
Submitted to:
ThEdu’16

c© W. Neuper
This work is licensed under the
Creative Commons Attribution License.

Rigor of TP in Educational Engineering Software

Walther Neuper
IICM, Institute for Computer Media, University of Technology. Graz, Austria

wneuper@ist.tugraz.at

The discipline of Computer Theorem Proving (TP) distinguishes itself by formal rigor in doing math-
ematics in various application domains [1]. This short paper is, however, not on TP but on educational
software based on TP components. Such software promises advantageous features [7] some of which are
demonstrated by a prototype [3] called Isac. Isac is based on the TP Isabelle [2] and generates dialogues
similar to interaction with chess software: moves in chess are considered as rigorous formal as steps
in calculations are when solving problems in engineering disciplines. Isac checks input of students by
use of Isabelle’s automated provers, which in turn are provided with necessary logical context by Lucas-
Interpretation [6]. This interpreter also allows to propose next steps towards a solution, so roles can be
arbitrarily switched between student and system.

This paper reports work in progress in cooperation with universities of applied sciences in Austria.
The work concerns a feasibility study on how Isac could serve in engineering education at these univer-
sities. Since Isac has been designed for “pure” mathematics, the study encounters several challenges.
Below one running example presents three major challenges for discussion; the example is from [9] and
slightly changed for reasons discussed in §2:

Given is a system with two oscillating masses, m = 2 kg, connected by linear springs with
length l0 = 0.3 m and damped with d = 0.4 Ns

m as shown in Fig.1. The respective spring con-
stants are c1 = 0.11 N

m and c2 = 0.22 N
m . The masses are located such that x1 = x2 = 0 with

relaxed springs; initially the masses are dislocated with x1 = x2 = 0.05 m and have velocities
v1 = 0.1 m

s and v2 = 0.2 m
s respectively. The right mass is excited by force F = 0.6sin(3t) N.

Change the given spring constant c2 such that the left mass becomes a vibration absorber for
the right one (i.e. make the masses oscillate in opposite directions such that the system shows
no vibration to the outside).

Figure 1: System with two oscillating masses c©W.Steiner 2015 [9]

A solution for c2 involves modelling the system and comprises several sub-problems: determine the
differential equation, solve the homogeneous part, determine the particular solution for F and finally
calculate c2. Below we start with the first subproblem and demonstrate the first challenge raised by
geometric descriptions typical for modelling physical systems.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 TP-based Educational Software

1 Formal Specification and Geometric “Intuition”
A formal specification in the sense of [4] makes the input Given and the output Find to a system’s model
explicit as shown below; it restricts input by a pre-condition Where and relates input with output by a
post-condition Relate. The first subproblem of the running example is formally specified as follows:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:

2111 Model:
21111 Given: Masses m = 2 kg, Length l0 = 0.3 m, Consts {c1 = 0.11 N

m , c2 = 0.22 N
m}, Damper d = 0.4 Ns

m
21112 Where:
21113 Find: Matrixes {M(m), D(d),C(c1,c2)}, DiffEq M · ẍ+D · ẋ+C · x = F
21114 Relate: ∃x. ∀t. t > 0⇒M · ẍ+D · ẋ+C · x = F
2112 References:
212 Solution:

The Problem in line 21 is named such, that a reference into Isac’s knowledge base is given 1. The other
References addressed by line 2112 point to a theory, which imports language elements like ẍ, and to a
method which can create a Solution, are collapsed here (as well as the pre-conditions in Where). The
notation M(m) establishes a literal connection between Given and Find; the notation is up to discussion.
The post-condition in 21114 comprises an ∃ not relevant for engineers and might be omitted.

In interactive construction of a Solution the challenge for students is to relate forces, for instance

mẍ1 =−Fc1 +Fc2−Fd1, mẍ2 =−Fc2−Fc3−Fd2 +F(t)

And for the task of relating the forces, figures like Fig.2 are used to capture coordinates and forces. Now
the problem with Isac’s design is, that such figures capture relations in a precise representation, but this
representation is geometric, not formal — and Isac is designed to work with formulas (which would be
clumsy in capturing geometric structure here), which can be handled by Isabelle’s components in the
background. So the section’s headline advocates “intutition” as opposed to formal specification.

Figure 2: Forces on the oscillating masses c©W.Steiner 2015 [9]

Such figural representations are used frequently and in different engineering disciplines, not only in
mechanical engineering. So efforts seem well invested to tackle this design challenge, to sustain Isac’s
claim to be a “system that explains itself” and to develop a generally usable component for that purpose.

Such a component shall allow to add coordinates, arrows and associated identifiers at certain posi-
tions in a figure. This component also shall provide feedback automatically generated from a formalisa-
tion, which has been prepared for each example by Isac’s math-authors. Generation of figural represen-
tations like Fig.2 shall become another duty of math-authors (while managing interaction is concern of
the component).

1http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html

http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html


W. Neuper 3

2 Learning by Switching Levels of Abstraction

Learning to comprehend abstraction requires experiencing a multitude of concrete examples — a fact
experienced in the practice of education in general, not only in engineering education and with abstract
models in mechanics. Mathematical abstractions, like differential equations, however, have an advantage:
they can be computed with concrete values, they even can be dynamically simulated given such values.

Another characteristics of complex learning processes, like comprehension of abstract models, is
that they succeed not in one go. Learning happens in phases in the brain, which usually are separated
by latency periods – and these cannot be planned from outside an individual brain; so, a lecture on the
behaviour of two oscillating masses (e.g. [9].p.122–129) is only a part of respective learning processes.

So, how to cope with these challenges in learning to comprehend abstraction? Good old LATEX
provided wide margins for personal notes in papers and textbooks again and again; interactive media can
do better nowadays, if they are designed appropriately. And it appears obvious: the more such media
cover the process of problem solving, the better. Isac claims to cover the whole process; §1 showed, how
problem specification is covered by Isac. Below is shown, what else can be done.

Include creation of models into concrete examples as done with the running example: The problem
statement on p.1 contains a concrete request for a particular value of c2 (below folded into Specification
in order to save space) — nevertheless the Solution should comprise the creation of the underlying ab-
stract model as follows:

. Problem [absorber, 2-mass-oscillator]
1 Specification:
2 Solution:
21 Problem [determine, 2-mass-oscillator, DiffEq]

22

(
m 0
0 m

)
ẍ+

(
d 0
0 d

)
ẋ+

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F

)
23 Problem [solution, 2-mass-oscillator, homogen, DiffEq]

24 x(t) =
(

1
1

)
(A1 cosω1t +B1 sinω1t)+

(
1
−1

)
(A2 cosω2t +B2 sinω2t) ,

25 Problem [particular, solution, 2-mass-oscillator, DiffEq]

26 x1(t) =
(

0
a1

)
sinΩt, x2(t) =

(
0
a2

)
sinΩt, a1 =

F0c2
(c1+c2−mΩ2)2−c2

2
, a2 =

F0(c1+c2−mΩ2)

(c1+c2−mΩ2)2−c2
2

27 Problem [complete, solution, 2-mass-oscillator, DiffEq]

28 x(t) =
(

1
1

)
(A1 cosω1t +B1 sinω1t)+

(
1
−1

)
(A2 cosω2t +B2 sinω2t)+

(
0
a1

)
sinΩt,

a1 =
F0c2

(c1+c2−mΩ2)2−c2
2
, a2 =

F0(c1+c2−mΩ2)

(c1+c2−mΩ2)2−c2
2

29 Problem [compute, spring]
2a c2 = 1.2345 N
. c2 = 1.2345 N

Since above the modelling process is included into the Solution, students are enabled, not just to
advocate some formula from somewhere (which seduces to use formal models without understanding).
A student can regard the (sub-)Problems as black-boxes, of course (if not forced by Isac’s dialog guide
to actively do the step). But Isac is designed to elicit experimentation, for instance to experiment with
different input values to a problem in order to approximate a solution by trial and error. Since solving
the above problem with trials soon turns out hopeless, a student might be motivated to make the sub-
Problems white-boxes, look into them, study details and to rework creation of the abstract model.



4 TP-based Educational Software

Switch levels of abstraction: In the above calculation the concrete result c2 = 1.2345 N was possi-
ble, because the Specification contains the concrete values given on p.1, which were input at the
beginning of the calculation:
. Problem [absorber, 2-mass-oscillator]
1 Specification:
2 Solution:
21 Problem [determine, 2-mass-oscillator, DiffEq]
22 [2ẍ1 +0.4ẋ1 +3.3x1−0.22x2 = 0, 2ẍ2 +0.4ẋ2−0.22x1 +3.3x2 = 0.6]
23 Problem [solution, 2-mass-oscillator, homogen, DiffEq]
24 [x1(t) = 0.05e−0.1t(cos0.81t +3.85sin0.81t),

x2(t) = 0.05e−0.1t(cos0.81t +3.85sin0.81t)]
25 Problem [particular, solution, 2-mass-oscillator, DiffEq]
26 [x1(t) =−0.05e−0.1t0.59sin1.69t, x2(t) = 0.05e−0.1t0.59sin1.69t]
27 Problem [complete, solution, 2-mass-oscillator, DiffEq]
28 [x1(t) = 0.05e−0.1t(cos0.81t +3.85sin0.81t−0.59sin1.69t),

x2(t) = 0.05e−0.1t(cos0.81t +3.85sin0.81t +0.59sin1.69t)]
29 Problem [compute, absorber]
2a c2 = 1.2345 N
. c2 = 1.2345 N

Note that above also intermediate results are numeric values (copied from a Mathematica notebook):
both representation, symbolic and numeric, have their advantages: the first tells about the structure of
the model, the latter tells about concrete results (which can be observed in dynamic simulation of the
enclosed differential equations, ultimately, see [5]).

Switching between symbolic representation and numeric representation can be done by computer
software: this novel feature seems of utmost importance for learning, so it shall be included to Isac
within the next development phase. Realisation requires to extend Isac’s Lucas-Interpreter [6] such that
the interpreter’s environment not only takes identifier-value pairs, but associates identifiers with lists of
values.

Both design features together, the feature to include models into concrete examples and the feature
to switch levels of abstraction, lead to radically new learning scenarios
• The student is offered to review the construction of the abstract model any time (every example

concerning, for instance, the two-mass-oscillator includes the respective model: this is accom-
plished by copy& past for some sub-problems in the respective program [8]).

• The student is not bothered by unwanted details: he or she can skip in a calculation whatever steps
they want to (if the dialog [8] allows to do so, which would not be the case in exams, for example).

• Even students of introductory courses can be offered to look into advanced examples like the
two-mass-oscillator under consideration: the dialog jumps to some subproblem in the calculation,
which is up to exercise in the course (e.g. differentiation, equation solving, etc). Then the student
interactively works on the respective subproblem, and if the problem is solved, the system finished
the calculation automatically. This way questions like “What for do we learn this method” are
anticipated in an unobtrusive way.

3 Formal Deduction and Physical Arguments

Isac is designed such that a student can rely on the system, that wrong steps in a calculation are rejected
reliably. From the assumptions (the input in Given and the pre-conditions in Where) the steps are



W. Neuper 5

formally deduced such that finally the post-condition (partially represented in Relate) can automatically
be proven; for details see [6].

Now, in §1 we encountered an example, where essential assumptions are given by geometric struc-
tures (arrows as forces in a figure) and not by formulas. So it seems straight forward, to add informal
arguments to the steps of formal deduction. We come back to this sub-Problem and proceed from the
Specification (folded in below) to the Solution:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:
212 Solution:
2121 forces of springs
2122 [Fc1 = c1x1, Fc2 = c2(x2− x1), Fc3 = c1x2]
2123 forces of dampers
2124 [Fd1 = dẋ1, Fd2 = dẋ2]
2125 mass times acceleration equals sum of all forces
2126 [mẍ1 =−Fc1 +Fc2−Fd1, mẍ2 =−Fc2−Fc3−Fd2 +F ]
2127 Substitute [Fc1,Fc2,Fc3,Fd1,Fd2]
2128 [mẍ1 =−c1x1 + c2(c2− x1)−dẋ1, mẍ2 =−c2(c2− x1)− c1x2−dẋ2 +F ]
2129 Rewrite Set normalise
212a [mẍ1 +dẋ1 + c1x1− c2(x2− x1) = 0, mẍ2 +dẋ2 + c2(x2− x1)+ c1x1 = F ]
212b switch to vector representation

212c

(
m 0
0 m

)(
ẍ1
ẍ2

)
+

(
d 0
0 d

)(
ẋ1
ẋ2

)
+

(
c1 + c2 −c2
−c2 c1 + c2

)(
x1
x2

)
=

(
0
F

)
22

(
m 0
0 m

)
ẍ+

(
d 0
0 d

)
ẋ+

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F

)
Above the numbers at the left do not belong to an Isac calculation, they are for referencing only. In the
middle there are the formulas of the calculation (with tree-like indentation). On the right there are the
justifications for the formulas.

In the lines 2127 and 2129 above there are tactics which contribute to formal deduction in the
Solution. But the lines 2121, 2123 and 2125 do not contribute to the formal semantics, they are
arguments addressing intuitive understanding of physical aspects of modelling. In line 212b there is
even a non-physical argument, useful just for structuring the calculation.

The two latter kinds of arguments are not contained in Isac’s original design. But now requirements
analysis suggests to extend Isac’s programming language with an additional tactic for textual arguments;
this extension seems simple. For details, how Isac guides the student during step-wise construction of a
calculation and how this guidance is generated automatically, see [8].

Conclusions

The paper demonstrated examples from mechanics in order to show, that Isac’s original design is appro-
priate for education also in engineering disciplines. Requirements analysis in cooperation with experts in
engineering education identified additional requirements, which appear realizable with reasonable effort
due to TP’s power. In particular, Isac as a prototype for TP-based educational systems seems ready for
the following three extensions, which have been introduced in §1, §2 and §3 respectively:

1. An interactive graphics-component for input of coordinates, arrows and associated identifiers at
certain positions in a figure, while correctness is checked by use of hidden “formalisations” already
present in Isac — this shall support geometric intuition in creating physical models.



6 TP-based Educational Software

2. Extension of Isac’s Lucas-Interpreter such that the interpreter’s environment not only takes identifier-
value pairs, but associates identifiers with lists of values (symbolic and numeric) — this shall
support comprehending abstract models by switching levels of abstraction.

3. An additional tactic, which plays no role in formal deduction in a calculation, but displays informal
arguments for certain steps of calculation — this shall support additional arguments for intuitive
understanding.

As soon as these features are implemented, Isac can be considered a “system that explains itself” also for
mathematics applied to various engineering disciplines — a system which promises to establish novel
learning scenarios in the field.

Acknowledgements
Several experts from the Universities of Applied Sciences in Wels, Hagenberg and Salzburg are in-

volved in the current requirements engineering: Stephan Dreiseitl, Günther Eibl, Klaus Schiefermayr,
Wolfgang Steiner and Stefan Sunzenauer. The author owes these persons a great debt of gratitude for
their precious time spent and the novel ideas contributed to the design of Isac and to this paper.

Disclaimer
There was no time asking the mentioned experts to review the paper at hand; so any flaws and mistakes

in the paper are in full responsibility of the author.

References
[1] Archive of Formal Proofs. http://afp.sourceforge.net.
[2] Generic proof assistant ”‘Isabelle”’. http://isabelle.in.tum.de/.
[3] Isac-project. http://www.ist.tugraz.at/isac/History.
[4] Dines Bjørner (2006): Software Engineering. Texts in Theoretical Computer Science 1,2,3, Springer, Berlin,

Heidelberg.
[5] Sarah Lichtblau: Motion of Two Masses Connected by Springs. http://demonstrations.wolfram.com/

MotionOfTwoMassesConnectedBySprings/. Wolfram Demonstrations Project.
[6] Walther Neuper (2012): Automated Generation of User Guidance by Combining Computation and Deduction.

pp. 82–101, doi:10.4204/EPTCS.79.5. http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5.
[7] Walther Neuper (2013): On the Emergence of TP-based Educational Math Assistants. 7, pp. 110–129. Avail-

able at https://php.radford.edu/~ejmt/ContentIndex.php#v7n2. Special Issue “TP-based Systems
and Education”.

[8] Walther Neuper (2016): Lucas-Interpretation from Users’ Perspective. In: submitted to CICM, Bialystok,
Poland. http://www.ist.tugraz.at/projects/isac/publ/lucin-user-view.pdf.

[9] Wolfgang Steiner (2015): Vorlesungsskriptum Technische Mechanik III. FH OÖ, Fakultät für Technik und
Umweltwissensschaften.

http://afp.sourceforge.net
http://isabelle.in.tum.de/
http://www.ist.tugraz.at/isac/History
http://demonstrations.wolfram.com/MotionOfTwoMassesConnectedBySprings/
http://demonstrations.wolfram.com/MotionOfTwoMassesConnectedBySprings/
http://dx.doi.org/10.4204/EPTCS.79.5
http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
http://www.ist.tugraz.at/projects/isac/publ/lucin-user-view.pdf

	Formal Specification and Geometric ``Intuition''
	Learning by Switching Levels of Abstraction
	Formal Deduction and Physical Arguments

