
CICM’20 Systems Description

Here we will put the consoldated list of authors

And here the consolidated list of institutes

Abstract. This paper gives an overview of new tools and improvements
of existing tools in the CICM domain.



ELPI

Enrico Tassi, INRIA Sophia-
Antipolis
Claudio Sacerdoti Coen, Uni-
versity of Bologna

Tool: ELPI (v1.1)
Impl. in: OCaml
License: LGPL v2.1
Download:
https://github.com/LPCIC/elpi

Description ELPI (Embedded Lambda-Prolog Interpreter) is an implemen-
tation of an Higher Order Constraint Logic Programming Language that adds
constraints and constraint handling rules to the λProlog interpreter. It is par-
ticularly well suited for the implementation of interactive theorem provers, type
checkers, elaborators and translations between type systems or logics. It is imple-
mented in the OCaml language in order to be easily integrated as an extension
language into existing tools implemented in OCaml, like the Coq, Matita or
HOL-light theorem provers. ELPI is almost completely backward compatible
with Teyjus — the reference λProlog interpreter — but it adds new built-ins
and an API to easily implement additional built-ins in OCaml, like stores that
persist during backtracking.

Compared to the standard implementations of λProlog that try to optimize
reduction, ELPI implements reduction naively, but it manages to avoid reduction
at all in many frequently occurrent patterns [1].

Applications The ELPI tool has been used so far to implement a type-checker
for the Grundlagen, an elaborator for the Calculus of Constructions and a pro-
totype for a constructive version of HOL [2]; it has been used in the ProofCert
project; finally it has been turned into a plug-in for Coq that allows to embed
ELPI code in Coq scripts to implement tactics and to automatically generate
definitions and proofs from declarations of inductive types.

The advantages of using ELPI to implement elaborators and interactive
provers is that management of bindings, capture avoiding susbtitutions and
α-conversion can be delegated to the meta-language (like in λProlog) and, in
addition, existential variables that represent unknown terms/proofs can also be
identified with the existential variables of the meta-level. The constraint pro-
gramming extensions of ELPI are then used to impose typing constraints on the
future instances of the meta-variables.

Changes from previous version ELPI v1.1 changes the semantics of con-
straint propagation rules to conform to the “revised operational semantics” of
CHR, fixing a previous bug. A few API changes break backward compatibility
with OCaml code that embeds ELPI. Finally the halt builtin is now able to
report an error message to the calling program or to print it on the screen in
case of interactive use.

https://github.com/LPCIC/elpi


References

1. Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI:
fast, Embeddable, λProlog Interpreter. In Proceedings of LPAR, 2015.

2. Cvetan Dunchev, Claudio Sacerdoti Coen, and Enrico Tassi. Implementing HOL in
an Higher Order Logic Programming Language. In Proceedings of the Eleventh
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice,
LFMTP ’16, pages 4:1–4:10. ACM, 2016.


	CICM'19 Systems Description
	Here we will put the consoldated list of authors

