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Motivation

Why would we want to “rescue” an old library?

• Useful mathematical knowledge (historical)
• Interoperability (practical)



Motivation

Why would we want to “rescue” an old library?

• Useful mathematical knowledge (historical)
• Interoperability (practical)



A closer look at LUTINS



The basics of LUTINS

LUTINS1 is the underlying logic of the IMPS theorem prover,
both of which were developed in the 1980s and 1990s at the
MITRE Corporation.

The name is shorthand for Logic of Undefined Terms for Inference
in a Natural Style.

LUTINS is a version of simple type theory. More specifically it is
a modified version of the H-A system by Henkin and Andrews
which in turn is a variant on Church’s simple theory of types.
As the name implies, it supports:
• Non-denoting terms & partial functions.
• Subtyping
• n-th order reasoning ∀n ∈ N+

1pronounced as in French
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Sorts, Types and Kinds (1)

A language in LUTINS contains two kinds of objects: sorts and
expressions. Let the set of sorts of a language L be called S. It is
generated inductively from a finite set A of atomic sorts like so:
• Every α ∈ A is in S.
• If α1, . . . , αn (n ≥ 1) all are in S, then [α1, . . . , αn+1] is in S.

The latter class of sorts is called compound sort, denoting the
domain of n-ary functions from α1, . . . , αn into αn+1. Currying is
not required. Taking functions is the only type-forming operation
in LUTINS.

Sorts may overlap, but they cannot be empty.



Sorts, Types and Kinds (2)

Each sort is also assigned a unique enclosing sort by L. This gives
rise to a partial order � on S with the following properties:

• If α ∈ A and β is the enclosing sort of α, then α � β.
• α1 � β1, . . . , αn � βn iff [α1, . . . , αn] � [β1, . . . , βn]
• If α, β ∈ S with α � β and α is compound, then β is also

compound and has the same length as α.
• For every α ∈ S, there exists a unique (!) β ∈ S s.t. α � β

and β is maximal with respect to �.

A sort that is maximal in relation to � is called a type.

Sorts are divided into two kinds, ∗ and ι. A given sort α is of kind
∗ if either α = ∗ or α is a function sort into ∗. In all other cases α
is of kind ι. This includes all atomic sorts except ∗ itself.
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Sorts, Types and Kinds (3)

An elaboration on subtyping:

If σ0 � τ0, while σ1 � τ1, then [σ0, σ1] � [τ0, τ1].

In particular, it contains just those partial (and total) functions
that are never defined for arguments outside σ0, and which never
yield values outside σ1. Note that this makes subtyping in IMPS
covariant, not contravariant as in settings with total functions.

A common subtyping hierarchy would be, for example:

N � Z � Q � R � ι



Constructors (1)

Constructors in LUTINS are logical constants and can be used to
form compound expressions.

They are not part of any special language or scope, but rather are
available everywhere. However, it is not possible for a user, to
extend the logic with new constructors themselves.



Constructors (2)

The constructors in LUTINS are:

Constructor Mathematical Syntax
the-true T
the-false F

not ¬ϕ
and ϕ1 ∧ · · · ∧ ϕn
or ϕ1 ∨ · · · ∨ ϕn

implies ϕ ⊃ ψ
iff ϕ ≡ ψ

if-form if-form(ϕ1, ϕ2, ϕ3)
if if(ϕ, t1, t2)



Constructors (3)

The constructors in LUTINS are (cont.):

Constructor Mathematical Syntax
forall ∀v1 : α1, . . . , vn : αn, ϕ

forsome ∃v1 : α1, . . . , vn : αn, ϕ

lambda λv1 : α1, . . . , vn : αn, t
equals t1 = t2
apply f (t1, . . . , t2)
iota ιv : α,ϕ

iota-p ιpv : α,ϕ
is-defined t ↓
defined-in t ↓ α
undefined ⊥α



Quasi-Constructors (1)

LUTINS also sports quasi-constructors that function almost like
regular constructors but are definable by the user. This allows
uncomplicated extension of the logic.

Once a quasi-constructor is defined, it is available in every theory
whose language contains the quasi-constructor’s home language.
They are implemented as “macros” that are automatically
expanded by the system.



Quasi-Constructors (2)

Examples:

Quasi-Constructor Schema
quasi-equals (E1 ↓ ∨E2 ↓) ⊃ E1 = E2

total? ∀x1 : α1, . . . , xn : αn.f (x1, . . . , xn) ↓
domain λx1 : α1, . . . , xn : αn.f (x1, . . . , xn) ↓

nonvacuous? ∃x1 : α1, . . . , xn : αn.p(x1, . . . , xn)
... . . .



Quasi-Constructors (3)

An actual user-defined example:

(def-quasi-constructor I-SUBSETEQ
"lambda(a,b:sets[uu], forall(x:uu,

(x in a) implies (x in b)))"
(language indicators)
(fixed-theories the-kernel-theory))

QCs are actually polymorphic. The sort uu above is not fixed, but
could be replaced by any sort.
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The ι operator (1)

LUTINS features a definite description operator, also called ι.
Terms of the form

ι x : α . ϕ

denote the unique x of sort α that satisfies the predicate ϕ, if
there is one. If there isn’t, the term is undefined.

Examples:

(ι x : R . x · x = 2) // undefined!

(ι x : R . 0 ≤ x ∧ x · x = 2) // sqrt(2)

(λ x , y : R . (ι z : R . x = z · y)) // real division

// from multiplication
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Undefined Values & Partial Functions

The stated goal of IMPS and LUTINS is to allow for reasoning
that is very close to mathematical praxis. This means that there
needs to be a way to deal with partial functions and undefined
values since these are popular in chalk-and-whiteboard
mathematics.

For example, all of the following terms are undefined in the
standard theory of arithmetic over the reals:

5
0

√
−3 ln(−4) tan

(
π

2

)



Undefined vs. Non-denoting

There’s a subtle difference between a term that is “undefined” and
one that is “non-denoting”.

According to Farmer, a term in undefined if is not assigned a
“natural” meaning (e.g. 5

0) and non-denoting if it is not to be
assigned any meaning at all.

Often an undefined term is also non-denoting. But it can still have
a denotation. In particular, an undefined term of type ∗ still has a
denotation (namely False).



Dealing with undefined values

There’s multiple ways of dealing with undefined terms / partial
functions, each with their own advantages and difficulties:

• Error Values
• Non-existent values
• Many-sorted Logic
• Total functions with unspecified values
• Partial valuation for terms and formulas
• Partial valuation for terms but total valuation for formulas

(this is used in LUTINS)



Partial valuation for terms but total
valuation for formulas (1)

In LUTINS, there’s two rules that are added to the standard
valuation rules:
• A term denotes a value only if all subterms denote values.
• An atomic formula is false if any term occurring in it is

non-denoting.

This ensures the logic stays two-valued and corresponds most
closely to mathematical practice.

Drawbacks: Not as flexible as nonexistent values, not suitable for
nonstrict functions without another approach in conjunction.
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Partial valuation for terms but total
valuation for formulas (2)

Examples:

• x + 1
x and

(
1
x

)2
do not have values if the value of x is 0.

• If ϕ′ is the result of replacing
(

1
x

)2
with 1

x2 in ϕ, then ϕ and
ϕ′ are equivalent regardless of the value of x .
• The equation

√
x = 2 over R is true for x = 4 and false

everywhere else, even for x < 0.
• x = z

y ⊃ x · y = z is valid without restrictions on y .

. . . all of which seems sensible.
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The IMPS system:
LUTINS in context



IMPS (1)

IMPS (short for “Interactive Mathematical Proof System”) is an
interactive theorem prover developed by William Farmer, Joshua
Guttmann and Javier Thayer from 1990 to 1993. It was one of the
influential systems in the era of automated reasoning.

One of the goals in developing IMPS was to create a mathematical
system that gave computational support to mathematical
techniques common among actual mathematicians.
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IMPS (2)

The development of the IMPS system has been heavily influenced
by three insights into real-life mathematics:

• Mathematics emphasizes the axiomatic method.
• Many branches of mathematics emphasise functions, including

partial functions. Moreover, the classes of objects studied may
be nested.
• Mathematical proofs usually employ a mixture of both formal

inference and computation.
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Theories (1)

“The theory is the basic unit of mathematical knowledge in IMPS.”

A theory T in LUTINS is based off a language L, but also
incorporated additional sentences (in L). These sentences are
collectively called “axioms”, but need not be without proof or
witness.
Theorems, for example, are also counted under this umbrella, as
are a variety of other constants that can be added to a theory.

The handy catch phrase here is:

Theory = Language + Axioms



Theories (2)

(def-language MONOID-LANGUAGE
(embedded-languages h-o-real-arithmetic)
(base-types uu)
(constants
(e "uu")
(** "[uu,uu,uu]")))

(def-theory MONOID-THEORY
(component-theories h-o-real-arithmetic)
(language monoid-language)
(axioms

(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu, x**(y**z)=(x**y)**z)" rewrite)

(right-multiplicative-identity-for-monoids
"forall(x:uu,x**e=x)" rewrite)

(left-multiplicative-identity-for-monoids
"forall(x:uu,e**x=x)" rewrite)

("total_q(**,[uu,uu,uu])" d-r-convergence)))



Theory Interpretations

IMPS also supports the concept of a theory interpretation. A theory
interpretation is a mapping from one theory into another theory
with the additional property that theorems are mapped to
theorems.

Example:

(def-translation MONOID-THEORY-TO-ADDITIVE-RR
(source monoid-theory)
(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs

(uu rr))
(constant-pairs

(e 0)
(** +)

(theory-interpretation-check using-simplification))



OMDoc
OMDoc (short for Open Mathematical Documents) is a
semantics-oriented markup format for STEM-related documents
extending OpenMath.

OMDoc/MMT brings with it three distinct levels for expression of
(both formal and informal) mathematical knowledge, structurally
similar to IMPS:
• Object Level

Expressions (e.g. terms and formulae) expressed in OpenMath.
• Declaration Level

Constants (functions, types, judgements) with an optional
(object-level) type and/or definition.
• Module Level

Theories and Views; sets of declarations that inhabit a
common namespace and context.
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MMT

The OMDoc/MMT language is
used by the MMT system,
which provides an API to handle
OMDoc/MMT content and
services such as type checking,
rewriting of expressions and
computation, as well as
notation-based presentation of
OMDoc/MMT content and a
general infrastructure for
inspecting and browsing
libraries.

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC
f2h

add

mult

folsem

mod



Formalisation of LUTINS in MMT



LUTINS in MMT (1)

To formalise LUTINS in MMT, we use the logical framework LF,
which provides a dependently typed lambda calculus with the
following features:

• Two universes type and kind with type:kind
• Dependent function types ∏

x :A
T (x)

Dependent function types are inhabited by lambda expressions
λx : A.t(x) (in LF-syntax: [x:A]t(x)). The usual rules in a
lambda calculus (extensionality, beta-reduction, . . . ) hold.



LUTINS in MMT (2)

To capture the primitives of LUTINS, we declare:
• a new LF-type tp:type, which serves as the universe of

maximal IMPS-sorts,
• a function sort : tp → type, and
• a function exp : {A : tp} sort A → type.

Given some maximal IMPS-sort A, the type sort A then serves as
the LF-type of all IMPS sorts, and given a sort a : sort A, the
type exp A a corresponds to the LF-type of all IMPS-expressions
of sort a.



LUTINS in MMT (3)

For propositional judgements (i.e. axioms and theorems) in IMPS,
we use the judgements-as-types paradigm by introducing an
operator thm : exp bool → type, assigning to each proposition
a type which we can think of as the “type of proofs” for that
proposition.

Correspondingly, we consider a proposition A to be “true” if the
type thm A is inhabited. Axioms, for example, correspond to
undefined constants of type thm A.



The translation process
from MMT to OMDoc
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Future Work and Intranslatables



Hand-rolled: QuasiConstructors

Quasi-constructors in IMPS are polymorphic, but their internal
representation relies on the language of an underlying theory (in
lieu of having an extra language just for this). There is no internal
representation of a polymorphic expression that could be exported.

Based on that and the fact that there are < 60 quasi-constructors
total (and additions to that list are unlikely), we decided it would
be easier to write the LF-implementations by hand.
We also experimented with immediate expansion, but that led to
huge, unhelpful terms.



Missing: Flexary functions (1)

Many (quasi-)constructors like and or total are actually flexary in
LUTINS, but since LF does not support flexary terms, we have to
approximate with taking one or two arguments at a time.

Example:

p1 and p2 and ... and pn // ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn

and : exp bool → exp bool → exp bool # 1 ∧ 2 prec 30



Missing: Flexary functions (2)

Example (cont.):

total? (f , [β1, . . . , βn+1])

/T Predicate for checking a function for totality.

total : {A,B,α:sort A,β:sort B} exp (a⇒ b)→ exp bool

= [A,B,a,b,f] ∀[x : exp a] (f@x) ↓

There is a version of LF that would support these, called LFS
(short for LF + Sequences), which could support flexible arities.
We hope to transport the implementation of LUTINS to LFS in
the future.
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Missing: Proofs

IMPS has a proof system that relies on a deduction graph (with
inference and sequent nodes.). The user manipulates this graph via
proof commands.

However, IMPS does not save the proof scripts internally in a
structured way. Hence, we currently only “translate” proofs as
opaque data from the sources.

In the future, we hope to formalise (parts of?) the IMPS proof
system in LF also and gain at least partial verification of the proofs
from the source code.



Thank you for your attention!
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