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Metamath
• A computer language for representing mathematical proofs

• The Metamath spec is two pages, one verifier exists in 75 lines of Mathematica
• Eight independent verifiers exist in eight different languages
• Two proof assistants (MM-PA and mmj2) with another (smm3) in development
• (Tomorrow I will talk about the theoretical underpinnings of Metamath)

• A project to formalize modern mathematics from a simple foundation

• Main database is set.mm (ZFC set theory)
• Over 28000 proofs, 500K lines, 29M file



The prime number theorem

• 𝜋𝜋 𝑥𝑥 is the Gauss prime 𝜋𝜋 function, the number of primes ≤ 𝑥𝑥 (where 𝑥𝑥 ∈ ℝ)

• 1 , + ∞ = 1,∞ is the open interval from 1 to ∞

• 𝑥𝑥 ∈ 𝐴𝐴 ↦ 𝐵𝐵 𝑥𝑥 is the mapping/lambda operation (produces a function on the given domain)

• 𝐹𝐹 ⇝𝑟𝑟 𝑎𝑎 means that lim
𝑥𝑥→∞

𝐹𝐹 𝑥𝑥 = 𝑎𝑎

http://us.metamath.org/mpeuni/pnt.html



The prime number theorem
• First conjectured by Legendre in 1797

• First proof in 1896 by Jacques Hadamard and Charles Jean de la Vallée-Poussin (independently)
• Uses complex analysis and properties of the Riemann 𝜁𝜁 function

• Two “elementary” proofs discovered by Erdős and Selberg (sort of independently) in 1949

• First formal proof by Jeremy Avigad et. al. in 2004 in Isabelle
• Targets Selberg’s proof

• Later formal proof by John Harrison in 2009 in HOL Light
• Targets Hadamard / Vallée-Poussin proof

• This proof uses Selberg’s method



Dirichlet’s theorem

• 𝐴𝐴 gcd 𝐵𝐵 = gcd 𝐴𝐴,𝐵𝐵 is the greatest common divisor

• 𝑚𝑚 ∥ 𝑛𝑛 is the divides relation on integers, so 𝑁𝑁 ∥ 𝑝𝑝 − 𝐴𝐴 means 𝑝𝑝 ≡ 𝐴𝐴 mod 𝑁𝑁

• 𝑆𝑆 ≈ ℕ means 𝑆𝑆 is equinumerous to ℕ, i.e. 𝑆𝑆 is infinite

• ℙ is the set of prime numbers, ℕ is the positive integers, ℤ is the integers



Dirichlet’s theorem
• Partial proof (case 𝐴𝐴 = 1) by Euler

• First complete proof by Dirichlet in 1837

• First formal proof by John Harrison in 2010 in HOL Light



Why these two?
• Similar subject, some common theorems

• Same proof style (asymptotic approximation of finite sums)

• Both are Metamath 100 formalization targets (Freek Wiedijk)
• Currently 58 out of 100 proven



Definitions used
• In keeping with Metamath conventions, very few new definitions were used for these 

theorems
• Definitions are only made when they “pay for themselves” in shortening theorem proofs and/or 

expression sizes

• df-sum: finite sums of complex numbers ∑𝑘𝑘∈𝐴𝐴𝐵𝐵 𝑘𝑘

• df-ppi: prime 𝜋𝜋 function, 𝜋𝜋 𝑥𝑥 = # ℙ ∩ 0, 𝑥𝑥

• df-cht: Chebyshev function 𝜃𝜃 𝑥𝑥 = ∑𝑝𝑝≤𝑥𝑥 log𝑝𝑝

• df-vma: von Mangoldt function Λ 𝑝𝑝𝛼𝛼 = log𝑝𝑝

• df-chp: Chebyshev function 𝜓𝜓 𝑥𝑥 = ∑𝑛𝑛≤𝑥𝑥 Λ 𝑛𝑛

• df-mu: Möbius function 𝜇𝜇 𝑛𝑛 = −1 #{𝑝𝑝∈ℙ ∣ 𝑝𝑝∥𝑛𝑛}



Definitions used
• In keeping with Metamath conventions, very few new definitions were used for these 

theorems
• Definitions are only made when they “pay for themselves” in shortening theorem proofs and/or 

expression sizes

• df-dchr: Group of Dirichlet characters

• df-o1: Set of eventually bounded
functions 𝑓𝑓 𝑥𝑥 = 𝑂𝑂 1

• df-lo1: Set of eventually upper
bounded functions 𝑓𝑓 𝑥𝑥 ≤ 𝑂𝑂 1



Definitions used
• A trick: Temporary definitions



Statistics & Comparison
• Dirichlet: 55 theorems, PNT: 83 theorems

• Dirichlet: 8992 proof steps, PNT: 35549 proof steps

• Both proofs were done over a seven week period

• de Bruijn factors 19.9, 7.67 are higher than usual
• proofs not proof scripts

• Verification is thousands of
times faster
• New verifier smm3 can verify

set.mm in 0.54 s
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