

Mario Carneiro 25 July 2016

Models for Metamath

http://usz.metamath.org:88/model/model.pdf http://usz.metamath.org:88/model/model.pptx

- In the beginning, we have the universe of discourse
 - In set theory, these are the sets themselves, or the elements of a model

- In the beginning, we have the universe of discourse
 - In set theory, these are the sets themselves, or the elements of a model
- The object logic contains variables and well formed formulas over the universe
 - All formulas use variables, \forall , =, \in

 $\forall x \varphi$

- In the beginning, we have the universe of discourse
 - In set theory, these are the sets themselves, or the elements of a model
- The object logic contains variables and well formed formulas over the universe
 - All formulas use variables, \forall , =, \in
- The metalogic uses variables that range over variables of the object logic
 - So ${\it x}$ could be v_0 , v_1 , etc. while ${\it \phi}$ could be $\forall v_0 \ v_0 = v_2$

- FOL handles the relationship between the object logic and the universe
- Metamath handles the relationship between the metalogic and the object logic
 - Metamath does not model the universe!
 - How to axiomatize?

Properties of a metavariable 2

 Variables substitute for expressions of the same type in the object logic

• i.e.
$$x \mapsto v_0, \varphi \mapsto v_0 = v_0$$

- Different simultaneous substitutions may contain the same variable
 - $x \mapsto v_0$, $y \mapsto v_0$ is legal
 - $x \mapsto v_0$, $\varphi \mapsto v_0 = v_0$ has a shared substitution variable v_0 between x, φ
- \bullet There are enough dummy variables, i.e. v_k for arbitrarily large k

Universe

Properties of a metavariable

- True or false: $\forall x \ x = y$
 - It depends on the values of x, y
 - If x = y as variables, i.e. $x, y \mapsto v_n$, then $\forall v_n \ v_n = v_n$ is true
 - If $x \neq y$, i.e. $x \mapsto v_m$, $y \mapsto v_n$ for $m \neq n$, then $\forall v_m \ v_m = v_n$ is false
- Solution: disjoint variable provisos
 - $\vdash \neg \forall x \ x = y$, provided x, y are disjoint
 - $\vdash (\varphi \rightarrow \forall x \varphi)$, provided x, φ are disjoint
 - These are *not* bound variable conditions

Metamath

- Metavariables all the way (no direct reference to object variables)
- Each metavariable has a type, e.g. set x, wff φ means x is a metavariable of type set (set variables) and φ is a wff metavariable
- If a theorem $\vdash \forall x (\varphi \rightarrow \varphi)$ is proven for metavariables x, φ we can substitute any metavariable expression provably of that type for each metavariable
 - i.e. $\vdash \forall x (\varphi \rightarrow \varphi)$ can substitute $x \mapsto y, \varphi \mapsto x = y$ to get $\vdash \forall y (x = y \rightarrow x = y)$
 - This a basic (built-in) axiom of Metamath which is justified since the original theorem represents a theorem scheme of formulas of the object logic that contains all instances of the substitution's scheme

Metamath

- Disjoint variable provisos distribute over substitution
 - $\vdash (\varphi \rightarrow \forall x \varphi)$ provided x, φ are disjoint
 - with $x \mapsto y, \varphi \mapsto x = z$
 - gives $\vdash (x = z \rightarrow \forall y \ x = z)$ provided x, y and y, z are disjoint
- A variable is not disjoint with itself
 - Above theorem with substitution $x \mapsto y$, $\varphi \mapsto x = y$ gives $\vdash (x = x \to \forall y \ x = x)$ provided x, y and y, y are disjoint which is impossible, so this is invalid

Grammars and trees

- For speed/historical reasons, expressions are strings, not trees
 - AKA Metamath is a string rewriting system
 - Cute example: Hofstadter's MIU system is valid Metamath
 - ...but I don't like strings, they are hard to reason with
 - Under what conditions is Metamath isomorphic to a tree-based substitution system?
- Solution: Detect the grammar

Grammars and trees

- Syntax axioms are axioms whose consequent is a variable type
 - Ex: wff x = y
 - Not a variable type: $\vdash x = x$
 - Syntax axioms are not allowed to reuse variables, and are not allowed to have disjoint variable provisos or (explicit) hypotheses
 - Result: a context free grammar
- An unambiguous formal system is a Metamath database in which the resulting grammar is unambiguous
 - Equivalently: each string expression with a variable type has at most one proof
 - Result: one-to-one correspondence to trees, and we can henceforth pretend that this is how Metamath was defined

Return to the original picture

- Return to the original picture
- A model is a space that acts like the object logic over a universe
 - No requirement that the universe exists
 - It only has to satisfy the properties expected by Metamath
- Models for string systems: read the paper

- ullet For each type, there is a universe U_c of objects of that type
 - i.e. $U_{\rm set}$ is the collection of set variables $\{v_0,v_1,\dots\},\ v_1\in v_2$ $U_{\rm wff}$ is the set of relations on M depending on finitely many of the v_k
 - ...maybe
- Syntax axioms are well-typed functions on the universe
 - i.e. implication, wff $(\varphi \to \psi)$ becomes a function $(U_{\rm wff}, U_{\rm wff}) \to U_{\rm wff}$
 - Forall is wff $\forall x \varphi$ which has type $(U_{\text{set}}, U_{\text{wff}}) \to U_{\text{wff}}$
 - Not $(M \to U_{\text{wff}}) \to U_{\text{wff}}!$

- Disjoint variable conditions are modeled by a relation v # w that holds between elements of the universe
 - For elements of $U_{\rm set}$, this is $v \# w \leftrightarrow v \neq w$, and for v # f with $v \in U_{\rm set}$, $f \in U_{\rm wff}$ this means that f is constant with respect to the variable v
- A special subset $U_{\vdash} \subseteq U_{\mathrm{wff}}$ gives the set of model elements that are considered to be true in the model
 - This is just the singleton of the always true relation

A theorem like x, ψ disjoint $\& \vdash (\varphi \to \psi) \Rightarrow \vdash (\exists x \varphi \to \psi)$ is valid whenever for all $\bar{x} \in U_{\text{set}}$ and all $\bar{\varphi}, \bar{\psi} \in U_{\text{wff}}$, if $\bar{x} \# \bar{\psi}$ and $\text{imp}(\bar{\varphi}, \bar{\psi}) \in U_{\vdash}$, then $\text{imp}(\text{ex}(v, \bar{\varphi}), \bar{\psi}) \in U_{\vdash}$

This is an FOL statement!

It all works out

- Soundness
- There is a model for set.mm, assuming that ZFC has a model
 - Converse?
- Godel completeness
 - A theorem is true iff it is true in every model
 - What about disjoint variables and hypotheses?
- Independence proofs of set.mm axioms
- Conservative extensions of a theory, what happens to the model
- The category of models and model homomorphisms

It all works out

- Soundness
- There is a model for set.mm, assuming that ZFC has a model
 - Converse?
- Godel completeness
 - A theorem is true iff it is true in every model
 - What about disjoint variables and hypotheses?
- Independence proofs of set.mm axioms
- Conservative extensions of a theory, what happens to the model
- The category of models and model homomorphisms

What's the point

- Faithful representation of full Metamath in FOL
 - Metamath → TPTP
 - Metamath → MMT
 - Metamath → HOL/DTT
 - Downside: not a nice embedding
- Better faithful representation of unambiguous Metamath in FOL
 - set.mm → TPTP, MMT, etc.
 - Still not as good as we'd like
- Future work: Intended embedding of Metamath in FOL
 - So that forall is a binder, not a binary function
 - Can be dealt with in this framework

Questions