
Isomorphisms and Interoperability

Catherine Dubois

ENSIIE, Samovar, INRIA, France

Contributors : Raphaël Cauderlier (Nomadic labs, France), Alain Giorgetti
(Univ. Franche-Comté, France) and Nicolas Magaud (Univ. Starsbourg,
France)

Tetrapod - CICM 2023 Cambridge 04 September 2023 1 / 23

Isomorphisms

In Maths, common practice to have several constructions for the same
objects, identified later modulo isomorphisms

In Computer Science, in proof assistants, also common practice to
have several representations for the same objects

formal verification of Maths constructions

alternative representations to dependent types

reuse of formal developments in the same or another proof assistant
(to bridge two different representations)

data refinement (one rep. well suited for proving while another one
allows more efficient representation, e.g. Peano vs binary natural
numbers)

random generation (testing before proving)

Tetrapod - CICM 2023 Cambridge 04 September 2023 2 / 23

Related issues

1 Prove that the several representations are isomorphic (transformation
functions and roundtrip lemmas)

2 Transfer theorems from one representation to another one
Definition : let A, B, two isomorphic structures, φA a formula on A, φB the

corresponding formula on B, φA ⇒ φB : a transfer theorem,

e.g. transfer tactic in Isabelle (Huffman, Kuncar), transfer
tactic in Coq (Zimmermann, Herbelin), transfer tactic in Dedukti
(Cauderlier)

Tetrapod - CICM 2023 Cambridge 04 September 2023 3 / 23

Proof Interoperability

Motivations

Proof development is expensive
I 4-color theorem, Kepler conjecture, Feit-Thomson theorem

Proof assistants are specializing
I Counterexamples, proof by reflection, decision procedures, . . .

Obstacles

Logical problem :
We need to combine the logics of PA A and PA B in a consistent way.

Mathematical problem : L and L are not identical
Theories such as arithmetic are independently defined in System A
and System B.
We need to identify similar concepts (through isomorphisms)

Tetrapod - CICM 2023 Cambridge 04 September 2023 4 / 23

In the rest of the talk

We need to identify similar concepts (through isomorphisms)

Illustration 1 : Composite checked proofs in Dedukti (presented in
detail inTetrapod 2018)
Use case : a composite (HOL/Coq) checked proof of correctness of
Eratosthenes Sieve

Illustration 2 : Practical isomorphisms for families of objects in Coq
Use case : transfer a theorem about a family f from System A (here
Coq) to System B
- f is defined using a dependent pair (rec P) in A while B lacks
dependent types .
- fortunately there exists a simpler isomorphic type P that can
implemented in B.
- so we have to provide the transformation functions and roundtrip
lemmas in A and then go ahead with our favorite framework for
interoperability.

Tetrapod - CICM 2023 Cambridge 04 September 2023 5 / 23

Illustration 1 : Composite checked proofs with Dedukti
[CD17]

External Modularity for Proof Checking : Refinement

Proof System A

L

Proof System B

L) T

Proof System C

L L) T

T

Tetrapod - FLoC 2018 Oxford 13 July 2018 8 / 17

[CD17]Raphaël Cauderlier, Catherine Dubois : FoCaLiZe and Dedukti to the Rescue for
Proof Interoperability. ITP 2017

Tetrapod - CICM 2023 Cambridge 04 September 2023 6 / 23

Composite checked proofs with Dedukti [CD17]

Dedukti (http://dedukti.gforge.inria.fr/) : a universal proof
checker / logical framework developed by Dowek and his group
based on λΠ-calculus modulo theory = dependent types à la LF +
(user-defined) rewriting rules

Dedukti can check proofs from iProverModulo (resolution proofs) :
Zenon modulo (f.o. tableaux proofs), HOL provers (open theory format),
Matita and Coq (CIC proofs), FoCaLiZe, thanks to translators.

Tetrapod - CICM 2023 Cambridge 04 September 2023 7 / 23

Composite checked proofs with Dedukti [CD17]

Proof System A

L

Proof System B

L) T

Translator
A ! Dedukti

Focalide
Translator

B ! Dedukti

L L) TL) L

T

FoCaLiZe

MathTransfer

MathTransfer = a FoCaLiZe library of transfer theorems about natural number

arithmetic (https://gitlab.math.univ-paris-diderot.fr/

cauderlier/math_transfer)

Tetrapod - FLoC 2018 Oxford 13 July 2018 11 / 17

MathTransfer = a FoCaLiZe library of transfer theorems about natural number

arithmetic

Tetrapod - CICM 2023 Cambridge 04 September 2023 8 / 23

Composite checked proofs with Dedukti [CD17]

A = HOL (OpenTheory)

B = Coq

T = correctness of the Sieve of Eratosthenes

L = prime divisor lemma

L := ∀n 6= 1. ∃p. prime(p) ∧ p | n
proved in HOL/OpenTheory natural-prime library

Tetrapod - CICM 2023 Cambridge 04 September 2023 9 / 23

Illustration 2 : Isomorphic representations for families of
objects in Coq [DMG22]

In this work :

study of several families related to lambda terms

family = subset of a larger type = aka PVS predicate subtypes

for each family 2 different isomorphic representations, roundtrip
theorems

implemented in Coq

random generators (using QuickChick, testing before proving)

functors to deal with isomorphic representations for some families of
objects

[DMG22] Catherine Dubois, Nicolas Magaud, Alain Giorgetti. Pragmatic Isomorphism
Proofs Between Coq Representations : Application to Lambda-Term Families. In TYPES
2022 : 11 :1-11 :19

Tetrapod - CICM 2023 Cambridge 04 September 2023 10 / 23

Pure lambda terms in de Bruijn form

T ::= N | λT | T T

Implemented in Coq with an inductive type :
unary-binary trees, aka labeled Motzkin trees

Inductive lmt : Set :=
| var : nat → lmt
| lam : lmt → lmt
| app : lmt → lmt → lmt.

Definition ex1 := lam (app (lam (var 1)) (var 0)).

1

λ 0

@

λ

for
λx . (λy . x) x

Tetrapod - CICM 2023 Cambridge 04 September 2023 11 / 23

Motzkin trees

A Motzkin tree is a rooted ordered tree built from binary nodes, unary
nodes and leaf nodes.

Inductive motzkin : Set :=
| v : motzkin
| l : motzkin → motzkin
| a : motzkin → motzkin → motzkin.

Tetrapod - CICM 2023 Cambridge 04 September 2023 12 / 23

Closable Motzkin trees

A closable Motzkin tree is the skeleton of a closed lambda-term.

A Motzkin tree is a skeleton of a closed lambda term if and only if it exists
at least one λ binder on each path from the leaf to the root. [BT17]

Fixpoint is_closable (mt: motzkin) :=
match mt with
| v ⇒ False
| l m ⇒ True
| a m1 m2 ⇒ is_closable m1 ∧ is_closable m2
end.

a

l

l

v

l

a

v v

a closable Motzkin tree

a

l

l

v

a

v v

a non closable Motzkin tree

[BT17] Olivier Bodini and Paul Tarau. On uniquely closable and uniquely typable skeletons
of lambda terms. In Logic-Based Program Synthesis and Transformation, LOPSTR 2017

Tetrapod - CICM 2023 Cambridge 04 September 2023 13 / 23

From a representation to another

Record rec_closable : Type := Build_rec_closable {
closable_struct :> motzkin;
closable_prop : is_closable closable_struct

}.

rec_closable2closable

y x closable2rec_closable

(two roundtrip lemmas proved in Coq)

Inductive closable :=
| La : motzkin → closable
| Ap : closable → closable → closable.

Tetrapod - CICM 2023 Cambridge 04 September 2023 14 / 23

From a representation to another,
an example

a

l

l

v

l

a

v v

+ a proof that it’s a closable Motzkin tree

rec_closable2closable

y x closable2rec_closable

Ap

La

l

v

La

a

v v

Tetrapod - CICM 2023 Cambridge 04 September 2023 15 / 23

Random generators
We use QuickChick (Coq port of Haskell QuickCheck) to test a Coq conjecture
before proving it

Executable properties and random generators needed !

With the help of QuickChick combinators, write (verified) random
generators (sometimes derived)

We provide random generators for

Motzkin trees (derived from motzkin def.)

closable Motzkin trees (obtained by filtering, not efficient)

closable Motzkin trees (handwritten)

closable Motzkin trees of type rec_closable

objects of type closable (derived from closable def.)

(** ** Tests for [closable2rec_closableK] *)
QuickCheck (sized (fun n⇒

forAll (gen_closable n) (fun c⇒
(rec_closable2closable (closable2rec_closable c)) =? c)))

(* +++ Passed 10000 tests *)

Tetrapod - CICM 2023 Cambridge 04 September 2023 16 / 23

Uniquely Closable Motzkin trees
A Motzkin tree is uniquely closable if it is the skeleton of a unique closed
lambda-term.

A Motzkin tree is uniquely closable if and only if exactly one lambda binder/unary
binder is available above each of its leaf nodes. [BT17, Prop. 4]

Definition is_ucs: motzkin → Prop :=

Record rec_ucs : Type := Build_rec_ucs {
ucs_struct : motzkin;
ucs_prop : is_ucs ucs_struct

}.

rec_ucs2ucs

y x ucs2rec_ucs

(two roundtrip lemmas proved in Coq)

Inductive ca :=
| V : ca
| B : ca → ca → ca.

Inductive ucs :=
| L : ca → ucs
| A : ucs → ucs → ucs.

And random generators for rec_ucs, ca and ucs
Tetrapod - CICM 2023 Cambridge 04 September 2023 17 / 23

Characterization of closable Motzkin trees

A Motzkin tree is the skeleton of a closed λ-term
if and only if

it exists at least one λ-binder on each path from the leaf to the root [BT17, Proposition 2]

How to formalize closed λ-terms ?

“to be closed” cannot be defined recursively on the structure of labeled
Motzkin trees : (λ t) can be closed for terms t that are not closed
themselves
; extension to m-open terms

The lambda term t is m-open if the term (λ . . . λ t) with m abstractions
before t is closed, aka. a lambda term containing at most m distinct free
variables.

A closed lambda term is defined as a 0-open term.

Tetrapod - CICM 2023 Cambridge 04 September 2023 18 / 23

m-open λ-terms, formally
Fixpoint is_open (m: nat) (t: lmt) : Prop :=
match t with
| var i ⇒ i < m
| lam t1 ⇒ is_open (S m) t1
| app t1 t2 ⇒ is_open m t1 ∧ is_open m t2
end.

Record rec_open (m:nat) : Set := Build_rec_open {
open_struct :> lmt;
open_prop : is_open m open_struct

}.

rec_open2open

y x open2rec_open

(two roundtrip lemmas proved in Coq)

Inductive open : nat → Set :=
| open_var : ∀ (m i:nat), i < m → open m
| open_lam : ∀ (m:nat), open (S m) → open m
| open_app : ∀ (m:nat), open m → open m → open m.

Tetrapod - CICM 2023 Cambridge 04 September 2023 19 / 23

A general framework to prove isomorphisms

Generic interface : an abstract representation of two datatypes

Module Type family.
Parameter T : Set.
Parameter is_P : T → Prop.
Parameter P : Set.
Parameter T2P : ∀ (x:T), is_P x → P.
Parameter P2T : P → T.
Parameter is_P_lemma : ∀ v, is_P (P2T v).
Parameter P2T_is_P :
∀ (t : T) (H : is_P t), P2T (T2P t H) = t.

Parameter proof_irr :
∀ x (p1 p2:is_P x), p1 = p2.

End family.

Functor parametrized by a module of type family

Tetrapod - CICM 2023 Cambridge 04 September 2023 20 / 23

Closable and uniquely closable Motzkin trees as
two instances

Abstraction Closable MT Uniquely Closable MT
T motzkin motzkin
is_P is_closable is_ucs
P closable ucs
T2P motzkin2closable motzkin2ucs
P2T closable2motzkin ucs2motzkin
is_P_lemma automatically proved using Ltac
P2T_is_P automatically proved using Ltac
proof_irr PI_is_closable PI_is_ucs

rec_P automatically derived in the functor
rec_P2P automatically derived in the functor
P2rec_P automatically derived in the functor
P2rec_PK automatically derived in the functor

rec_P2PK automatically proved using Ltac

Tetrapod - CICM 2023 Cambridge 04 September 2023 21 / 23

Random generators
3 interfaces for random generators, parametrized by a family module and 3
functors

one pair (interface,functor) to derive gen_P_filter from gen_T and
an executable version of is_P

one pair to derive gen_P_rec from gen_P using the transformation
P_rec2P

one pair to derive gen_P from gen_P_rec using the transformation
T_rec2P

Module Type family_gen3 (Import f : family).
Parameter gen_P : nat→ G P.

End family_gen3.

Module genfamily3(Import f : family)(Import g : family_gen3 f)
(Import facts : equiv_sig f).
Definition gen_rec_P n : G rec_P :=
do! p← gen_P n;
returnGen (P2rec_P p).

End genfamily3.

Tetrapod - CICM 2023 Cambridge 04 September 2023 22 / 23

Discussion

In use case 1, MathTransfer is an external tool providing the bridge while
in use case 2, it is the responsability of System A (or System B) to provide
the bridge.

Could these approches be generalized and pushed further to make a bridge
through systems ?

Tetrapod - CICM 2023 Cambridge 04 September 2023 23 / 23

