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Abstract

Within the MATh project, we develop explanation strategies to help
first year students adapt to unacquainted workflows in university math-
ematics. These strategies are designed and implemented as sets of rules
which are closely tied to the common practice in first year courses. In
order to make the rules easily accessible to beginners it is useful to align
them with commonly known concepts. Notably, the common experi-
ence with creating, continuing and reusing stories in varying situations
turns out to be a promising starting point. We present a story-based
approach for generating and structuring mathematical content within
the MATh language and demonstrate that it entails various mathemat-
ical notions like theorem, set, function, theory and model. Due to this
intimate relation between stories as structuring constructs and associ-
ated mathematical objects, the approach differs from other systems.

1 Stories

According to Wulff [7], the human species is the story telling animal – in the form of stories, we store and retrieve
experiences and stories are a central element in human communication. As participants of the communication
process, we rarely question its underlying rules and mechanisms but it turns out that quite sophisticated models
are necessary to offer explanations (see, for example, [8]). In the end, pinning down the concept of narrative
seems to be quite difficult [9, 10]: as the term narrative is so widespread, its meaning is diffuse and a generally
accepted definition is not readily available. Nevertheless, it is undeniable that important aspects of stories are
to make life experience known, to transport meaning and to offer solution strategies to problems. This is also
reflected in structural aspects of stories: a story typically begins by introducing the main characters and their
basic situations. Within this model world, a certain problem drives the story forward, it leads to a development
of the characters and ends in some sort of resolution of the problem.

Being fundamental units of communication, it is clear that stories are also essential in the mathematical
discourse. Of course, due to the nature of the subject, the characters of mathematical stories are abstract
objects which constitute abstract situations in which development (due to lack of time in the mathematical
world) relies on deductive reasoning to disclose an increasing number of relations among the objects while the
text proceeds. In the end, we can use a mathematical story due to the same reason we can use any other story:
it is the ability to rediscover a story pattern in different situations which share the basic structure (fables and
parables strongly depend on this principle).

Another peculiarity of mathematical communication is the concurrence of different language levels. Natural
language is used on a meta level to talk about the design and structure of mathematical texts which may actually
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be written in a purely formal language. Accordingly, stories appear on both levels but in this article, we focus
on the role of stories in purely formal texts.

Our motivation to consider this aspect evolved out of the MATh project [1, 2, 3, 4] which summarizes different
activities to help first year students adapt to characteristic workflows in university mathematics. In particular,
we try to address questions which are independent of specific content and which are known to cause severe
problems for beginners: How to get similarly acquainted to mathematical objects as to real objects? What is
a good mental model of a variable? How to mentally organize changing goals and intermediate assumptions in
proofs? How to deal with the patterns provided by definitions of notions, sets and functions? How to access
components of theories in concrete cases?

Such questions are regularly addressed in various first year teaching classes at the University of Constance: A
preparatory course for beginning math majors, an alternative study program during the first year with a focus on
mathematical techniques and a lecture on mathematical modeling in the second semester. From the point of view
of story structure, these courses just address writing the essential components: initializing stories is precisely
the subject of the modeling lecture, where problem descriptions have to be translated from meta to formal level
while moving a story forward relies on a good understanding of proof mechanisms which are taught in the other
courses. In order to accompany and illustrate the overall process, we are currently designing and implementing
an authoring tool for writing mathematical stories in the context of first year courses. The latest version of this
tool is regularly used to support the modeling lecture. The experiences gained here drive the development of the
tool and the MATh syntax. This way, the tool is closely tied to the common practice in beginner courses.

The formal MATh language employed in this tool acts as a model to illustrate and to exercise certain me-
chanical aspects of the mathematical workflow. By including the story concept into MATh, the important (and
very frequent) context switching in mathematical texts is represented explicitly with syntactical constructs. In
general, the MATh language has been developed to help students understand the role of formality in creating
comprehensibility and objectivity while staying very close to the object-, proof-, and structuring concepts used
in classical lectures. The language is only used exemplary and not continuously throughout the lectures as we
do not aim at a complete formalization of math education.

In particular, we consider MATh texts as formal skeletons (and not substitutes!) of the less formal mathemat-
ical ”stories” introduced in traditional lectures which address many other levels apart from the naked bones. As
a condensed formal summary of the involved mathematical objects and their interplay, the skeleton is useful to
formulate and explain general rules of ”defining”, ”proving” and ”structuring” mathematical content.

Our goal is reached when students have developed a clear idea of the formal underpinning of mathematics
because this perspective is important to understand why mathematical ideas and strategies are developed and
presented in the way they are. By particularly stressing the role of stories in this approach, we hope to obtain
a representation of mathematical content and functioning in a form which is also systematically transferable
to earlier phases of education. Since operating with stories is a very basic qualification, math education can
start from this point and successively carve out the distinguishing features of mathematical stories as being very
precise in their wording and causal structure with described patterns that are profoundly reusable within other
stories. Along with the growing awareness of this careful interplay of stories, formal notions and mathematical
symbols may be introduced gradually as references to already established components of the story network.

In order to demonstrate the use of stories, we continue as follows: First we present a simple mathematical
model to give an impression how formal stories appear in MATh. Next, we briefly describe how basic mathematical
concepts like variables, quantified expressions, sets and functions naturally arise in connection with stories by
stripping of specific language details and just concentrating on the role of stories. In the following sections,
we present more examples of usages of the story concept in the current MATh syntax. In the final section, we
comment on the appearance of the story concept in other formalizations of mathematics.

2 Models as stories

Creating mathematical models from a problem statement amounts to the introduction of characters in the initial
phase of a story. Working in the model then leads to a development towards the resolution of the problem. In
order to illustrate the concept with a toy problem, we translate the following logical riddle to MATh. Here is the
situation: “Alice claims that Bob is a liar. Bob says: Claire lies. Claire asserts that Alice and Bob are liars.
Who of the three is lying?” In order to capture this initialization phase in a formal text (in MATh such texts
are called (mental) frames), we require names like A,B,C to refer to the persons and by coining the notion person

formally, we can refer to all names at once (note that the colon indicates the membership relation).



frame riddle

given A, B, C : element;

person := {A,B,C};

Next, we want to express that each person claims something about claims of other persons and we would call
a person a liar, if he or she claims something which is false. Denoting the claim of a person p by claim(p),
the function claim maps elements of person to propositions which are treated as representations of truth values
(elements of Bool) in MATh.

given claim : person --> Bool;

The collection of liars can then be introduced as the set

liar := {p:person with claim(p)=false};

Using these linguistic elements, the actual starting point can now be stated in a rather natural form which
completes the definition of the initial state of the frame.

claim(A) = (B:liar);

claim(B) = (C:liar);

claim(C) = (A:liar)/\(B:liar);

end

Subsequently, the story should be driven to a point where the precise relation between the elements A,B,C and
the property liar is disclosed. The required deductive reasoning within the frame is started by extending the
frame dynamically allowing additional definitions of names and proofs of statements (here, however, we skip
proof steps for conciseness which is indicated by the trailing .. claimed expressions; of course, complete proofs
must not contain such steps).

extend riddle

truthTeller := person\liar;

forall p:truthTeller holds claim(p) .. claimed;

B:truthTeller .. claimed;

C:liar .. claimed;

A:liar .. claimed;

end;

While these internal conclusions show that Alice and Claire are lying it does not rule out that the whole story
is flawed by hidden contradictions among the assumptions so that a consistent claim-function may not exist. In
this case, however, no collection of elements outside of the model could satisfy the model conditions in place of
A,B,C and claim provided the outside is free of contradictions. Such a consistency check shows that frames also
have a natural outside perspective in which they appear as a predicate or a set to separate fitting from non-
fitting element combinations. These interrelations between stories and other well known mathematical objects
are developed more generally in the following section.

3 Starting with stories

Obviously, stories can only be formulated if a language is available and since stories come as lists of statements
about some kind of objects it is clear that grammatic rules for the formation of statements and objects are
required which in turn need specific signifiers to indicate different statement and object configurations. Working
in this way, stories can be deconstructed into elementary constituents from which they can later be rebuilt. Here,
however, we voluntarily keep the more elementary parts unspecified and put the story as a whole in the focus
of the exposition. In order to introduce important notions and concepts, we mimic an axiomatic approach with
the following stipulations.

(S1) Stories are named linguistic items created within a parent story. They consist of a sequence of statements
interlaced with name declarations for linguistic items.

According to (S1), stories naturally form a tree structure: if A is the name of the root story and B is the (local)
name of a story in A then the concatenation A.B can be used as a unique global reference. Similarly, if B
contains a local name N , the corresponding global name is A.B.N . Since each story S is based on a lists L of
statements and declarations we will write S = story(L) for the purpose of this section.

(S2) Statements are linguistic items which express relations between linguistic items. They are facts if they are
specifically related to prior facts of the surrounding story.



(S3) Linguistic items are wellformed if they are specifically related to prior facts and items of the surrounding
story.

In practice, the derivation of new facts is regulated by some proof calculus and whether an expression is wellformed
depends on grammatic and maybe semantic rules. Here we just use the consequences to classify stories.

(S4) A story S is factual if all its statements are facts and all its named items are wellformed (we write factual(S)
for this). Otherwise S is called fictional.

(S5) A fictional story S = story(L) is realistic (we write realistic(S)) if it is factual under its hypothesis which
is a leading part hyp(S) of the list L whose statements are treated as facts and whose items are assumed
to be wellformed. Otherwise S is called phantastic.

(S6) Names declared in hyp(S) which do not refer to specific linguistic items are called parameters. It is possible
to replace parameters by well-defined linguistic items from the parent story.

From this classification three basic types of stories emerge which are all realized in MATh. The factual stories
are called paragraphs. Since a paragraph has an empty hypothesis, it just encapsulates facts and proper defini-
tions within its parent story. Paragraphs are used to structure the name space of a story and allow for aside
considerations, similar to info boxes inside a newspaper article.

Next, realistic stories without parameters are called conditions. The hypothesis of a condition just restricts
the objects of the parent story further and thus enables the investigation of special cases (for example the abelian
condition in the group story is based on the commutativity hypothesis on the group operation). To state that
a condition is satisfied, we use satisfied(S) as an abbreviation for factual(story(hyp(S))). In this case, the
whole story turns out to be factual and can thus be viewed as a paragraph.

Finally, realistic stories with parameters are called frames (the parameters of the frame in section 2 are
introduced with the given command). It is to be noted that the parameters are constants within the story
while they appear as variables when the story is used metaphorically from outside. In other words, being a
variable is not a property of an object alone but it is a property of an object and a perspective. In contrast, if
mathematical variables are presented as being variable by themselves, the blurred relation to the well-accustomed
concept of story parameters may explain some of the conceptual difficulties pupils encounter in connection with
the introduction of variables in mathematics.

When we replace the (tuple of) parameters x of a story S by a tuple y of expressions from its parent story,
the frame is transformed into a condition which we denote Sy. If satisfied(Sy) is a fact, the parameters y are
compatible with the hypothesis of S and we call y an example of S (written as isExample(y, S)).

Before we draw conclusions from this basic classification of stories, we want to finish the list by a final rule
which stresses that stories are considered as dynamic entities.

(S7) Stories can be continued.

Taking into account that stories are quite intricate objects, it is not too surprising that they code a lot of well
known mathematical concepts. For example the basic logical connectives of conjunction and implication can
be recovered in the following form: if A and B are statements, the conjunction statement can be formulated
as factual(story([A,B])) while the implication relates to realistic(S) with the condition S = story([A,B])
satisfying hyp(S) = [A].

As already indicated, every frame S gives rise to a predicate isExample(y, S) for linguistic items y in the
parent story which could also be interpreted as set of all examples of S. If an example y of S is used to replace
the parameters of S, every local name N in S turns into (Sy).N which is well-defined in the parent story. In
other words, every declared name in a frame gives rise to a function in the parent story whose domain is given
by the examples of the frame. Similarly, every fact S.F turns into a fact in the parent story once the parameters
of S are replaced by an example y. Thus S.F can be viewed as a theorem and (Sy).F as its application to y. If
S contains a large number of facts, it can be viewed as a theory (a collection of many theorems under the same
premise).

Finally, universal quantification over some statement E depending on a parameter x is obtained in the form
realistic(S) where x is declared as a parameter in hyp(S) and E is the only statement in the conclusion part
of S.

While all our considerations so far apply to possible roles of stories relative to their parent story, similar
relations hold between stories that are further apart in the tree structure. The crucial observation is that



a nested story like S.T again appears with one of the basic story types. For example, if S and T are both
paragraphs, then S.T contains only facts and proper declarations when considered from the parent of S. Thus,
S.T behaves overall like a paragraph in this case. Similarly, a condition S combined with a paragraph appears
like a single condition and any combination of a frame with some other story type remains frame-like. Applying
these considerations recursively, the access to stories which are nested downwards is clarified. Similarly, sideward
access is possible for example from A.B.C to A.D.E. As the parameters of A are shared by both stories (provided
A is a frame), we only have to provide parameters or check conditions of D and E if required to get access to
the named components of A.D.E.

Apart from the obvious usage of stories to structure mathematical content there are some further applications
which are detailed in the following sections.

4 Theories as stories

In section 2 we have seen that frames are natural candidates to formulate mathematical models as renarrations
of non-mathematical problem statements. In fact, many mathematical theories are exactly such models albeit
their origins may be disguised by abstraction. When working with theories, students are often unaware of the
clear distinction between the internal perspective for theory extension and the external perspective for theory
usage which requires instantiation of the parameters. Here, the formal syntax helps because it uncovers steps
which are traditionally treated rather implicitly.

As example, we consider the first steps in the theory of general topology which starts with the story of a
topological space based on a set X together with a family of so called open subsets of X. In the corresponding
frame, several set theoretical notions are used which are defined earlier on. The set operations pow (power set),
union (union of an indexed set family) and dom (the domain of a function) are primitive statements of MATh. For
illustration purposes, we place the definition of a topological space inside a paragraph.

paragraph generalTopology

frame space

given X:set;

given open c= pow(X);

emptyset:open; X:open;

forall F:mapsTo(open) holds union(F):open;

forall F:mapsTo(open) with dom(F):finiteSet holds sec(F):open;

end;

end;

Based on this hypothesis many subsequent notions can be defined and studied. To illustrate such an extension
we present the definitions of closed sets (as complements of open sets in X) and general neighborhoods of points
in X accompanied in each case with a simple theorem (the notation {f(x) | x:M} with a vertical bar refers to the
set of values f(x) with x ranging over M as opposed to the set {x:M with C} which contains all elements of M which
satisfy C).

extend generalTopology.space

closed := {C c= X with (X\C):open};

forall O:open holds (X\O):closed .. directly;

conclude X\(X\O)=O .. see basicSetAlgebra;

compress (X\O):closed;

qed;

nbhood(x:X) := {U | U c= X, O:open with x:O; O c= U};

forall x:X, U,V:nbhood(x) holds sec(U,V):nbhood(x) .. claimed;

end;

In order to check syntax and proofs in practice, the MATh interpreter would be manually invoked in order to
process the current input file as a whole. In doing this, the justification .. see basicSetAlgebra indicates that the
theorem from which the conclusion is drawn can be found in the paragraph basicSetAlgebra defined in the root
story (such hints to the surrounding story of a theorem instead of an explicit reference by name or number are
common practice in mathematics). In the second theorem, we shorten our presentation by employing the pseudo
justification .. claimed which simply accepts the preceeding statement as being valid. Considering university
mathematics from a formal point of view, this is by far the most frequently used justification.

In order to show how theories are used in other stories, we present a simple example which introduces the
discrete topology on the natural numbers.



paragraph example1

dis := (Nat, { {n} | n:Nat});

dis:generalTopology.space .. claimed;

forall n:Nat holds {n}:generalTopology.space.closed(dis) .. claimed;

end

In order to express that the singleton {n} is closed with respect to the discrete topology on Nat, we have to
mention the story and component names together with the assignment of the story parameters. Since space has
two parameters, we provide a pair dis which satisfies the hypothesis of the story when replacing the parameters
in their order of appearance (the statement y:S is the syntactic form of isExample(y, S) in MATh). While
referencing with the fully qualified name is reasonable in case of a single access, it becomes quite awkward if
several references to the same story with the same parameter assignment are used. The following extension of
the example takes care of this point.

extend example1

use generalTopology.space with dis;

Nat:closed .. claimed;

forall n:Nat holds Nat:nbhood(n) .. claimed;

end

With the provided information in the use command, the expression nbhood(n) can be completed to
generalTopology.space.nbhood(discrete)(n) automatically. However, if notions are simultaneously used for different
parameter assignments the binding is dropped as in the following example which uses the discrete and the trivial
topology.

paragraph example2

dis := (Nat , { {n} | n:Nat});

triv := (Nat, {emptyset, Nat});

dis:generalTopology.space .. claimed;

triv:generalTopology.space .. claimed;

use generalTopology.space;

forall n:Nat holds {n}:closed(dis) .. claimed;

forall n:Nat holds not({n}:closed(triv)) .. claimed;

end

The use of such name completion schemes simulates the common practice in mathematics where notions are
adopted from defining stories as long as the use is unambiguous (otherwise parameter references are added to the
ambiguous notions to restore uniqueness). However, the parameter binding often has to be read off indirectly
from comments on the meta level. A typical question type used in oral examinations shows that awareness for
such naming conventions is counted among the basic qualifications. In the present context, one such questions
could be, whether {1} is a closed set in the natural numbers. Since the parameters of the topological space are
not specified, the correct answer should be: this cannot be answered if the open sets are not specified - it would
be true for the discrete but false for the trivial topology, for example. Quite often, however, the answer is simply
yes because students fill the missing parameter with the most usual choice in undergraduate mathematics which
is the discrete topology. To avoid such mistakes, working with a formal system could raise the awareness for the
need of parameter specifications when referring into the name space of frames.

In order to demonstrate the use of conditions, we consider an extension of the topological space by an additional
separation axiom known under the name T0.

extend generalTopology.space

condition T0

forall x,y:X with not(x=y) holds

exists O:open with (x:O; not(y:O));

end;

end;

If conclusions are derived under this condition they can only be used if the condition is satisfied (similarly, access
to named components of T0 is limited by the condition). In MATh we use the convention that the name of a
conditions also points to a Bool value which represents the truth value of the hypothesis. For the first example
it can then be shown that T0 holds.



5 Proof steps as stories

While stories naturally appear when defining structures, they also appear on a smaller scale when proving single
statements about or within structures. Consider for example the proof from the topological space example above:

forall O:open holds (X\O):closed .. directly;

conclude X\(X\O)=O .. see basicSetAlgebra;

compress (X\O):closed;

qed

In this direct proof (initiated by the .. directly justification), the indented proof statements can be seen as the
extension of a (nameless) frame built from the forall-statement, where O:open is the parameter and no additional
assumptions hold. The proof succeeds if the conclusion (X\O):closed is true when reaching the corresponding qed

command.

The same applies for example, for proofs by contradiction, which have the following form: assume not(A);

[statements] hence A. The command assume generates a condition with not(A) as hypothesis while the provided
statements are considered as an extension. The proof succeeds if a contradiction exists before the closing
command. In a similiar way, other proof steps of Gentzen’s calculus of natural deduction can be described in
terms of a story and one or more subgoals which need to be satisfied after the story has been suitably extended
by the user.

6 Background stories

While story definitions give rise to canonically associated objects, also object definitions may be accompanied
by corresponding stories. As an example we consider the definition of the limit of a sequence. Consisting of
four nested quantifications, however, the meaning of the classical convergence condition is difficult to grasp for
beginners and quite some time has to be devoted to the explanation of the concept by giving geometric meaning
to each quantification. In other words, the definition of the limit is a longer story. This structural aspect can be
visualized and accentuated with the syntactic form of the definition in MATh. In the approach presented here,
the starting point is the geometric idea of the limit while the quadruple quantification is derived subsequently
as an equivalent condition.

We start with a sequence a and first detour into the story of a simple decreasing and non-negative sequence.
Here, the infimum is the natural limit which can later be accessed with the function simple.lim in the surrounding
story.

lim for convergent.lim from frame

given a:sequence;

extended by

frame simple

given b:sequence;

b:decreasing;

forall n:Nat holds b(n) geq 0;

extended by

lim := inf(img(b));

end;

Looking back at the sequence a we now compute the radius of the circle around a given number A which contains
all sequence members starting from some index n. This radius happens to shrink as n increases, i.e. it is a simple
sequence. In particular, if the radius shrinks to 0, the sequence is closing in on A so that A becomes a limit
candidate.

radius(A:R)(n:Nat) := sup({abs(a(k)-A) | k:Nat with k geq n});

forall A:R holds radius(A):simple .. claimed;

candidate := {A:R with simple.lim(radius(A)) = 0};

We see here, that the MATh text reproduces only the skeleton of the accompanying more figurative description
in natural language by providing precise definitions of all involved mathematical objects and facts. In particular,
it should not be considered as a substitute of the more prosaic version which is much better in transmitting the
basic idea. It is rather a summary in full precision that also captures the original story structure. Note that this
structure is not completely linear in this case due to the side story related to simple sequences.

Continuing in the definition, we would now show uniqueness of candidates. After that, it all depends on the
existence of candidates to come to the limit of a sequence. This is done in the conditional story convergent and



precisely from this sub-story, the value of the function lim is taken.

!A:candidate .. claimed;

condition convergent

exists A:candidate;

extended by

lim := the A:candidate;

end;

end;

While this definition captures the limit construction in conceivable geometric terms, it is not well suited for
proving convergence of concrete sequences. Therefore, the derivation of the well known ε-characterization would
be the next step. This proof naturally splits into parts associated to the subconcepts simple and convergent so
that extending these stories is very natural. Finally, the full characterization is stated and proved as an extension
of the main story lim.

Of course, from a mathematical point of view, the same steps can be carried out without structuring them
in stories and sub-stories. But there are practical and didactical advantages in using stories. For example, the
notions simple, radius and candidate are used to illustrate the underlying idea but experience shows that conse-
quent proofs are shortened with the characterization of convergence. In such a case, mentioning the geometric
ideas stays important but the short-lived notions should not clutter the name space of the surrounding story.
Similarly, the uniqueness of the limit is a crucial step towards the definition but will not be referenced after-
wards. Encapsulation therefore relieves the name and fact management of the bigger story while keeping the
more specific results and constructions available.

Secondly, the structuring seems to resemble the natural way of thinking about problems. Whenever a construc-
tion requires more thought, we fix the ingredients as given for the whole process which alleviates the definition
of auxiliary objects and facts, because the ingredients can be used without the need of passing them as argu-
ments. Once the construction is finished, the dependence on the general assumptions (a term that is frequently
encountered before lengthy constructions) turns all auxiliary objects into functions of the ingredients.

7 Interfaces as stories

The notation {5,42,11,5} is well established to denote a particular finite set whose meaning depends on the given
data t=(5,42,11,5). More specifically, if the tuple t is considered as a function on the numbers 1, . . . , 4, then
{5,42,11,5} is just the image set of t. In MATh this relation would be written as

{5,42,11,5} = img(5,42,11,5);

Since the construction removes information related to the frequency and ordering of the entries, the set expression
contains more information than the signified set. This may lead to problems in formal proofs compared to informal
ones. For example, the statement that 42 is an element of the set is evident on an informal level because we
can point to 42 as second entry. If we want to copy this strategy in a formal proof, pointing turns into the
statement 42=t(2) about the tuple which, however, is not accessible to us. In order to enable such access to the
inner structure of basic MATh expressions, predefined stories are available which describe the components and
their interplay in a general way. For example, expression.enumerationSet comprises the names indexing and object

where object = img(indexing) holds and the syntax rules ensure that indexing refers to an explicit tuple. The
above mentioned argument can now be carried out in the form

42:{5,42,11,5} .. see expression.enumerationSet with 42=indexing(2);

where the explanation contains enough information to detect a corresponding theorem in the mentioned story.
Employing the usual extension of stories, additional results can be added. For example, if basic results on the
cardinality of finite sets are already available, a result on the upper estimate can easily be attached:

extend expression.enumerationSet

card(object) <= length(indexing) .. claimed;

end

Subsequently, this enables justifications like

card({5,42,11,5}) <= 4 .. see expression.enumerationSet;

In a similar way, extensions of the stories to basic relations and logical connectives allow formulations of alter-
native proof techniques which can be evoked in the justification part of a corresponding proof step.



Another important story which acts like an interface is the root of the story tree. It provides initially available
objects, stories and facts as background for all further stories and therefore appears like a summary of the story
behind the language itself. Before listing essential components of this summary we want to give some comments
on the developments which have led to the current approach. From the very beginning, one of the important
driving forces was the demand for a simple model description language to be used by first year students in
the lecture on mathematical modeling. Since our underlying concept of a model is quite broad (it matches the
concept of a theory in [5] as a structure comprising of a finite number of abstract mathematical objects whose
interplay emerges from a list of axioms) also set theory in the form of ZF, for example, should just appear as
one among many possible models. This approach, however rules out that the language sticks to one particular
theory from the beginning. On the other hand, as has been pointed out in section 3, telling stories about objects
naturally leads to the appearance of functions and predicates (which can also be interpreted as naive sets) and
it does not take long that such derived linguistic items become objects of other stories. These considerations
eventually led to the following design principles (showing that the availability of basic set operations and the
ability to talk about objects essentially coincide):

� The objects of MATh stories are called (naive) elements.

� To allow stories about properties of elements, (naive) sets of elements are considered as elements. Sets must
be subsets of other sets.

� To allow stories about actions on elements, (naive) functions from sets into sets are considered as elements.

� Tuples are considered as functions on initial segments of the natural numbers. To this end, the natural
numbers are considered as a set.

� To allow stories about truth, true and false are elements.

� Stories about the set of all properties of elements from a given set should be possible. This introduces power
sets of sets as elements.

� Stories about the collection of all elements from several sets should be possible. This introduces the union
of a set of sets as elements.

� Talking about the set of functions between two sets should be possible. This introduces corresponding
function sets as elements.

Extending these rules by some inductive properties of the natural numbers, all explicit set theoretic construc-
tions (like the extension to other number ranges) can be carried out. However, it would still not be possible to
tell stories which apply to general collections of elements like the theories of metric or topological spaces because
story parameter must always be limited by some already given set (to avoid Russell-type paradoxes). In order
to allow such general stories, a collection of naive elements is provided in the root story which is large enough
to contain the “usual” sets encountered in a normal math curriculum but small enough to still be usable as a
naive set. It is denoted element and the axiomatic rules ensure that it is closed under the basic set operations
(similar to a Grothendieck universe). Since Nat0 is contained in element, all “usual sets” constructed from the
natural numbers are captured. Altogether, the setup of the root story ensures the following relations for element

which refer to the derived notions set and function:

set := {x:element with x c= element};

Nat0:set; Bool:set;

forall A:set holds (pow(A) c= set; pow(A):set);

forall A,B:set holds (A --> B):set;

function := union(A --> B for A,B:set);

forall A:set holds (A --> element) c= function;

forall S:function with img(S) c= set holds union(S):set;

While this approach definitely suffices to run the modeling lecture and all basic courses, it will reach its limit
once collections bigger than sets are considered as objects of other stories. For example, set is a naive set (as
subset of element) but it is not contained in set itself so that the discrete topology on it could not be considered
as an example of generalTopology.space in section 4.

Of course, one could rewrite the theory for larger sets like pow(element) but apart from being an almost literal
copy it would not prevent the problem for even larger sets like pow(pow(element)).



A possible way out of this dilemma uses the observation, that element is a perfect universe to talk about Nat0

and Bool and all its linguistic consequences as it contains these sets and is adequately closed under set operations.
However, if we start talking about collections which are as big or bigger than element, we enter a new linguistic
universe which behaves like another instance of the root story with the only difference that it also contains
element as a set in the narrow sense. As a consequence, all facts and declarations of the root story can be adoped
to the bigger universe.

To distinguish the different variants of the declarations, we add a tilde symbol as prefix so that ~element is the
universe to talk about element and all its linguistic consequences as it contains this set and is adequately closed
under set operations. Similarly, ~~element would be the universe to talk about ~element and so on. In this way,
the discrete topology on all sets can be formulated in the following way:

paragraph example3

dis := (set, { {S} | S:set});

dis:~generalTopology.space .. claimed;

forall S:set holds {S}:~generalTopology.space.closed(dis) .. claimed;

end

Altogether, the introduction of a restricted selection of elements allows to formulate general stories and in
combination with the idea of meta universes, these stories are applicable to arbitrary naive sets provided they
are considered at a suitable level in the hierarchy of universes.

8 Stories in other formalizations

In the previous sections we have shown that the fundamental story concept is a frequently recurring pattern in
the mathematical workflow and its integration in the MATh system has been demonstrated. In the remaining
part of the paper, we want to investigate how the story aspect is treated in other approaches which deal with the
formal representation of mathematical knowledge, ranging from automatic and interactive theorem provers (like
Isabelle[12], IMPS[15], Coq[13] and Mizar[11]) to general knowledge representation frameworks like MMT[14].

What almost all the different systems have in common, is that they allow grouping knowledge into (mostly
named and possibly nested) modules. In [6], such module systems1 and their possible properties are described in
a very general way together with actual realizations in concrete systems. Therefore [6] constitutes a perfect basis
for comparing MATh to other languages in terms of their realization of story-based concepts. In the following,
we strongly refer to the terms and concepts mentioned in this paper. However, comparing MATh to all other
languages in terms of all aspects mentioned in [6] would go beyond the scope of this paper. Thus, we only do a
comparison in terms of some key features of common module systems.

The modules have different names in different languages and slightly differ in their characteristics. Their basic
ideas, however, remain the same across different systems. For now, we want to refer to modules as theories, as
they are called for example in IMPS and MMT.

Theories can be seen as the story equivalent in module systems. A theory usually consists of a list of
declarations. From a story-based point of view, a declaration can be seen as the introduction of a new named
linguistic item. In a declaration, names that have been declared earlier can be used so that a declaration can
also express relations between linguistic items. Both properties conform to the structure of a story as described
in section 3.

From a module system’s point of view, a MATh-story also consists of a list of (not necessarily named) decla-
rations. This is justified by mathematical practice, where one usually doesn’t want to name every statement or
proof.

In MATh, the continuation property of stories is covered by the extension mechanism. It allows to re-enter an
already started story and continue it by adding conclusions using the declarations made in the earlier part of the
story. The concept that comes closest to this continuation mechanism in other module system are imports. An
import allows to add all (or some) declarations of one theory to another one. Importing a story S into another
one and using the imported declarations to create new declarations can be interpreted as continuing the original
story.

The other way round, the extension of a story S in MATh can be considered as the definition of a new story
which immediatly imports S. In contrast to other systems, this newly created story is unnamed. This reflects
common mathematical practice. When proving a conclusion in an already defined concept, it is common to

1In [6], a module system is defined as ”formal language that provides constructs to express high-level design patterns such as
namespaces, imports, parametricity, encapsulation, etc.”
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Figure 1: Some important story concepts and their closest counterparts in different systems

refer to this extended concept by the same name. As a drawback, this approach enforces a lot of implicit
import handling. When refering to a story S, we in fact refer to an implicitly constructed story which imports
all extentsion of S, which are currently in scope. This again means, that an extension of S imports all other
extensions of S currently available. Since all these extensions are unnamed, this procedure raises a lot of potential
name clashes which are resolved based on qualified names using the file names of the respective extension as
qualifiers. This approach strongly emphazises the dynamic aspect of creating stories, whereas in other systems
stories are rather static objects (but allow a more finely grained access to different versions of the same story).

Maybe the most important aspect of mathematical stories is their external reusability. One of the most natural
mathematical actions is to apply some abstract situation to a concrete one (that’s what abstract definitions are
made for), e.g. by applying a theorem to some arguments or constructing a concrete topological space and exploit
its theorems.

To realize this kind of external applications of stories, there are different mechanisms available in different
systems. One very universal approach is the view (as called in MMT) or interpretation (as called in Isabelle
or IMPS[16]). A view from a theory S into a theory T maps the declarations of S to expressions over T while
preserving some structural properties. This view then is a toplevel object itself and can be used to access the
mapped declarations of S. Speaking in terms of stories, a view is similar to rewriting a story with new characters
instead of the old ones and storing the result as a new story.

In MATh, views don’t exist as independent concepts, but are implicitly available. Consider a story T, in which
we declare some list of objects y which satisfies y:S. Then y induces a view from S to T which in the declaration
of S maps (recursively) all parameters of S to the entries of y. This view cannot be accessed as a whole, but if
N is a name declared in S the declaration by the view can be accessed by S.N(y). This reflects mathematical
practice, where views are usually not called by a name, but occur implicitly all the time. In conclusion, we see
that several story-based language concepts of MATh overlap with established and well understood approaches
for structuring mathematical content (see also Figure 1). Despite this overlap, there are also notable differences.
According to [17], most systems support either stratified or integrated grouping constructs. In that respect, our
approach appears to deviate since object and module level are strongly intertwined in MATh where, generically,
each object is related to a story and each story gives rise to an associated object.

At the same time, the story-based approach is very useful to explain recurring patterns in mathematical
practice to beginners. Since stories are closely connected to the concepts of variables, sets, functions and
theories, and since working in story networks highlights the important (and very frequent) context switching in
mathematical texts, the concept may serve as a fundamental building block in math education which could be
used (with varying degree of formality) at all levels of math education.

Finally, the dynamic structure of stories in MATh enables a sequential and incremental generation of theory
networks which can be organized similar to standard text books: The main explanatory route is supplemented
by sideline considerations which are developed as they are needed to a degree which just suffices to continue the
main argument. Such mutually depending developments of theories are important for beginners as they illustrate
the use of auxiliary structures and results while working on a more specific goal.

In our opinion, the versatility of the story concept is very interesting and deserves further investigations.
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