

Formalization of the prime number theorem and Dirichlet's theorem

MARIO CARNEIRO

25 JULY 2016

Metamath

- A computer language for representing mathematical proofs
 - The Metamath spec is two pages, one verifier exists in 75 lines of Mathematica
 - Eight independent verifiers exist in eight different languages
 - Two proof assistants (MM-PA and mmj2) with another (smm3) in development
 - (Tomorrow I will talk about the theoretical underpinnings of Metamath)
- A project to formalize modern mathematics from a simple foundation
- Main database is set.mm (ZFC set theory)
 - Over 28000 proofs, 500K lines, 29M file

The prime number theorem

Theorem pnt 19329

Description: The Prime Number Theorem: the number of prime numbers less than x tends asymptotically to $x / \log(x)$ as x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)

Assertion		
Ref	Expression	
pnt	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((\underline{\pi} \mathbf{x}) / (\mathbf{x} / (\log \mathbf{x})))) \rightsquigarrow_{r} 1$	

- $\underline{\pi}(x)$ is the Gauss prime π function, the number of primes $\leq x$ (where $x \in \mathbb{R}$)
- $(1(,) + \infty) = (1, \infty)$ is the open interval from 1 to ∞
- $(x \in A \mapsto B(x))$ is the mapping/lambda operation (produces a function on the given domain)
- $F \rightsquigarrow_r a$ means that $\lim_{x \to \infty} F(x) = a$

http://us.metamath.org/mpeuni/pnt.html

The prime number theorem

- First conjectured by Legendre in 1797
- First proof in 1896 by Jacques Hadamard and Charles Jean de la Vallée-Poussin (independently)
 - Uses complex analysis and properties of the Riemann ζ function
- Two "elementary" proofs discovered by Erdős and Selberg (sort of independently) in 1949
- First formal proof by Jeremy Avigad et. al. in 2004 in Isabelle
 - Targets Selberg's proof
- Later formal proof by John Harrison in 2009 in HOL Light
 - Targets Hadamard / Vallée-Poussin proof
- This proof uses Selberg's method

Dirichlet's theorem

Theorem dirith 19249

Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to N. Theorem 9.4.1 of [Shapiro], p. 375. See <u>http://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html</u> for an informal exposition. (Contributed by Mario Carneiro, 12-May-2016.)

Assertion

Ref	Expression
dirith	$\vdash ((N \in \mathbb{N} \land A \in \mathbb{Z} \land (A \text{ gcd } N) = 1) \rightarrow \{p \in \mathbb{P} \mid N \parallel (p - A)\} \approx \mathbb{N})$

Distinct variable groups: A,p N,p

- $(A \operatorname{gcd} B) = \operatorname{gcd}(A, B)$ is the greatest common divisor
- $m \parallel n$ is the divides relation on integers, so $N \parallel (p A)$ means $p \equiv A \pmod{N}$
- $S \approx \mathbb{N}$ means S is equinumerous to \mathbb{N} , i.e. S is infinite
- \mathbb{P} is the set of prime numbers, \mathbb{N} is the positive integers, \mathbb{Z} is the integers

Dirichlet's theorem

- Partial proof (case A = 1) by Euler
- First complete proof by Dirichlet in 1837
- First formal proof by John Harrison in 2010 in HOL Light

Why these two?

- Similar subject, some common theorems
- Same proof style (asymptotic approximation of finite sums)
- Both are Metamath 100 formalization targets (Freek Wiedijk)
 - Currently 58 out of 100 proven

Definitions used

- In keeping with Metamath conventions, very few new definitions were used for these theorems
 - Definitions are only made when they "pay for themselves" in shortening theorem proofs and/or expression sizes
- df-sum: finite sums of complex numbers $\sum_{k \in A} B(k)$
- df-ppi: prime π function, $\underline{\pi}(x) = \#(\mathbb{P} \cap [0, x])$
- df-cht: Chebyshev function $\theta(x) = \sum_{p \le x} \log p$
- df-vma: von Mangoldt function $\Lambda(p^{\alpha}) = \log p$
- df-chp: Chebyshev function $\psi(x) = \sum_{n \le x} \Lambda(n)$
- df-mu: Möbius function $\mu(n) = (-1)^{\#\{p \in \mathbb{P} \mid p \parallel n\}}$

Definitions used

- In keeping with Metamath conventions, very few new definitions were used for these theorems
 - Definitions are only made when they "pay for themselves" in shortening theorem proofs and/or expression sizes
- df-dchr: Group of Dirichlet characters
- df-o1: Set of eventually bounded functions f(x) = O(1)
- df-lo1: Set of eventually upper bounded functions $f(x) \le O(1)$

Ref	Expression	
dchrval.g	$\vdash \mathbf{G} = (\mathrm{DChr} \cdot \mathbf{N})$	
dchrval.z	$\vdash Z = (\mathbb{Z}/n\mathbb{Z} N)$	
dchrval.b	$\vdash B = (Base 'Z)$	
dchrval.u	$\vdash U = (\text{Unit } 'Z)$	
dchrval.n	$\vdash (\varphi \rightarrow N \in \mathbb{N})$	
dchrval.d	$\vdash (\varphi \to D = \{ x \in ((\text{mulGrp } 'Z) \text{ MndHom } (\text{mulGrp } '\mathbb{C}_{\text{fld}})) \mid ((B \setminus U) \times \{0\}) \subseteq x \}$	
Assertion		

Ref	Expression	
dchrval	$\vdash (\varphi \to G = \{ \langle (\text{Base 'ndx}), D \rangle, \langle (+_g \text{ 'ndx}), (\circ_f \cdot \restriction (D \times D)) \rangle \} \}$	

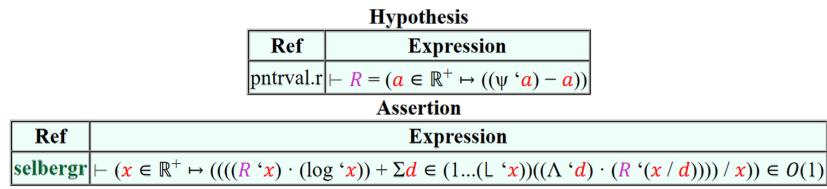
Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.) **Hypotheses**

Definitions used

• A trick: Temporary definitions

Theorem selbergr 19283

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)



Statistics & Comparison

- Dirichlet: 55 theorems, PNT: 83 theorems
- Dirichlet: 8992 proof steps, PNT: 35549 proof steps
- Both proofs were done over a seven week period
- de Bruijn factors 19.9, 7.67 are higher than usual
- proofs not proof scripts
 Verification is thousands of times faster
 New verifier smm3 can verify set.mm in 0.54 s
 Dirichlet (author)
 Total time spent 2 weeks
 Lines of code 3595
 Compressed bytes (gzip) 109683
 Informal text 10 pp.
 - 2 weeks 5 days 12 weeks? 5 weeks 3595 1183197135100109683156226 1176297470 37 pp. Informal text 10 pp. 37 pp. 192 lines Informal text (gzip) 5500?20350?252420350?de Bruijn factor 7.67?19.9?4.78? 4.66Verification time $0.18 \ {\rm s}$ $0.23 \mathrm{s}$ $450 \mathrm{s}$ 1800 s?

PNT

(author)

Dirichlet

[Har10]

PNT

[Avi07]

Highlights

Theorem pnt 19329

Description: The Prime Number Theorem: the number of prime numbers less than x tends asymptotically to $x / \log(x)$ as x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)

Assertion

Ref	Expression			
pnt	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((\underline{\pi} \mathbf{x}) / (\mathbf{x} / (\log \mathbf{x})))) \rightsquigarrow_{r} 1$			
pnt2	$\vdash (\mathbf{x} \in \mathbb{R}^+ \mapsto ((\theta \mathbf{x}) / \mathbf{x})) \rightsquigarrow_r 1$			
pnt3	$\vdash (\mathbf{x} \in \mathbb{R}^+ \mapsto ((\psi \mathbf{x}) / \mathbf{x})) \rightsquigarrow_r 1$			

Highlights

Theorem selberg 19263

Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that $\Sigma n \le x$, $\Lambda(n) \log n + \Sigma m \cdot n \le x$, $\Lambda(m)\Lambda(n) = 2x \log x + O(x)$. Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)

Assertion				
Ref	Expression			
selberg	$- (\mathbf{x} \in \mathbb{R}^+ \mapsto ((\Sigma n \in (1(L^x))((\Lambda^n) \cdot ((\log^n) + (\psi^x(\mathbf{x}/n))))/\mathbf{x}) - (2 \cdot (\log^x)))) \in O(1)$			
selberg2	$\vdash (\mathbf{x} \in \mathbb{R}^+ \mapsto (((((\psi'\mathbf{x}) \cdot (\log'\mathbf{x})) + \Sigma \mathbf{n} \in (1(L'\mathbf{x}))((\Lambda'\mathbf{n}) \cdot (\psi'(\mathbf{x}/\mathbf{n})))) / \mathbf{x}) - (2 \cdot (\log'\mathbf{x})))) \in O(1)$			
selberg3	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto (((((\psi'\mathbf{x}) \cdot (\log'\mathbf{x})) + ((2/(\log'\mathbf{x})) \cdot \Sigma \mathbf{n} \in (1(L'\mathbf{x}))(((\Lambda'\mathbf{n}) \cdot (\psi'(\mathbf{x}/\mathbf{n}))) \cdot (\log'\mathbf{n})))) / \mathbf{x}) - (2 \cdot (\log'\mathbf{x})))) \in O(1)$			
selberg4	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((((\psi'\mathbf{x}) \cdot (\log'\mathbf{x})) - ((2 / (\log'\mathbf{x})) \cdot \Sigma \mathbf{n} \in (1(L'\mathbf{x}))((\Lambda'\mathbf{n}) \cdot \Sigma \mathbf{m} \in (1(L'(\mathbf{x} / \mathbf{n})))((\Lambda'\mathbf{m}) \cdot (\psi'((\mathbf{x} / \mathbf{n}) / \mathbf{m}))))) / \mathbf{x})) \in O(1)$			
selbergr	$\vdash (x \in \mathbb{R}^+ \mapsto ((((R 'x) \cdot (\log 'x)) + \Sigma d \in (1(L 'x))((\Lambda 'd) \cdot (R '(x / d)))) / x)) \in O(1)$			
selberg3r	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((((R \mathbf{x}) \cdot (\log \mathbf{x})) + ((2 / (\log \mathbf{x})) \cdot \Sigma \mathbf{n} \in (1(L \mathbf{x}))(((\Lambda \mathbf{n}) \cdot (R \mathbf{x} / \mathbf{n}))) \cdot (\log \mathbf{n}))) / \mathbf{x})) \in O(1)$			
selberg4r	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((((R \mathbf{x}) \cdot (\log \mathbf{x})) - ((2 / (\log \mathbf{x})) \cdot \Sigma \mathbf{n} \in (1(L \mathbf{x}))((\Lambda \mathbf{n}) \cdot \Sigma \mathbf{m} \in (1(L \mathbf{x} / \mathbf{n})))((\Lambda \mathbf{m}) \cdot (R \mathbf{x} ((\mathbf{x} / \mathbf{n}) / \mathbf{m}))))) / \mathbf{x})) \in O(1)$			
selberg34r	$\vdash (\mathbf{x} \in (1(,) + \infty) \mapsto ((((R^{\mathbf{x}}) \cdot (\log^{\mathbf{x}})) - (\Sigma n \in (1(L^{\mathbf{x}}))((R^{\mathbf{x}}(\mathbf{x} / n)) \cdot (\Sigma m \in \{\mathbf{y} \in \mathbb{N} \mid \mathbf{y} \parallel n\} ((\Lambda^{\mathbf{x}}m) \cdot (\Lambda^{\mathbf{x}}(n / m))) - ((\Lambda^{\mathbf{x}}n) \cdot (\log^{\mathbf{x}}n))) / (\log^{\mathbf{x}}m)) / \mathbf{x})) \in O(1)$			

Theorem pntlemj 19323

Description: Lemma for <u>pnt</u> 19334. The induction step. Using <u>pntibnd</u> 19313, we find an interval in $K \uparrow J...K \uparrow (J + 1)$ which is sufficiently large and has a much smaller value, $R(z) / z \leq E$ (instead of our original bound $R(z) / z \leq U$). (Contributed by Mario Carneiro, 13-Apr-2016.)

	Hypotheses
Ref	Expression
pntlem1.r	$\vdash \mathbf{R} = (\mathbf{a} \in \mathbb{R}^+ \mapsto ((\psi \ \mathbf{a}) - \mathbf{a}))$
pntlem1.a	$\vdash (\varphi \to A \in \mathbb{R}^+)$
pntlem1.b	$\vdash (\varphi \to B \in \mathbb{R}^+)$
pntlem1.l	$\vdash (\varphi \to L \in (0(,)1))$
pntlem1.d	$\vdash \mathbf{D} = (\mathbf{A} + 1)$
pntlem1.f	$\vdash \mathbf{F} = ((1 - (1 / D)) \cdot ((L / (;32 \cdot B)) / (D \uparrow 2)))$
pntlem1.u	$\vdash (\varphi \to U \in \mathbb{R}^+)$
pntlem1.u2	$\vdash (\varphi \to U \le A)$
pntlem1.e	$\vdash \mathbf{E} = (U / D)$
pntlem1.k	$\vdash \mathbf{K} = (\exp \left(\frac{B}{E} \right))$
pntlem1.y	$\vdash (\varphi \to (Y \in \mathbb{R}^+ \land 1 \le Y))$
pntlem1.x	$\vdash (\varphi \to (X \in \mathbb{R}^+ \land Y < X))$
pntlem1.c	$\vdash (\varphi \to C \in \mathbb{R}^+)$
pntlem1.w	$\vdash W = (((Y + (4 / (L \cdot E)))\uparrow 2) + (((X \cdot (K\uparrow 2))\uparrow 4) + (\exp'(((;32 \cdot B) / ((U - E) \cdot (L \cdot (E\uparrow 2)))) \cdot ((U \cdot 3) + C)))))$
pntlem1.z	$\vdash (\varphi \to Z \in (W_{[,}) + \infty))$
pntlem1.m	$\vdash M = ((\lfloor `((\log `X) / (\log `K))) + 1)$
pntlem1.n	$\vdash N = (\lfloor (((\log Z) / (\log K)) / 2))$
pntlem1.U	$\vdash (\varphi \to \forall z \in (Y[,) + \infty)(abs `((R `z) / z)) \le U)$
pntlem1.K	$\vdash (\varphi \rightarrow \forall y \in (X(,) + \infty) \exists z \in \mathbb{R}^+ ((y < z \land ((1 + (L \cdot E)) \cdot z) < (K \cdot y)) \land \forall u \in (z[,]((1 + (L \cdot E)) \cdot z))(abs'((R'u) / u)) \le E))$
pntlem1.o	$\vdash O = (((\lfloor (Z / (K \uparrow (J + 1)))) + 1)(\lfloor (Z / (K \uparrow J)))))$
pntlem1.v	$\vdash (\varphi \to V \in \mathbb{R}^+)$
pntlem1.V	$\vdash (\varphi \to (((K\uparrow J) < V \land ((1 + (L \cdot E)) \cdot V) < (K \cdot (K\uparrow J))) \land \forall u \in (V,]((1 + (L \cdot E)) \cdot V))(abs `((R `u) / u)) \le E))$
pntlem1.j	$\vdash (\varphi \to J \in (M.^N))$
pntlem1.i	$\vdash I = (((\lfloor ((1 + (L \cdot E)) \cdot V))) + 1)(\lfloor (Z / V)))$
	Assertion

Assertion		
Ref Expression		
pntlemj	$\vdash (\varphi \to ((U - E) \cdot (((L \cdot E) / 8) \cdot (\log 'Z))) \le \Sigma n \in O(((U / n) - (abs '((R '(Z / n)) / Z))) \cdot (\log 'n))))$	

Highlights

Theorem dvfsumrlim 18035

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if $x \in S \mapsto B$ is a decreasing function with antiderivative A converging to zero, then the difference between $\Sigma k \in (M...(L x))B(k)$ and $A(x) = \int u \in (M[,]x)B(u) du$ converges to a constant limit value, with the remainder term bounded by B(x). (Contributed by Mario Carneiro, 18-May-2016.)

Ref	Expression
dvfsum.s	$\vdash S = (T(,) + \infty)$
dvfsum.z	$\vdash Z = (\mathbb{Z}_{\geq} `M)$
dvfsum.m	$\vdash (\varphi \rightarrow M \in \mathbb{Z})$
dvfsum.d	$\vdash (\varphi \rightarrow D \in \mathbb{R})$
dvfsum.md	$\vdash (\varphi \to M \le (D+1))$
dvfsum.t	$\vdash (\varphi \rightarrow T \in \mathbb{R})$
dvfsum.a	$\vdash ((\varphi \land \mathbf{x} \in S) \to A \in \mathbb{R})$
dvfsum.b1	$\vdash ((\varphi \land x \in S) \to B \in V)$
dvfsum.b2	$\vdash ((\varphi \land \mathbf{x} \in Z) \to B \in \mathbb{R})$
dvfsum.b3	$\vdash (\varphi \to (\mathbb{R}\mathbf{D}(\mathbf{x} \in S \mapsto A)) = (\mathbf{x} \in S \mapsto B))$
dvfsum.c	$\vdash (\mathbf{x} = \mathbf{k} \to B = C)$
dvfsumrlim.l	$\vdash ((\varphi \land (x \in S \land k \in S) \land (D \le x \land x \le k)) \to C \le B)$
dvfsumrlim.g	$\vdash G = (\mathbf{x} \in S \mapsto (\Sigma \mathbf{k} \in (M(L'\mathbf{x}))C - A))$
dvfsumrlim.k	$\vdash (\varphi \to (\mathbf{x} \in S \mapsto B) \twoheadrightarrow_r 0)$
	Assertion

Hypotheses

Assertion	
Ref	Expression

Theorem dchrmusum 19239

Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by *n*, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)

Hypotheses		
Ref	Expression	
rpvmasum.z	$\vdash \mathbf{Z} = (\mathbb{Z}/n\mathbb{Z} \mathbf{N})$	
rpvmasum.l	$\vdash L = (\mathbb{Z} R Hom `Z)$	
rpvmasum.a	$\vdash (\varphi \rightarrow N \in \mathbb{N})$	
dchrmusum.g	$\vdash \mathbf{G} = (\text{DChr } \mathbf{N})$	
dchrmusum.d	$\vdash D = (\text{Base '}G)$	
dchrmusum.1	$\vdash \underline{1} = (0_g `G)$	
dchrmusum.b	$\vdash (\varphi \to X \in D)$	
dchrmusum.n1	$\vdash (\boldsymbol{\varphi} \to \boldsymbol{X} \neq \underline{1})$	

Hypotheses

Assertion

Ref	Expression
dchrmusum	$\vdash (\varphi \to (x \in \mathbb{R}^+ \mapsto \Sigma n \in (1(L'x))((X'(L'n)) \cdot ((\mu'n)/n))) \in O(1))$
dchrvmasum	$\vdash (\varphi \to (x \in \mathbb{R}^+ \mapsto \Sigma n \in (1(L'x))((X'(L'n)) \cdot ((\Lambda'n)/n))) \in O(1))$

Questions