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Metamath

* A computer language for representing mathematical proofs
* The Metamath spec is two pages, one verifier exists in 75 lines of Mathematica

* Eight independent verifiers exist in eight different languages
e Two proof assistants (MM-PA and mmij2) with another (smm3) in development
* (Tomorrow | will talk about the theoretical underpinnings of Metamath)

* A project to formalize modern mathematics from a simple foundation

* Main database is set.mm (ZFC set theory)
* QOver 28000 proofs, 500K lines, 29M file



The prime number theorem

Theorem pnt 1932

Description: The Prime Number Theorem: the number of prime numbers less than x tends
asymptotically to x / log(x) as x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion

Ref] Expression
pnt|— (x € (1(,) +o0) = ((& “x) / (x / (log x)))) = 1

m(x) is the Gauss prime 1 function, the number of primes < x (where x € R)

(1(,) + o) = (1, =) is the open interval from 1 to o

(x EAP B(x)) is the mapping/lambda operation (produces a function on the given domain)

F ws_. a means that limF(x) = a

X— 00

http://us.metamath.org/mpeuni/pnt.html



The prime number theorem

First conjectured by Legendre in 1797

First proof in 1896 by Jacques Hadamard and Charles Jean de la Vallée-Poussin (independently)
* Uses complex analysis and properties of the Riemann ¢ function

Two “elementary” proofs discovered by Erdés and Selberg (sort of independently) in 1949

First formal proof by Jeremy Avigad et. al. in 2004 in Isabelle
* Targets Selberg’s proof

Later formal proof by John Harrison in 2009 in HOL Light
* Targets Hadamard / Vallée-Poussin proof

This proof uses Selberg’s method



Dirichlet’s theorem

Theorem dirith 19240

Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to N.
Theorem 9.4.1 of [Shapiro], p. 375. See http://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an
informal exposition. (Contributed by Mario Carneiro, 12-May-2016.)

Assertion

Ref Expression
dirith- (NeENAA€ZA(Agcd N)=1) > {peP|N|(p-A)}=N)
Distinct variable groups: A,p N.,p

(A gcd B) = gcd(4, B) is the greatest common divisor

m || nis the divides relation on integers, so N || (p — A) meansp = A (mod N)

S ~ N means S is equinumerous to N, i.e. S is infinite

P is the set of prime numbers, N is the positive integers, Z is the integers



Dirichlet’s theorem

* Partial proof (case A = 1) by Euler

* First complete proof by Dirichlet in 1837

* First formal proof by John Harrison in 2010 in HOL Light




Why these two?

* Similar subject, some common theorems

e Same proof style (asymptotic approximation of finite sums)

* Both are Metamath 100 formalization targets (Freek Wiedijk)
* Currently 58 out of 100 proven




Definitions used

* In keeping with Metamath conventions, very few new definitions were used for these
theorems

* Definitions are only made when they “pay for themselves” in shortening theorem proofs and/or
expression sizes

e df-sum: finite sums of complex numbers Y, c4 B(k)
e df-ppi: prime 7 function, m(x) = #(P N [0, x])

» df-cht: Chebyshev function 8(x) = },<, logp

e df-vma: von Mangoldt function A(p%*) = logp

e df-chp: Chebyshev function Y (x) = ),,,<, A(n)

» df-mu: Mébius function pu(n) = (—1)*PePIpin}



Definitions used

* In keeping with Metamath conventions, very few new definitions were used for these
theorems

* Definitions are only made when they “pay for themselves” in shortening theorem proofs and/or
expression sizes

Theorem dchrval 19030
Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)

e df-dchr: Group of Dirichlet characters Hypotheses
Ref Expression
e df-ol: Set of eventually bounded dehrval.g[ G = (DChr *N)
functions f(x) = 0(1) dehrvale|i- 7 = @nZ “N)
dchrval.b|— B = (Base ‘%)
* df-lol: Set of eventually upper dehrval.ul-- U = (Unit *2)
bounded functions f(x) < 0(1) dehrval.n|i- (p — N € N)
dchrval.d|— (¢ — D = {x € (mulGrp ‘Z) MndHom (mulGrp ‘Cgqg)) | (B \ U) x {0}) € x})
Assertion
Ref Expression

dchrval|- (¢ — G = {{(Base ‘ndx), D), {(+g ‘ndx), (o5 - [ (D x D)))})




Definitions used

* A trick: Temporary definitions

Theorem selbergr 19253

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function.
Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)

Hypothesis
Ref Expression
pntrval.rl- R =(a € R" » ((y ‘a) — a))
Assertion
Ref Expression

selbergr(— (x € R™ » ((((R ‘x) - (log ‘x)) + Zd € (1...(L ‘x))((A ‘d) - (R “(x/ d))))/ x)) € O(1)




Statistics & Comparison

* Dirichlet: 55 theorems, PNT: 83 theorems
* Dirichlet: 8992 proof steps, PNT: 35549 proof steps
* Both proofs were done over a seven week period

e de Bruijn factors 19.9, 7.67 are higher than usual
* proofs not proof scripts

* Verification is thousands of

times faster

* New verifier smm3 can verify
set.mMmin 0.54 s

Dirichlet PNT Dirichlet PNT
(author) | (author)
Total time spent | 2 weeks | 5 weeks 5 days | 12 weeks?

Lines of code 3595 5100 1183 19713
Compressed bytes (gzip) | 109683 156226 11762 97470
Informal text 10 pp. 37 pp. | 192 lines 37 pp.

Informal text (gzip) 55007 203507 2524 203507

de Bruijn factor 19.97 7.677 4.66 4.787
Verification time 0.18 s 0.23 s 450 s 1800 s?




Highlights

Theorem pnt 19320

Description: The Prime Number Theorem: the number of prime numbers less than x tends
asymptotically to x / log(x) as x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion

Ref Expression
pnt [~ (x € (1(,) +oo) = ((m “x) / (x / (log “x)))) =7 1
pnt2|— (x € RT +~ ((0 ‘x)/ x)) =, 1
pnt3|- (x € R™ » ((y ‘x)/ x)) =, 1




Highlights

Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Zn < x, A(n) logn + Zm - n < x, A(m)A(n) = 2x log x + 0(x).
Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)

Theorem selberg 156

Assertion

Ref Expression
selberg |- (x € R" = ((Zn € (L...(L “X)(A ‘n) - ((og ‘) + (v (x /1)) / x) — 2 - (log “x)))) € O(1)
selberg2 |- (x € R™ = (v “x) - (log “x)) +Zn € (L..(L “X))(A ‘n) - (v ‘(x/n)))) / x) — (2 - (log “x)))) € O(1)
selberg3 |1 (x € (1(,) +0) = ((((y *x) - (log *x)) + ((2/ (log x)) - Tn € (L.(L *x)(((A n) - (v *(x /) - (log ‘m)))) / x) — 2 - (log *X)))) € O(1)
selbergd |- (x € (1(.) +o0) = (((v *x) - (log *x)) — ((2/ (og *x)) - En € (1..(L *0)((A *n) - Zm € (L...(L *(x/n)) (A ‘m) - (y *((x /1) / m)))))) / x)) € O(1)
selbergr [ (x € RT = (((R “x) - (log ‘x)) + =d € (1...(L “X))((A “d) - (R “(x / d)))) / x)) € O(1)
selberg3r - (x € (1(,) +0) = ((((R “x) - (log “x)) + ((2 / (log ‘x)) - Zn € (L...(L “X)N((A ‘1) - (R “(x /n))) - (log ‘n))))/ x)) € O(1)
selbergdr |- (x € (1(,) +o0) = ((((R ‘x) - (log ‘x)) — ((2/ (log ‘x)) - £n € (L...(L ‘“X))((A ‘n) - ZTm € (1...(L ‘(x/n)))(A ‘m) - (R “((x/n)/m))))))/x)) € 0(1)

selberg34r|— (x € (1(,) +) = ((R ‘x) - (log ‘x)) —(En € (L...(L “X)D(R “(x/n))y-Eme {yeNIlyln} (A ‘m): (A ‘(n/m)))-— (A n)-(log - n))))/(log‘x)))/x)) € 0(1)




Theorem pntlemj 19323
Description: Lemma for pnt 19334, The induction step. Using pntibnd 12313, we find an interval in KTJ...KT(J + 1) which is sufficiently large and
has a much smaller value, R(z)/ z < E (instead of our original bound R(z) / z < U). (Contributed by Mario Carneiro, 13-Apr-2016.)

Hypotheses

Ref Expression

patleml.r [ R=(@eRT - ((y ‘a) — a))
H . h ‘ . h pntleml.a [ (g - A€R™)

I g I g tS patleml.b [ (@ - BER™)

pontleml.l [ (¢ — L e (0()1))
patleml.d [FD=(A+1)
patlem1 £ |- F=((1 —(1/D))-(L/(:32- B)/(D12))
pontleml.u [ (¢ - UeR™)
patleml.u2(- (p — U < A)
potleml.e (- E=(U/D)
potleml.k |- K= (exp ‘(B/ E))
poatlemly |- (p - (YERTA1<Y))
potleml.x |- (p = (X e RT A Y < X))
patleml.c [ (@ = C€RY)
potleml.w |- W= (((Y+ (4/(L - E))12) + (((X - (KT2))T4) + (exp ‘((:32- B)/ (U — E) - (L - (ET2)))) - (U - 3) + O)))))
pontleml.z [ (¢ = Z € (W],) +0))
patleml.m [ M = ((| ‘((log *X)/ (log ‘K))) + 1)
patleml.n |~ N = ([ ‘(((log ‘Z) / (log *K)) / 2))
pntlem1.U [ (@ — Vz € (¥],) +oo)(abs ‘(R ‘z)/ z)) < U)
potlem1.K [ (¢ = Vy € (X(,) +o0)Az € RT (¢ < z A (1 + (L - E)) - 2) < (K - y)) AVu € (z[,I((1 + (L - E)) - z))(abs ‘(R ‘u) [ u)) < E))
patleml.o |- O =(((| ‘(Z/(K1(J + 1))+ D...(| (Z /(K1)
patleml.v |- (@ —» Ve R™Y)
potlem1.V |- (¢ = (K1) < VA((1 + (L - E)) - V) < (K - (K1) AVu € (VLI((1 + (L - E)) - M)(abs ((R “u) / w)) < E))
patleml.j [ (@ = J&(M.AN))
patleml.i |- I=((L(Z/ (1 +(L-E)-V))+ D..(L (Z/V))
Assertion

Ref Expression
potlemj|— (@ — (U - E)- (((L - E)/8) - (log *Z))) <Xn € O ((U/n) — (abs ‘(R ‘(Z [ n)) / Z))) - (log ‘n)))




Highlights

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says thatif x € S = B isa
decreasing function with antiderivative A converging to zero, then the difference between Lk € (M...(L ‘x))B(k) and A(x) = fu € (M[,)x)B(w) du converges to a constant
limit value, with the remainder term bounded by B(x). (Contributed by Mario Carneiro, 18-May-2016.)

Hypotheses

Theorem dvfsumrlim isoss

Ref Expression
dvfsum.s = S=(T(,) +o0)
dvfsum.z FZ=(Zs ‘M)
dvfsumm |- (p > M € Z)

dvfsum.d F(p—DeR)
dvfsum.md |- (¢ — M < (D + 1))
dvfsum.t F(p—TeR)

dvfsum.a F{lpaxeS)y—AeR)

dvfsumbl |- ((pAxeS)—Bel)

dvfsum.b2 |- ((p Ax€Z)— B eR)

dvisum.b3 |- (¢ = (RD(x € S = A))=(x € S = B))

dvfsum.c F(x=k—B=0()

dvfsumrliml |- (p A(x €S AkeSAD<x Ax<k)— C<B)
dvisumrlim.g|- ¢ = (x € § = (Zk € (M...(L ‘x))C — A))
dvfsumrlim k|- (¢ — (x € § = B) =,.0)

Assertion

Ref Expression

dvfsumrlim|— (¢ — G € dom =, )




Highlights

Theorem dchrmusum 19220

Description: The sum of the M&bius function multiplied by a non-principal Dirichlet character, divided by n, is
bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)

Hypotheses

Ref Expression

rpvmasum.z | Z = (Z/nZ ‘N)
rpvmasum.l |~ L = (ZRHom °Z7)

rpvmasum.a | (¢ — N € N)
dchrmusum.g (- ¢ = (DChr ‘N)
dchrmusum.d |- D = (Base ‘()

dchrmusum.1 |- 1 = (0g *G)

dchrmusum.b |- (¢ — X € D)

dchrmusum.nl{- (¢ — X # 1)

Assertion

Ref Expression
dchrmusum |- (¢ — (x € R" = Zn € (L.(L “0)(X ‘(L ‘n) - (1 ‘1) / n))) € O(L))
dchrvmasum|i- (¢ — (x € R" = Zn € (L.(L ‘))(X ‘(L ‘n)) - (A ‘n) / n))) € O(1))




Questions
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