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Abstract

In this study, we analyze computer-aided inquiry-based mathematics
learning. A Moodle plug-in associated with the dynamic geometry soft-
ware CindyJS which can record finegrained log data of learners’ manip-
ulations on the web was used. Our previous study indicates that teacher
intervention can make student’s inquiry systematic and exhaustive by
helping them build a semantic circuit across language, symbolism, and
visual images which are relevant to the targeted concept. In this study,
we try to validate the impact of this kind of teacher intervention by
monitoring the log data of manipulations.

1 Introduction

For students to develop flexible scientific thinking, they should engage in solving problems which are complex
and ill-structured. During problem solving, computer-based tools are often used to make students reflect on
the data they have collected and speculate about the underlying mechanism [Hmelo-Silver]. While those tools
enable students to decompose complex tasks and access key disciplinary content, they may prevent students
from fully exploring the solution spaces and sufficiently evaluating alternative interpretations [Reiser]. In fact, it
has been shown that having students solve ill-structured problems without providing external support structure
might endow their learning process in the longer term with hidden efficacy, even though the process is less
efficient in the shorter term [Kapur]. Therefore, close attention should be paid to the learning process so that
students can make a full exploration of the concept they are studying while engaged in inquiry-based learning
with computers. However, it is not easy to monitor learners’ activities on computer because their thinking
processes in inquiry tend to become highly complex. In fact, while several large-scale meta-analysis studies have
shown that educational technology brought about significant improvements in mathematics achievement (for
instance [Li-Ma]), Cheung and Slavin [Cheung-Slavin] stated that the lack of information about the relationship
between the process of technology use and the achievement measure might cause a discrepancy among similar
studies in meta-analysis. Regarding the spread of mobile devices and high-speed internet connection, web-
based systems should be preferred in inquiry-based mathematics learning. Moreover, high-resolution temporal
data is needed in order to precisely analyze the temporal and sequential organization of the complex learning
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process [Knight]. Therefore, we have implemented a Moodle plug-in associated with the dynamic geometry
software CindyJS (https://cindyjs.org) which is used to manipulate mathematical content dynamically. Using
this plug-in, we can obtain the log data of learners’ manipulations of CindyJS content on the web. In this study,
we analyze the process of students’ dynamically manipulating mathematics content to demonstrate that the
teacher’s preliminary intervention might guide their subsequent inquiry in a favorable direction.

2 Backgrounds and Research Questions

The topic analyzed in this research is the learning of polynomial approximation which is a typical theme in
university level mathematics education. From the authors’ experiences, it seems not to be so hard for the
majority of students to apply the formula of Maclaurin’s series

f(x) ≈ f(0) + f ′(0)x +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
xn + · · ·

to specific functions. However, it is not so easy for them to accurately appreciate the associated concepts
including the radius of convergence and the evaluation of the error terms. In fact, while the evaluation of the
n-th error term

εn = f(x)−
{
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expressed in the equation

lim
x→0

εn
xn

= 0

can be verified by combining the fundamental theorem of calculus and mathematical induction, the possibility
that f(x) cannot be approximated by any polynomial function globally can hardly be recognized by ordinary
students only through paper-and-pencil-based learning. To observe those seemingly contradictory cases, inquiry-
based learning with the use of computer-based tools are needed. For instance, the fact that f(x) cannot be
approximated by any polynomial unless |x| is smaller than the radius of convergence can be observed when
students use computer graphics tools and manipulate the graph of functions. Students are expected to fail
fitting those graphs globally and find that fitting them is possible only in the neighbourhood of x = 0. The key
point to be observed is that lower order terms are dominant in the neighbourhood of x = 0 while higher order
terms are dominant in the region where |x| is large. In order to ensure that students observe this point, it is
necessary to monitor the activity of students and check whether their explorations are exhaustive or not.

In general, interpreting and scaffolding learners’ mathematical thinking during their inquiry are not so
easy because mathematics is a multi-semiotic activity whose resources are composed of many artifacts includ-
ing gestures as a conceptual metaphor, written modes, spoken discourse, and visualization on digital media
[Lakoff-Nuñez][Gutierrez-Irving-Dieckmann]. Moreover, mathematical concepts are constructed through the se-
mantic circuit created by an interlocking network among the systems including language, symbolism, and visual
images [O’Halloran]. In the case of this research, the mathematical expressions

lim
x→0

xm

xn
= 0 lim

x→∞

xm

xn
=∞ (m > n)

which show that the extent of convergence and divergence of monomial functions is determined by their orders
should be understood while comparing the graphs of those functions. The result of our previous study indicates
that the extent to which learners can build the above mentioned semantic circuit associated with the targeted
concept might greatly influence the pattern of their manipulations relevant to the dynamic content [Kaneko].
Therefore, we can pose the following two research questions.

1. Is there any criterion derived from the log data of students’ manipulating dynamic content to judge whether
their explorations are sufficient or not?

2. Using this criterion, can we validate the effect of teachers’ educational interventions to help students to
extend the range of their explorations?



3 Methods

Due to the risk of COVID-19 infections, all classrooms were conducted fully online during the period of this
research. For that reason, the authors implemented CindyJS content on the Moodle server and asked students
to access that server and manipulate the dynamic content on the web. Figure 1 shows the Moodle page in which
CindyJS content for this research was implemented.

Figure 1: CindyJS content implemented on Moodle

Using this content, students were asked to find the best approximation near x = 0

√
1 + x ≈ a + bx + cx2 + d3

of the target function y =
√

1 + x with cubic polynomial function by manipulating four sliders in the content.
When the coefficients a, b, c, d are changed by moving the red points, the resulting graph of the cubic polynomial
function is modified correspondingly. Thus, the task is to find the coefficients with which this graph (red curve)
fits well to the graph of the function y =

√
1 + x (blue curve) near the point (0, 1). The log data of students’

manipulations are stored on the Moodle server and are formatted into csv file as in Figure 2.

Figure 2: Log data of students’ manipulations



On the one hand, Figure 3 shows the locally optimal approximation derived from the formula of Maclaurin’s
series. Unless y = a + bx is set to be the tangent line at (0, 1), any choice of higher degree coefficients does not
provide a suitable local approximation since cx2 and dx3 are the infinitesimals of higher order compared to the
first order terms a + bx.

Figure 3: Locally optimal approximation

On the other hand, Figure 4 shows the globally optimal approximation with respect to the L2 norm on the whole
interval [−1, 2]. Setting the first order part to be the equation of the tangent line causes difficulty in finding
a suitable global approximation. Through observing this trade-off relation, learners are expected to appreciate
empirically the concept of the degree of the infinitesimal and the radius of convergence.

Figure 4: Globally optimal approximation

As seen in these figures, it is not easy to estimate the range in which the target function can be locally
approximated by using a cubic polynomial function. In this sense, this task is complex and ill-structured. While
the use of dynamic geometry is expected to play a crucial role, there is some risk that students will search the
approximation without considering the power balance between monomials. To avoid this risk, teachers should
turn students’ close attention to the order of monomials with which their power balance and convergence range
are correlated. Figure 5 is a screenshot of a supplementary video prepared for this educational intervention. In
this video, it is explained that the graph of cubic function is plotted by superposing each monomial functions
and that the monomial function xn of higher degree n is a major factor in the region |x| � 0 whereas it is a
minor factor in the region x ∼ 0. These points were explained by showing both the symbolic representation of
reduction with lower order monomial and visual images of superposing monomial functions.



Figure 5: Supplementary video

Subjects in this study were first grade students in a Japanese university. Prior to the lesson used for this
research, they had been given some elementary lectures concerning polynomial approximation and Macraulin’s
series of functions. While the evaluation of error terms together with the formula to calculate the approximation
had been taught by using mathematical expressions, no graphical explanations had been given. Students were
randomly assigned to experimental group E (15 males and 36 females) and control group C (19 males and 34
females). Before they began manipulating the content, the video in Figure 5 was shown to group E and another
video including brief instruction of the usage of the content was shown to group C.

4 Results

Since the region where learners try to fit one graph to another can be monitored by watching the maximal gap
between two graphs on the relevant regions, we used the log data derived from the Moodle plug-in to compute
the maximal gaps on the three regions [−1,−0.5], [−0.5, 0.5], [0.5, 2] and graphed their temporal transition in
black, red, and blue respectively. A sample graph is shown in Figure 6 where the horizontal axis represents the
passage of time and the vertical one represents the maximal gap. The former has marks for every 50 seconds

and the latter has marks for every
1

6
.

Figure 6: Visualization of the maximal gaps



Since the lower order terms are dominant in the region x ∼ 0, the low value of maximal gap on [−0.5, 0.5] (red
curve) shows that the first order part is set to be near to the equation of tangential line. This means that the
learner attached some importance to the local approximation in the region x ∼ 0 at that moment. On the
contrary, in the case when the value of maximal gap on [−0.5, 0.5] is high, that on [−1,−0.5] (black curve) or
that on [0.5, 2] (blue curve) often falls. This means that the learner aimed at the approximation in the region
apart from x = 0 at that moment. If we emphasize the effectiveness of manipulation, the case shown in Figure
7 is ideal. In fact, the red curve falls quickly and the final result (a = 1, b = 0.5, c = −0.10, d = 0.04) is very
near to that obtained by using the formula of Maclaurin’s series. However, the main purpose of this trial is to
let learners observe as many cases as possible and the short duration of the manipulation process indicates that
it is uncertain whether the learner explored exhaustive cases to recognize the trade-off relation mentioned above.

Figure 7: Seemingly desirable manipulation process

In the case when learners could recognize the necessity of setting the first order part to be the equation of
the tangential line by manipulating higher order coefficients with various values of lower order coefficients, one
further trial is needed in which they minimize the gap on [−1,−0.5] while keeping the gap on [−0.5, 0.5] small.
Figure 8 shows a sample case of those trials. Because of the singularity of the derivative function of y =

√
1 + x

at the point (−1, 0), learners are expected to encounter the difficulty in fitting two graphs near that point.

Figure 8: Some further manipulation (I)

Contrarily, the fitting on the region [0, 2] is not so difficult as shown in Figure 9. These observations should lead
to the understanding of the radius of convergence.



Figure 9: Some further manipulation (II)

In that sense, the inquiry shown in Figure 7 is insufficient. In fact, though the black curve falls once, the
red curve rose at that time. This indicates the possibility that the learner did not recognize the power balance
between monomial functions and his/her manipulation strategy depended on contingency. Surface observation
of graphs for all participants suggested that learners in group E observed the situation as in Figure 8 more often
than those in group C.

Based on this consideration, we adopted the criteria which is given by simultaneously using the maximal
gaps on [−1,−0.5] and [−0.5, 0.5]. Specifically, we counted the number of students whose manipulation process
included the situation in which the maximal gap on [−1,−0.5] attained the value smaller than the prescribed
thresholds 0.20, 0.25, 0.30, 0.35, 0.40 while the maximal gap on [−0.5, 0.5] was smaller than 0.01. Here, the
threshold 0.01 for the maximal gap on [−0.5, 0.5] was chosen since the maximal gap between the target function
√

1 + x and its second order approximation 1 +
1

2
x− 1

8
x2 on [−0.5, 0.5] is very near to it. Figure 10 shows the

ratio of these students among each group for each of the above thresholds of the maximal gap on [−1,−0.5].
Here the results of group E and C are represented in red and blue respectively.

Figure 10: Incidences corresponding to several thresholds



Whereas no significant differences in the ratio are identified for the thresholds other than 0.30, the ratio for
group E (42/51) is significantly higher than that for group C (34/53) in case of the threshold 0.30 as shown by the
arrow in Figure 10. In fact, the p-value generated from“prop.test” function of R applied to this data is 0.01822.
Regarding the fact that no advice about the manipulation strategy was given in the video, this result strongly
suggests that the teachers’ intervention through supplementary video induced learners’ additional exploration in
which they can observe the difficulty in making compatible choice of the approximation on [−1,−0.5] and that
on [0, 2].

5 Discussion and Future Work

It can be seen that the above mentioned difference in the pattern of manipulation process between group E and
C was caused by the following mechanism.

1. The learners in group C should have understood the graph shape of cubic function globally through the usual
drawing procedure using derivative sign chart. Therefore, some of them might observe that the maximal
gap on the region [1, 2] became fairly large when they increased the value of d on the way to the situation
in Figure 8 and stopped further manipulation in that direction.

2. Since the learners in group E watched the supplementary video, they should have recognized that the third
order term dx3 does not have a major influence on the graph shape of cubic function in the region x ∼ 0.
Therefore, many of them may have recognized the possibility that the increase of the value of d can reduce
the maximal gap on the region [−1, 0] and therefore tried the case in Figure 8.

In summary, teacher’s intervention using a supplementary video can be seen to have helped students build
the interlocking network among the systems including language, symbolism, and visual images which made
their inquiry more systematic and more exhaustive. In this sense, the result of this research indicates that the
temporal transition of learners’ thinking during their inquiry with the use of dynamic content is reflected in their
manipulation process and is preceded by the activities based on these resources. Therefore, the mathematical
user interface equipped with the system to store the log data of learners’ manipulating dynamic content is
indispensable for monitoring learners’ inquiry and giving appropriate advice to them.

While the “productive failure” which the subjects experienced through their “extra” trial as mentioned above
helped them appreciate correctly the target concept, that failure can make their manipulation process complex
and divergent. This is because learners change perspectives over the course of extended experiences for solving
ill-structured problems. The complexity and divergence of the learners’ manipulation process make it very hard
for ordinary teachers to make sense of and give support to learners’ thinking. The result of this study strongly
indicates that monitoring the appropriate signals derived from the log data of learners’ manipulation process
might enable ordinary teachers to infer learners’ thinking and find appropriate ways of intervening.

In this study, there are many points to be improved. Though in this study we could diagnose the process
of learners’ mathematical inquiry by using the criteria based on the information derived from several moments
in the whole process, it is necessary to make full use of the information relating to time and order in general.
Moreover, teacher’s intervention is usually carried out during the learners’ inquiry and while monitoring their
activities, whereas in this study it was carried out by using a video which learners watched before their inquiry.
Thus, in order to make the workflow of this study applicable to a more realistic situation, it is necessary to
develop a more advanced system to analyze the log data and visualize the result of that analysis in the instant
of learners’ inquiry.

Moreover, some CSCL (Computer-Supported Collaborative Learning) research [Stahl-Koschmann-Suthers]
investigating the causal relationship between discourse, manipulation, and gesture is needed to make the inter-
pretation of log data (or the plausible choice of signal) grounded in the light of educational purpose. In our
pilot study, a CSCL environment was prepared as seen in Figure 11. The result of this pilot study indicated
that discourse and gesture are strongly correlated to the strategy of manipulating dynamic content and they can
give some evidence for the interpretation of log data. While several methodologies for analyzing mathematical
cognition are proposed, those based on the data derived from learners’ linguistic activities and body movements
seem to be most reliable at this stage.



Figure 11: Mathematical inquiry using dynamic content in CSCL environment
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