmt.
```



Definition ex1 := lam (app (lam (var 1)) (var 0)).

#### Motzkin trees

A Motzkin tree is a rooted ordered tree built from binary nodes, unary nodes and leaf nodes.

Inductive motzkin : Set :=
| v : motzkin
| l : motzkin → motzkin
| a : motzkin → motzkin → motzkin.

э

### Closable Motzkin trees

A closable Motzkin tree is the skeleton of a closed lambda-term.

A Motzkin tree is a skeleton of a closed lambda term if and only if it exists at least one  $\lambda$  binder on each path from the leaf to the root. [BT17]

```
Fixpoint is_closable (mt: motzkin) :=
 match mt with
    v \Rightarrow False
    l m \Rightarrow True
  | a m1 m2 \Rightarrow is_closable m1 \land is_closable m2
  end.
                                                             77
```

a closable Motzkin tree

a non closable Motzkin tree



[BT17] Olivier Bodini and Paul Tarau. On uniquely closable and uniquely typable skeletons of lambda terms. In Logic-Based Program Synthesis and Transformation, LOPSTR 2017,  $_{\odot}$   $_{\odot}$ 

Tetrapod - CICM 2023

04 September 2023 13 / 23

#### From a representation to another

```
Record rec_closable : Type := Build_rec_closable {
    closable_struct :> motzkin;
    closable_prop : is_closable closable_struct
}.
```

```
Inductive closable :=
| La : motzkin → closable
| Ap : closable → closable → closable.
```

## From a representation to another, an example



### Random generators

We use QuickChick (Coq port of Haskell QuickCheck) to test a Coq conjecture before proving it

- Executable properties and random generators needed !
- With the help of QuickChick combinators, write (verified) random generators (sometimes derived)

We provide random generators for

- Motzkin trees (derived from motzkin def.)
- closable Motzkin trees (obtained by filtering, not efficient)
- closable Motzkin trees (handwritten)
- closable Motzkin trees of type rec\_closable
- objects of type closable (derived from closable def.)

```
(** ** Tests for [closable2rec_closableK] *)
QuickCheck (sized (fun n⇒
forAll (gen_closable n) (fun c⇒
  (rec_closable2closable (closable2rec_closable c)) =? c)))
(* +++ Passed 10000 tests *)
```

### Uniquely Closable Motzkin trees

A Motzkin tree is **uniquely closable** if it is the skeleton of a unique closed lambda-term.

A Motzkin tree is uniquely closable if and only if exactly one lambda binder/unary binder is available above each of its leaf nodes. [BT17, Prop. 4]

```
Definition is_ucs: motzkin \rightarrow Prop := ....
Record rec_ucs : Type := Build_rec_ucs {
 ucs_struct : motzkin;
 ucs_prop : is_ucs ucs_struct
}.
                 rec_ucs2ucs | 1 ucs2rec_ucs
                   (two roundtrip lemmas proved in Coq)
Inductive ca :=
                                   Inductive ucs :=
V : ca
                                   | L : ca \rightarrow ucs
                        | A : ucs \rightarrow ucs \rightarrow ucs.
| B : ca \rightarrow ca \rightarrow ca.
```

And random generators for rec\_ucs, ca and ucs ( ) ( ) ( ) ( ) ( ) ( )

| Tetrapod - CICM 2023 | Cambridge | 04 September 2023 | 17 / 23 |
|----------------------|-----------|-------------------|---------|

#### Characterization of closable Motzkin trees

A Motzkin tree is the skeleton of a closed  $\lambda$ -term if and only if it exists at least one  $\lambda$ -binder on each path from the leaf to the root [BT17, Proposition 2]

How to formalize closed  $\lambda$ -terms?

"to be closed" cannot be defined recursively on the structure of labeled Motzkin trees :  $(\lambda t)$  can be closed for terms t that are not closed themselves

 $\sim$  extension to *m*-open terms

The lambda term t is *m*-open if the term  $(\lambda \dots \lambda t)$  with *m* abstractions before t is closed, aka. a lambda term containing at most *m* distinct free variables.

A closed lambda term is defined as a 0-open term.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### *m*-open $\lambda$ -terms, formally

```
Fixpoint is_open (m: nat) (t: lmt) : Prop :=
 match t with
 | var i \Rightarrow i < m
 | lam t1 \Rightarrow is_open (S m) t1
 | app t1 t2 \Rightarrow is_open m t1 \land is_open m t2
 end.
Record rec_open (m:nat) : Set := Build_rec_open {
 open_struct :> lmt;
 open_prop : is_open m open_struct
}.
             rec_open2open open2rec_open
                 (two roundtrip lemmas proved in Coq)
Inductive open : nat \rightarrow Set :=
 open_var : \forall (m i:nat), i < m \rightarrow open m
| open_lam : \forall (m:nat), open (S m) \rightarrow open m
| open_app : \forall (m:nat), open m \rightarrow open m \rightarrow open m.
                                                Tetrapod - CICM 2023
                                  Cambridge
                                                         04 September 2023
```

19/23

#### A general framework to prove isomorphisms

• Generic interface : an abstract representation of two datatypes

```
Module Type family.
 Parameter T : Set.
 Parameter is P : T \rightarrow Prop.
 Parameter P : Set.
 Parameter T2P : \forall (x:T), is P x \rightarrow P.
 Parameter P2T : P \rightarrow T.
 Parameter is P lemma : \forall v, is P (P2T v).
 Parameter P2T is P :
   \forall (t : T) (H : is P t), P2T (T2P t H) = t.
 Parameter proof irr :
   \forall x (p1 p2:is P x), p1 = p2.
End family.
```

• Functor parametrized by a module of type family

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

## Closable and uniquely closable Motzkin trees as two instances

| Abstraction | Closable MT                          | Uniquely Closable MT |  |
|-------------|--------------------------------------|----------------------|--|
| Т           | motzkin                              | motzkin              |  |
| is_P        | is_closable                          | is_ucs               |  |
| P           | closable                             | ucs                  |  |
| T2P         | motzkin2closable                     | motzkin2ucs          |  |
| P2T         | closable2motzkin                     | ucs2motzkin          |  |
| is_P_lemma  | automatically proved using Ltac      |                      |  |
| P2T_is_P    | automatically proved using Ltac      |                      |  |
| proof_irr   | PI_is_closable                       | PI_is_ucs            |  |
| rec_P       | automatically derived in the functor |                      |  |
| rec_P2P     | automatically derived in the functor |                      |  |
| P2rec_P     | automatically derived in the functor |                      |  |
| P2rec_PK    | automatically derived in the functor |                      |  |
| rec_P2PK    | automatically proved using Ltac      |                      |  |

э

### Random generators

3 interfaces for random generators, parametrized by a family module and 3 functors

- one pair (interface,functor) to derive gen\_P\_filter from gen\_T and an executable version of is\_P
- one pair to derive gen\_P\_rec from gen\_P using the transformation P\_rec2P
- one pair to derive gen\_P from gen\_P\_rec using the transformation T\_rec2P

```
Module Type family_gen3 (Import f : family).
Parameter gen_P : nat→ G P.
End family_gen3.
```

```
Module genfamily3(Import f : family)(Import g : family_gen3 f)
(Import facts : equiv_sig f).
Definition gen_rec_P n : G rec_P :=
do! p← gen_P n;
returnGen (P2rec_P p).
End genfamily3.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

#### Discussion

In use case 1, MathTransfer is an external tool providing the bridge while in use case 2, it is the responsability of System A (or System B) to provide the bridge.

Could these approches be generalized and pushed further to make a bridge through systems?