

Formal Dependability Modeling and Analysis: A Survey

Waqar Ahmed and Osman Hasan

School of Electrical Engineering and Computer Science National University of Sciences and Technology (NUST) Islamabad, Pakistan

> CICM 2016 Bailystock, Poland

July 27, 2016

(日) (四) (三) (三) (三)

- 1 Introduction and Motivation
- 2 Dependability Modeling Techniques
- 3 Formal Techniques for Dependability Analysis

4 Conclusions

Dependability

(日) (同) (三) (三)

W. Ahmed and O. Hasan (NUST) Formal Dependability Modeling and Analysis

Safety-critical Systems

- More stringent dependability requirements
 - Main motivation for Formal Dependabiltiy Modeling and Analysis

Formal Definitions

• Reliability = $\mathbb{P}(\text{no failure occurs before certain time})$

3 ×

Formal Definitions

• Reliability = $\mathbb{P}(\text{no failure occurs before certain time})$

Availability is typically derived from reliability and maintainability measures

•
$$A(t) = \frac{MTBF}{MTBF + MTTR}$$

where MTBF = MTTF + MTTR

- MTBF = Mean time between failures (Reliability Metric)
- MTTF = Mean time to failure (Reliability Metric)
- MTTR = Mean time to repair (Maintainability Metric)

Introduction and Motivation

2 Dependability Modeling Techniques

Formal Techniques for Dependability Analysis

4 Conclusions

- Some widely used modeling techniques are:
 - Reliability Block Diagram
 - Fault Tree
 - Markov Chain

Reliability Block Diagrams

- Model the failure relationship of system components as a diagram of sub-blocks and connectors (RBD)
- Judge the failure characteristics of the overall system based on the failure rates of sub-blocks

Reliability Block Diagrams

- Model the failure relationship of system components as a diagram of sub-blocks and connectors (RBD)
- Judge the failure characteristics of the overall system based on the failure rates of sub-blocks

• The overall system failure happens if all the paths for successful execution fail

• Add more parallelism to meet the dependability goals

July 27, 2016 16 / 48

- 4 週 ト - 4 三 ト - 4 三 ト

Example: Power Supply System

• Waqar requires continuous supply of power for his Lab PC

- The UPS can support the load during a switch from the main supply to the generator
- Wants to determine the reliability of power supply system

Example: Power Supply System

Step 1

Construct an RBD Model

-

< A

< E.

Step 1

Construct an RBD Model

 $\texttt{pow_sys_rbd} = (\texttt{M} \cap \texttt{T}) \cup \texttt{G} \cup \texttt{U}$

- ∢ ⊢⊒ →

- ∢ ∃ ▶

Step 2

Identify the RBD type

Step 3

Use the corresponding mathematical expression to evaluate the overall reliability based on the sub-components reliability

 $\mathbb{P}((\mathbb{M}\cap T)\cup G\cup U)=1-(1-\mathbb{P}(\mathbb{M})*\mathbb{P}(T))*(1-\mathbb{P}(G))*(1-\mathbb{P}(U))$

・ 何 ト ・ ヨ ト ・ ヨ ト

Fault Tree

- A graphical method used to identify potential causes of system failure
- A fault tree is constructed having
 - Events: describing the failure of system components
 - Logic Gates: representing logical relationship between events
 - AND, OR, NOR, NAND, NOR etc.

3 🕨 🖌 3

Types of FT Gates

Example: Power Supply System

• Determine the overall failure probability?

Fault Tree Analysis

Step 1

Construct a FT and represent Top Event in terms of basic events

Fault Tree Analysis

Step 1

Construct a FT and represent Top Event in terms of basic events

 $pow_sys_fail = (M \cup T) \cap G \cap U$

Step 2

Evaluate probability of failure using the Probabilistic Inclusion-Exclusion principle

$$\mathbb{P}(\bigcup_{i=1}^{n} A_{i}) = \sum_{J \neq \emptyset, J \subseteq \{1, 2, \dots, n\}} (-1)^{|J|-1} \mathbb{P}(\bigcap_{j \in J} A_{j})$$
$$\mathbb{P}(pow_sys_fail) = \mathbb{P}((M \cup T) \cap G \cap U)$$
$$= \mathbb{P}(M \cap G \cap U) + \mathbb{P}(T \cap G \cap U) - \mathbb{P}(M \cap T \cap G \cap U)$$

Step 3

Using Mutual Independence property

$$\mathbb{P}(pow_sys_fail) = \mathbb{P}(M) * \mathbb{P}(G) * \mathbb{P}(U) + \mathbb{P}(T) * \mathbb{P}(G) * \mathbb{P}(U) - \mathbb{P}(M) * \mathbb{P}(T) * \mathbb{P}(G) * \mathbb{P}(U)$$

• Stochastic Process

• Markov Property

- 一司

- A 🖃

• Stochastic Process

- A sequence of states
- Determining the next state is random

• Markov Property

• Stochastic Process

- A sequence of states
- Determining the next state is random

Markov Property

• The probability of the next state is only dependent on the current state

$$\mathcal{P}r\{X_{t_{n+1}} = f_{n+1} | X_{t_n} = f_n, \dots, X_{t_0} = f_0\} = \mathcal{P}r\{X_{t_{n+1}} = f_{n+1} | X_{t_n} = f_n\}$$

Markov Chains - Types

Discrete-time Markov Chain

Continuous-time Markov Chain

t

• Weather Prediction Problem

• Weather Prediction Problem

• Waqar records the weather conditions (sunny or rainy/snowy) daily

• Weather Prediction Problem

• Waqar records the weather conditions (sunny or rainy/snowy) daily

 Based on this collected data he wants to obtain the probability of a specific weather pattern
• Solution: Discrete Time Markov Chains

- Set of States = {Sunny, Rainy}
- State Transition Probabilities can be obtained from the observed data
 - Example: $P\{$ "Tomorrow is sunny" given that "Today is sunny" $\}$

Features	Reliability	Fault	Markov
	Block Diagram	Tree	Chain

Features	Reliability	Fault	Markov
	Block Diagram	Iree	Chain
Success Paths between input and output	\checkmark		\checkmark

Features	Reliability	Fault	Markov
	DIOCK Diagram	Tree	Chain
Success Paths between input and output	\checkmark		\checkmark
Failure Paths between input and output		\checkmark	\checkmark

Features	eatures Reliability Block Diagram		Markov Chain
Success Paths between input and output	\checkmark		\checkmark
Failure Paths between input and output		√	✓
Combinatorial Problems (Effect of sub-components on the failure of the whole system)	√	\checkmark	\checkmark

Features	Reliability Block Diagram	Fault Tree	Markov Chain
Success Paths between input and output	\checkmark		\checkmark
Failure Paths between input and output		\checkmark	\checkmark
Combinatorial Problems (Ef- fect of sub-components on the failure of the whole system)	\checkmark	\checkmark	√
Non-combinatorial Problems (System is either inactive, fail- ure or in standby state)			√

イロト 不得下 イヨト イヨト

Features	Reliability Block Diagram	Fault Tree	Markov Chain
Success Paths between input and output	\checkmark		\checkmark
Failure Paths between input and output		\checkmark	\checkmark
Combinatorial Problems (Effect of sub-components on the failure of the whole system)	\checkmark	\checkmark	√
Non-combinatorial Problems (System is either inactive, fail- ure or in standby state)			√
Large and Complex Systems	\checkmark	\checkmark	

< 17 ▶

- Introduction and Motivation
- 2 Dependability Modeling Techniques
- 3 Formal Techniques for Dependability Analysis

4 Conclusions

Dependability models have been analyzed extensively using the following formal techniques:

- Petri Nets
- Model Checking
- Higher-order-Logic Theorem Proving

• A Petri Net is a bipartite graph consisiting of:

 Transitions consume tokens from the input places and produce tokens in the output places

Example: Chemical Reaction

 $2H_2 + O_2 \Rightarrow 2H_2O$

 H_2O

Example: Chemical Reaction

 $2H_2 + O_2 \Rightarrow 2H_2O$

Dependability Analysis using Petri Nets:

 Colored PN (CPN) and Stochastic PN (SPN) have been extensively used for dependability analysis

Dependability Analysis using Petri Nets:

- Colored PN (CPN) and Stochastic PN (SPN) have been extensively used for dependability analysis
- Analyzing RBDs and FTs with Petri Nets
 - Broadband Integrated Service Network (Balakrishnan et al. RESS-1996)
 - Internet voting System (Omidi et al. Computer & Comm. Eng., 2012)
 - High-speed Trains (Lijie et al. RESS-2012)
 - Logistic Supply Chain (Li et al. IJUNESST-2014)

Dependability Analysis using Petri Nets:

- Colored PN (CPN) and Stochastic PN (SPN) have been extensively used for dependability analysis
- Analyzing RBDs and FTs with Petri Nets
 - Broadband Integrated Service Network (Balakrishnan et al. RESS-1996)
 - Internet voting System (Omidi et al. Computer & Comm. Eng., 2012)
 - High-speed Trains (Lijie et al. RESS-2012)
 - Logistic Supply Chain (Li et al. IJUNESST-2014)
- Analyzing Markov chains with PNs
 - Client Server Queuing system (lbe et al. TPDS-1993)
 - Fibre Distributed Data Interface (FDDI) (Christodoulou et al. ETFA-1994)
 - Low Earth Orbit (LEO) satellite (Zeng et al. JMLC-2011)

Probabilistic Model Checking - Example

Probabilistic Model Checking - Example

 Probability of reaching State E from the State A: 0.4x0.3 + 0.6x0.4x0.3 = 0.192

Probabilistic Model Checking - Example

- Probability of reaching State E from the State A: 0.4x0.3 + 0.6x0.4x0.3 = 0.192
- Probabilities associated with the validity of Temporal logic properties can be verified

Dependability Analysis using Model Checking

- Several Probabilistic and Statistical model checking tools have been used for reliability/availability assessment
 - Probabilistic model checker (PRISM) (Baier et al. MIT Press 2008)
 - COMPASS: Based on the NuSMV and Markov Chain model checker (MRMC) (Bozanno et al. SAFECOMP-2009)
 - Erlangen-Twente Markov Chain Checker (ETMCC) (Hermanns et al. DSN-2013)

Dependability Analysis using Model Checking

- Several Probabilistic and Statistical model checking tools have been used for reliability/availability assessment
 - Probabilistic model checker (PRISM) (Baier et al. MIT Press 2008)
 - COMPASS: Based on the NuSMV and Markov Chain model checker (MRMC) (Bozanno et al. SAFECOMP-2009)
 - Erlangen-Twente Markov Chain Checker (ETMCC) (Hermanns et al. DSN-2013)

• Analysis of Real-world systems

- Aerospace systems (Bozanno et al. SAFECOMP-2009)
- RAID disk protocol (Gopinath et al. Tech report 2009)
- Herschel-Planck satellite system (Pend et al. Modeling Symp. 2013)
- Airbag system (Pend et al. Modeling Symp. 2013)
- e-health systems used in hospitals (Pervez et al. e-HEALTHCOMM-2014)

Higher-order-Logic Theorem Proving

HOL Theorem Proving - Example: Series RBD

$$I - I - N - 0$$

$$R_{series}(t) = Pr(\bigcap_{i=1}^{N} A_i(t)) = \prod_{i=1}^{N} R_i(t)$$

HOL Theorem Proving - Example: Series RBD

$$R_{series}(t) = Pr(\bigcap_{i=1}^{N} A_i(t)) = \prod_{i=1}^{N} R_i(t)$$

Definition: Series RBD

 \vdash \forall p L. series_struct p L = inter_list p L

< ∃ >

HOL Theorem Proving - Example: Series RBD

$$R_{series}(t) = Pr(\bigcap_{i=1}^{N} A_i(t)) = \prod_{i=1}^{N} R_i(t)$$

Definition: Series RBD

 \vdash \forall p L. series_struct p L = inter_list p L

Theorem: Series RBD Reliability

Dependability Analysis using HOL Theorem Proving

Probability Theory

- J. Hurd (2002), PhD Thesis, University of Cambridge Formal Verification of Probabilistic Algorithms.
- O. Hasan (2008), PhD Thesis, Concordia University Formal Probabilistic Analysis using Theorem Proving.
- T. Mhamdi (2011), PhD Thesis, Concorida University Information-Theoretic Analysis using Theorem Proving.
- J. Hölzl (2012), PhD thesis, Technical University of Munich Construction and Stochastic Applications of Measure Spaces in Higher-Order Logic.

Dependability Analysis using HOL Theorem Proving

• Dependability Analysis of a Component

- Reconfigurable Memory Arrays (Hasan et al. TC-2010)
- Combinational Circuits (Hasan et al. JAL-2011)
- Electronic System Components (Abbasi et al. WoLLIC-2014

Dependability Analysis using HOL Theorem Proving

- Dependability Analysis of a Component
 - Reconfigurable Memory Arrays (Hasan et al. TC-2010)
 - Combinational Circuits (Hasan et al. JAL-2011)
 - Electronic System Components (Abbasi et al. WoLLIC-2014
- Dependability Analysis using RBDs and FTs
 - Oil and Gas Pipelines (Waqar et al. CICM-2014)
 - WSN Transport Protocols (Waqar et al. WiMob-2015)
 - Logistic Supply Chain (Waqar et al. IWIL-2015)
 - Satellite Solar Array (Waqar et al. CICM-2015)

Feature	Paper-and-	Simulation	Petri Nets	Theorem	Model
	pencil Proof	Tools		Proving	Checking

Feature	Paper-and-	Simulation	Petri Nets	Theorem	Model
	pencil Proof	Tools		Proving	Checking
Expressiveness	✓	\checkmark		\checkmark	

Feature	Paper-and- pencil Proof	Simulation Tools	Petri Nets	Theorem Proving	Model Checking
Expressiveness	✓	\checkmark		\checkmark	
Accuracy	√ (?)		\checkmark	\checkmark	\checkmark

Feature	Paper-and- pencil Proof	Simulation Tools	Petri Nets	Theorem Proving	Model Checking
Expressiveness	✓	\checkmark		\checkmark	
Accuracy	√ (?)		\checkmark	\checkmark	\checkmark
Automation		\checkmark	\checkmark		\checkmark

- Introduction and Motivation
- 2 Dependability Modeling Techniques
- 3 Formal Techniques for Dependability Analysis

4 Conclusions

Conclusion

• Dependability

- Reliability
- Availability
- Maintainability

< 🗗 🕨

Conclusion

• Dependability

- Reliability
- Availability
- Maintainability

• Dependability Modeling Techniques

- Reliability Block Diagram
- Fault Tree
- Markov Chains

Conclusion

• Dependability

- Reliability
- Availability
- Maintainability

• Dependability Modeling Techniques

- Reliability Block Diagram
- Fault Tree
- Markov Chains

• Formal Dependability Analysis Techniques

- Petri Nets
- Model Checkng
- Interactive Theorem Proving
Timeline of Surveyed Papers

Before 1990s	1990-99	2000-09	2010-16

- 一司

Timeline of Surveyed Papers

	Before 1990s	1990-99	2000-09	2010-16
Introduction of Models	RBDs and FTs	Markov Chains	Dynamic RBDs and FTs	

- 一司

	Before 1990s	1990-99	2000-09	2010-16
Introduction of Models	RBDs and FTs	Markov Chains	Dynamic RBDs and FTs	
Introduction of Analysis Tech- niques		Petri Nets	Model Checking	Theorem Prov- ing

- 一司

	Before 1990s	1990-99	2000-09	2010-16
Introduction of Models	RBDs and FTs	Markov Chains	Dynamic RBDs and FTs	
Introduction of Analysis Tech- niques		Petri Nets	Model Checking	Theorem Prov- ing

Future Directions:

- Analysis of Dynamic RBDs and FTs
- Using Theorem Proving to conduct Markov Chains based dependability analysis
 - Foundational Support is available in HOL4 (L. Liu et al., ATVA-2011) and Isabelle/HOL (J. Hölzl et al., TACAS 2012)

Thanks!

W. Ahmed and O. Hasan (NUST) Formal Dependability Modeling and Analysis

▲ 同 ▶ → 三 ▶