
FrameIT Reloaded: Serious Math Games from
Modular Math Ontologies

Denis Rochau, Michael Kohlhase, and Dennis Müller

Computer Science, Jacobs University, Bremen, Germany

Abstract. Serious games are an attempt to leverage the inherent moti-
vation in game-like scenarios for an educational application and to trans-
pose the learning goals into real-world applications. Unfortunately, seri-
ous games are also very costly to develop and deploy. For very abstract
domains like mathematics, already the representation of the knowledge
involved becomes a problem.
We propose the FrameIT method that uses OMDoc/MMT theory graphs
to represent and track the underlying knowledge in serious games. In
this paper we report on an implementation and experiment that tests
the method. We obtain a simple serious game by representing a “word
problem” in OMDoc/MMT and connect the MMT API with a state-
of-the-art game engine that “plays” the problem/knowledge exploration
process.

1 Introduction

Serious games could be a potential solution to the often-diagnosed problem that
traditional education via personal instruction and educational documents has
serious scalability, subject specificity, and motivation limitations. A serious game
is ”a mental contest, played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate training, education,
health, public policy, and strategic communication objectives” [Zyd05]. Serious
games have the power to effectively supplement technical documents and online
courses and thereby allow students to learn how to apply their knowledge to real
world scenarios. Moreover, serious games very elegantly solve the motivation
problem many people experience when studying technical subjects. Through
gamification [Det+11] a serious game can be very entertaining while at the same
time providing educational value to the user. Unfortunately, serious games are
currently either very complex, domain specific, and expensive applications or lack
the necessary complexity to effectively facilitate learning of complex subjects like
mathematics.

To alleviate this, we propose the FrameIT method [KK12] which uses math-
ematical knowledge management techniques (MKM) to map a real world sce-
nario to its theoretical basis. In this paper we report on an implementation and
experiment that tests the method. We obtain a very simple serious game by
representing a “word problem” in OMDoc/MMT and connect the MMT API
with a state-of-the-art game engine. This paper is a short version of [Roc16], to
which we refer for details.

2 Preliminaries

Before we can explain the FrameIT method in detail we need to establish a
clear and common understanding of the OMDoc/MMT format and Learning
Object Graphs as they form the basis of the method.

3 Learning Object Graphs as OMDoc/MMT Theories

To realize our implementation we are going to use the OMDoc/MMT lan-
guage [RK13], which is implemented MMT system (Meta-Meta-Tool) [Rab13],
as a foundation independent logic framework that allows us to create logic pow-
ered applications. OMDoc/MMT consists of theories, symbols, and objects which
are related to each other by typing and equality. A theory in OMDoc/MMT is
defined as a list of symbol declarations, where each symbol declaration is of the
form c[: t][= d][#N], where c is the symbol identifier, the objects t and d are its
type and definiens, and N its notation. MMT objects over a theory are formed
from the symbols available to the theory. Moreover, theories can represent, via
the Curry-Howard correspondence, judgments, inference rules, axioms, and the-
orems. A theory morphism for two theories A and B is a morphism m : A→ B
that relates both theories to each other by mapping every symbol from the theory
A to a symbol in the theory B.

Theories and theory morphisms together form multigraphs, which we call
theory graphs, that relate different theories to each other. In such a theory
graph we have two different kinds of edges: views and inclusions. Inclusions
allow us to combine and reuse multiple theories by including them in an in-
heritance style fashion while views allow us ”to link two pre-existing theories”
given that ”all the source axioms are theorems of the target theory” [Koh14].
Furthermore, inclusions cannot form a cycle in a theory graph, while views can.

We will use theory graphs as learning object graphs in the FrameIT con-
text. They form the fundamental basis for the FrameIT method as they allow us
to relate different learning objects with each other in a machine understandable
and logical way [KK12].

i1 i2

f g

P

A B

C

Fig. 1. Pushout

As theories and theory morphisms form a category with
certain colimits, MMT is able to derive a pushout from two
theories A and B it exists. A pushout takes two theory
morphisms f : C → A and g : C → B and produces a
theory P and two morphisms i1 : A→ P and i2 : B → P
such that the square commutes (Figure 1). Intuitively, the
pushout P is formed as the union of A and B so that they
share exactly C. [Rab15]

In the current version of MMT the result of a pushout
is a new MMT theory that contains a set of simplified
declarations. Lastly, MMT provides us with several ways of developing services
and applications on top of it, we can either use the RESTful interface, develop
MMT plugins in Java/Scala [Rab13] or directly execute a Scala script via the
MMT shell.

3.1 Unreal Engine

The Unreal Engine is a game engine that provides game developers with the nec-
essary tools to design and build games, simulations, and visualizations [Inc16].
The provided tools include a rich game editor that lets the developer to manage
game assets, create the game user interface and build up the game environment.

The functionality of a game can be developed in C++ and/or by blueprint
visual scripting. Another important feature of the Unreal Engine 4 is its platform
independence, which allows us to deploy our project to nearly all platforms. This
is crucial for future development as it enables us to target a larger audience. The
engine supports plugins and the complete source code of the engine is available
on GitHub, which could allow us in the future to include support for MMT
natively.

4 The FrameIT Method

The central idea of this new approach to serious games is to use the FrameIT
method to frame real world problems in our serious game environment as ab-
stract problems [KK12]. We have extended and refined this method to address
the shortcomings revealed during its implementation.

Word Problem Game Problem

How can you mea-
sure the height of a
tree you cannot climb,
when you only have a
laser angle finder and a
tape measure at hand?

Fig. 2. Example Problem

The primary ob-
jective of this method
is to provide stu-
dents with a new way
of applying their do-
main knowledge to
real problems. It is
not intended as the
primary way of ob-
taining new knowl-
edge. Students are still
expected to acquire
new knowledge through personal instruction, by reading technical documents
or by taking online courses. Nevertheless, our method helps the user to retain
and understand the learned material. To exemplify the FrameIT method we want
to illustrate its application on a concrete example problem – finding the height
of a tree (see Figure 2).

In this example, we assume that the user has recently learned about trigonom-
etry. Thus, the user might realize, after thinking about the problem, that they
can map the real world problem to a simple trigonometry problem. This process
of discovering a mapping between real world problems and abstract problems is
exactly what the user should learn/train by playing our serious game.

This problem is similar to what many students might find in their math-
ematics textbook when they first learn about trigonometry. In addition, many
textbooks might even provide small diagrams to visualize the problem. While this

method of presenting problems to students is acceptable for elementary prob-
lems, it is an inadequate approach for more complicated compound problems
which are harder for students to understand and solve. Additionally, traditional
mathematics textbook problems often focus on the computational aspects of
solving problems, rather than on the more conceptual aspects that are underly-
ing these computational solutions.

Our method allows students to explore a problem in its entirety in the game
world. We will see below that being able to explore the game world and our
method itself allows students to understand and solve even more complex prob-
lems in a step by step fashion. Furthermore, the focus of our method is not to
train the ability of students to evaluate mathematical expressions, but instead
their ability to apply their knowledge to real world problems. Thus, in our game
any computational results are provided by MMT or the game itself.

Figure 3 shows the complete learning object graph1 associated with the prob-
lem from Figure 2. It is partitioned into a game world side and MMT side. The
game world side shows the different parts of the serious game the user is able to
interact with, while the MMT side contains the learning object graph that pow-
ers the serious game and allows our approach to work. Additionally, the MMT
side is subdivided into two separate sections, where the first section represents
the current user knowledge and the second section represents the new knowledge
that should be obtained by the learner. Actually, this separation is made for ex-
planatory purposes only. In practice these sections are part of the same theory
graph.

4.1 Game World Side (User Perspective)

On the game world side, the user is prompted to solve a given problem, here to
find the height of a tree. Before trying to solve the problem at hand the user
is able to explore his or her surroundings to accustom himself or herself with
the problem and to think about possible approaches. In particular the user has
to register facts about the world they are in. In the beginning, a user knows
nothing about the world and so their list of registered facts is empty. However,
the user can obtain new facts about the world by using scrolls or the a set of
gadgets provided.

In our method scrolls are a mechanism to obtain new facts about the world
from existing ones. A scroll is a game object that contains mathematical expla-
nations and conditions that need to be satisfied in order for the given scroll to
produce a new fact about the world. The name “scroll” is meant to evoke the
fact that the knowledge contained in it is a valuable commodity in the game.
Eventually scrolls are objects that can be found, traded, and earned. From a
logical perspective a scroll acts like a complex inference rule that encapsulates
a theorem or definition. To apply a given scroll, the user has to map a subset of
the facts they obtained about the world to the contents of the specific scroll.

1 We have glossed the contents of the theories and partially visualized them by dia-
grams, for the actual content see Figure 4.

Generate [0]

Generate [3]

Generate [2]Fact Discovery

Interaction

ϕ

[π/p]
[A/a]
[B/b]
[C/c]

[|AB|/|ab|]
[∠CAB/∠cab]


=: ϕ

Generate [1]

Game World
User Knowledge New Knowledge

MMT

Game Solution

A

C

B

D

α AB

h = 10.0m

Game Problem

h =?

Explored World

A

C

B

D

h =?

Scrolls

find
a b

c
such that ab ⊥ bc then

a b

c

α
→ |bc| = |ab| · tan(α)

Solution Pushout

A

C

B

D

α AB

|BC| = 10.0 · tan(45◦) = 10.0

Situation Theory

A

C

B

D

α AB

Situation Theory

A,B,C : point
|AB| : R = 10.0
∠CAB : R = 45◦

π : ` AB ⊥ BC

Solution Theory

a b

c

α

|bc| = |ab| · tan(∠cab)

Problem Theory

a b

c

p : ` ab ⊥ bc

Forestry

vertical (tree)
horizontal (ground)

...

Planar Geometry

point : type
line : point → point → line

|ab| : line → R
⊥ : line → line → bool

...

Fig. 3. Learning Object Graph Example

As scrolls require facts as their input, the user has to first use some of the
provided gadgets to determine properties of the world and the objects within it.
A gadget is a game object that can either produce new facts solely by interacting
with the world itself or by relating existing facts to each other and thereby
providing additional information. For instance, the pointer gadget marks a
point in the game world and produces a new fact, which simply declares the
existence of a point with the specified name. Based on this the user can relate
two different point facts to each other by measuring the distance between them
with a measuring tape gadget. The laser angle finder gadget to measure
angles between three different marked points. The result of the exploration is
visualized on the left hand side of Figure 3.

Didactically, the game world situation is rigged so that the user cannot solely
rely on the provided gadgets to solve the given problem. Instead they need to

use scrolls to discover new facts about the world. In our example, the user
cannot climb the tree and therefore not measure its height directly with the
provided measuring tape gadget. In the problem at hand, the user could chose
the trigonometry scroll at the bottom Figure 3 which provides the length of
the opposite side of a right angle triangle given the angle and the length of the
adjacent side.

In this situation, the FrameIT methods works as follow: The user uses the
marking gadget to mark multiple points in the game world, such as a point A
at his or her current location, a point B at the base of the tree and a point C
at the top of the tree. The user proceeds by using the laser angle finder gadget
to measure the angle between the points C, A and B and the measuring tape
is used to determine the distance between the point A and the B. Lastly, the
user maps the obtained facts to the contents of the scroll by assigning points
A, B, C to the required point a, b, and c in the scroll. If the perpendicularity
condition is met, the scroll is applicable and will produce a new fact, otherwise
it will provide the user with an explanation of why the scroll was not applicable2

Finally
Lastly, the user has to assign a given fact as the solution of the problem. In

our case they have to declare that the newly obtained fact about the distance
between the points B and C represent the height of the tree. The game is then
going to check this answer and if the user solved the problem correctly it is going
to congratulate the user on the correct solution. Otherwise, the game will show
them the flaws in their approach in order to facilitate learning.

4.2 OMDoc/MMT: Framing Situations and Pushing Out Solutions

The concrete knowledge registered by the user and abstract mathematical knowl-
edge are jointly represented in a modular theory graph in OMDoc/MMT – see
the right side of Figure 3.

We formalize the current list of registered facts into the Situation Theory,
which is extended after any exploratory action of the user: Each discovered
fact is translated from its representation in the game to a symbol declaration
in MMT. For instance, the marked point A in the game world has underlying
data structures associated with it and through this generation step we distill the
elaborate game data structures into one symbol declaration, that declares a new
constant symbol A of type point.

To fix the meaning of declarations in the situation theory, it includes several
other theories by using inclusion theory morphisms. These imported theo-
ries are either theories that contain additional user knowledge about the world
or base theories that provide us with the essential declarations to build up more
sophisticated theories. In our example one of the included user knowledge theo-
ries could be a forestry theory which specifies properties of forests and trees,
known to the user, such as that a tree is vertical and the ground is normally

2 Generating helpful explanations in case of failure was left to future work. It is clear
that scrolls can be extended suitably, e.g. via the techniques put forward in [GM08].

horizontal. A common base theory could be a planar geometry theory that
provides us with declarations for points and lines.

Thus a situation theory and its included theories only represent the cur-
rent user knowledge about the world. To discover new facts about the world we
need to frame the current user knowledge to a problem/solution pair [KK12]
that produces new facts about the world. A problem/solution pair consists of
two theories, the problem theory and the solution theory and an inclusion
morphism between them. A problem theory contains a formal definition of an
abstract (mathematical) problem, while the solution theory contains the corre-
sponding solution to the problem. In other words, the problem theory specifies
the required facts that are needed as an input for a scroll and the solution theory
specifies the new facts that will be obtained as an output. Therefore, a prob-
lem/solution pair acts similarly to a mathematical function. In Figure 3 one can
see an example for a problem/solution pair in the red box on the right hand side.
Similar to the situation theory, the problem theory is supported by the inclusion
of several other theories such as the planar geometry theory. In fact these are
important for the application of the mathematics to the situation.

In order to compute a new fact from a given problem/solution pair, we need
to create an assignment (ϕ) that maps the given information from the situa-
tion theory to the correct problem theory. Moreover, this assignment can be
understood as specifying the input parameters to a mathematical function. As
described in subsection 4.1 the user specifies this assignment with his or her in-
teraction between the chosen scroll and the explored world. On the MMT side,
this interaction is used to generate a view between the situation theory and the
problem theory. In our example, this view needs to assign a symbol declara-
tion from the situation theory to the corresponding symbol declaration in the
problem theory. For instance, the points (A, B, C) in the situation theory are
assigned to the respective points (a, b, c) in the problem theory. Obviously, the
view between a problem theory and a situation theory is going to depend purely
on which scroll a user chooses, as the assignment will be generated from this
interaction.

From the generated situation theory, the appropriate problem/solution pair
and a view between the situation theory and the problem theory, MMT is able
to produce a corresponding solution pushout. A pushout is only successfully
produced if the view between the situation theory and the problem theory is total
and appropriate. For instance, if we generate the same view but the lines AB and
BC are not perpendicular in our situation theory, then the problem/solution pair
is not applicable, because the assignment fails to be a total view. Fortunately, the
solution pushout is successful in our example and the resulting theory contains
a new symbol declaration that defines the length of the line segment BC. Lastly,
the solution pushout theory is used to add the newly obtained facts to the list
of facts in the game itself. These newly obtained facts can then be used by
the user to either solve the problem at hand or as the inputs for further scroll
applications.

4.3 Scrolls

Scrolls allow the user to discover new facts about the world. Thus, they form
the primary link between the Game World and the logic engine. Given the need
for scrolls, we would like to generate them from the predefined problem/solution
pairs.

Solution Theory

|bc| = |ab| · tan(∠CAB)

Problem Theory

a,b,c : point
|ab| : R
∠cab : R
p : ` ab ⊥ bc

Solution Theory Visualization

a b

c

α

Problem Theory Visualization

a b

c

Fig. 4. Problem Solution Pair Extension

While the current form of
problem/solution pairs works
perfectly for our present im-
plementation, for future imple-
mentations and for the genera-
tion of scrolls they need to be
extended and refined. The goal
behind this extension would be
to include visualization theories
that allow us to display the ab-
stract problem and its solution
effectively in the game as well
as on the scroll itself. Such an
extension of problem/solution
pairs could look similar to Figure 4.

A scroll consists of two major parts. The first part of a scroll is a docu-
ment that contains mathematical explanations in natural language in addition
to diagrams that illustrate the concepts. This document could be generated non-
dynamically by an extension of STEX [Koh08] we tentatively call ScrollTEX. In
the game itself this document should be displayed each time the user inspects the
scroll. The second part of a scroll is a set of machine readable information that
specifies exactly what kind of facts a scroll requires for its application and what
kind of facts it is going to produce as an output. The OMDoc format [Koh06]
might be the ideal format here as it allows us to store formal and informal
information in a highly interrelated form and generate active mathematical doc-
uments [Koh+11].

The FrameIT method supports compound problems directly. Each subprob-
lem of a compound problem can be solved by discovering the required facts for
the solution of the subproblems through successive scroll application and tool
usage. The facts representing the solution of the subproblems can then be related
to each other in exactly the same way, which in turn allows the user to solve the
problem in its entirety. In this section we presented a simplified example, but it
is not difficult to think of more advanced examples that require multiple scroll
applications.

5 Design and Implementation

To evaluate the refined FrameIT method, we designed and implemented a proof
of concept serious math game that demonstrates our method. Moreover, this

first implementation allows us to critically assess the method and to discover
any shortcomings.

5.1 MMT

User

Game (Unreal Engine)

MMT

interact

generate theories pushout

Fig. 5. System Architecture

On the MMT side we created the respective
theories for the theory graph seen in Figure 3.
The basis (meta-theory) of all of our theories
is formed by a higher-order logic theory, which
allows us to declare multiple different types and
provides us with the basic logical quantifiers
and semantics.

Fundamental Theories For the FrameIT
method we require a set of fundamental theories
on which we can base the higher level theories
such as the situation theory or the problem/so-
lution pairs. Thus, we implemented a real num-
ber theory and an Euclidean geometry theory
for our proof of concept implementation.

The geometry theory makes use of the real number theory to implement other
types such as vectors and lines in similar fashion. Given these two theories we
are able to form precise propositions about the world and the problems within
it. Obviously, these fundamental theories are incomplete and in order for them
to handle more complicated scenarios they need to be extended in the future.

Problem Solution Pairs The problem theory simply (see Figure 3) contains
a list of propositions that are needed by the solution theory to solve the prob-
lem. The solution theory includes the problem theory and contains additional
declarations that specify the solution to the abstract problem. In other words
the problem theory specifies the ”input” of a function while the solution theory
specifies the ”output”. The problem and solution theory implementations can
be seen in Figure 6. Although our implementation is based on the example pre-
sented in section 4, we deviate slightly from it as we are actually requiring the
user to proof explicitly that the scroll is applicable. Hence, our problem/solu-
tion pair contains an additional declaration (an axiom), the angle between the
ground and the tree, which needs to be provided by the user.

Situation Theories and Framing In order to determine the requirements for
the situation theory and the view between the problem theory and the situation
theory we implemented an example situation theory and view. The situation
theory contains the observed facts and their values and the example view assigns
every declaration in the problem theory a declaration from the situation theory.

namespace http://cds.omdoc.org/FrameIT M

theory problem theory : ?geometry =

Pa : Vec3D D

Pb : Vec3D D

Pc : Vec3D D

anglePaPbPc value : R D

anglePaPbPc : ` (∠ Pa Pb Pc)
.
= anglePaPbPc value D

anglePcPaPb value : R D

anglePcPaPb : ` (∠ Pc Pa Pb)
.
= anglePcPaPb value D

lineSegPaPb value : R D

lineSegPaPb : ` (lineSegmentLength Pa Pb)
.
= lineSegPaPb value D

proof : ` ((<Pa, Pb>) ⊥ (<Pb, Pc>)) D M

theory solution theory : ?geometry

include = ?problem theory D

lineSegPbPc value : R O = (tan anglePcPaPb value) ∗ lineSegPaPb value D

lineSegPbPc : ` (lineSegmentLength Pb Pc)
.
= lineSegPbPc value D M

Fig. 6. MMT Problem and Solutions Theories

5.2 Game (Unreal Engine)

We only focus on the parts of the implementation relevant to the FrameIT method
and not on the auxiliary parts such as the creation of the landscape.

The problem exploration gadgets are implemented classes in the grame en-
gines based on as C++ classes for the different kinds of facts a user can discover.
Each of these classes contains methods that can serialize that fact into the OM-
Doc format. Moreover, the game stores each of these facts in a list which we call
the fact list. Whenever the game needs to produce a situation theory it iterates
through this list to serialize each fact to the OMDoc format.

The most important of those tools is the point marking tool as the player
can use it to create a point fact by simply marking a location. This has two
different marking modes. The first mode allows the user to simply mark any
location he or she points to, while the second mode can be used to mark specific
spots on what we call semantic actors. Figure 7 shows the point marking tool in
action: Semantic Actors are game objects that contain additional information
and methods that allow them to interact in a more specific way with the user
and his or her available tools. To illustrate, the tree in our example problem is
a semantic actor, which allows the user to mark exactly the bottom and top of
the tree with his or her point marking tool. If the tree would not be a semantic
actor then marking exactly the top and bottom of the tree would be incredible

difficult. Fortunately, it is a semantic actor which allows the user to select the
points by simply marking a point close to the actual top or bottom of the tree.

Fig. 7. Point Marking Tool

The measurements obtained with the distance measuring tool are in Unreal
Units, which is the basic unit of length in the Unreal Engine. One Unreal Unit
is equivalent to one centimeter. All of the facts the user discovers by using all of
his or her tools are displayed as a list in the top left hand corner of the game.

As one can see in Figure 8 by measuring facts about the world the user’s fact
list grows gradually.

Fig. 8. Measuring Facts about the World

After measuring all facts the user can enter the View Mode in which they
assign for each fact required by the scroll a fact from the fact list. During this
assignment process a mapping between scroll facts and facts from the user’s
fact list is created. After the assignment is completed the mapping is serialized
into OMDoc. At the same time the user’s fact list is serialized into an OMDoc
situation theory. Next, the generated OMDoc is passed on to MMT, which takes
these theories and uses them to compute a solution pushout. If the pushout
was successful then MMT produces a new theory that is subsequently parsed
by the game. Through parsing this theory the necessary information needed to
create the resulting facts is extracted and used to populate the fact list with the
newly obtained facts. In case the pushout was unsuccessful an error message is
displayed. The result of a successful pushout can be seen in Figure 9. In this
specific case the user has now determined that the height of this tree is 875
centimeters and thus the user has successfully solved the problem.

Fig. 9. Scroll Result

6 Conclusion and Future Work

The proof of concept implementation and our experiment the method shows
that it is indeed possible to use mathematical knowledge management techniques
(MKM) to map a real world scenario to its theoretical basis. This suggests that
the FrameIT method can be used as a framework for creating full-fledged serious
math games.

Separation of Necessary Skills Crucially, the framework keeps many parts of a
serious game generic. As a consequence, the development of new games (and
extensions to existing ones) naturally separates into three independent tasks:
the development of i) didactic game situations, ii) learning objects (real-world

problems, problem-solutions pairs and base theories) as mathematical theories
in OMDoc/MMT, and finally iii) semantic actors and exploration gadgets. The
first is a high-level, transdisciplinary design task that results in the storyboard
for a serious game. For the implementation ii) only requires the skills of math
educators trained in OMDoc/MMT formalization, while iii only needs regular
game realization skills. In particular, the mathematics didactics and games re-
alisation tasks are well-separated by the FrameIT framework, which promises
to greatly simplify the realization phase. Based on our experience, realizing an-
other “word problem-type” game problem is the work of one or two days for an
individual trained in OMDoc/MMT formalization and we estimate the develop-
ment of a new, non-trivial semantic actor or gadget to be in the same range.
Of course this greatly depends on the availability of foundational theories and
game components; fortunately, these are developments that can be shared and
accumulated by an open community.

Limitations While we can already demonstrate the FrameIT method, we are
still missing some integral parts such as the automatic generation of scrolls as
discussed in section 4.3. Furthermore, we are currently not generating detailed
explanatory texts in case MMT is unable to produce a pushout or the user was
unsuccessful in solving the problem. Future implementations should address this
by providing the user with helpful hints and error messages that allow the user
to learn from his or her mistakes. Lastly, we would like to allow the user to be
able to use his or her knowledge directly. For instance, a user should be able to
create his or her own scrolls in the game by providing a proof that his or her
envisioned scroll is mathematically sound.

Finally, the current lack of content does not yet allow us to demonstrate the
ability of the FrameIT method to support compound problems. But the fact that
scroll-based fact extension is essentially the same as theorem proving – which is
one of the activities the MMT tool was designed for suggests that this should
be very easy to achieve.

Availability & Future work Future work should also focus on the gamification
aspects and the user interface of the game itself, as the current interaction be-
tween the user and the game is not ideal. For instance, the interface for assigning
views is not optimal as we are selecting facts from a list of facts instead of se-
lecting them directly in the game world. Hence, we would like to improve the
user interface to make the game more intuitive and attractive for the user. Fur-
thermore, we are currently not visualizing facts about angles or distances in the
game world. Utilizing the results of human computer interaction research could
allow us to resolve these issues effectively and thereby increase the usability of
our serious math game.

While our implementation successfully connects MMT and the Unreal En-
gine, there still exists a plethora of software engineering challenges to make trans-
ferring knowledge between the system smoother and more efficient. Integrating
MMT directly into the Unreal Engine could solve many of these challenges and

improve the performance of the system. Additionally, it would allow other se-
rious game developers to use the services provided by MMT directly. Such an
integration could use the Semantic Alliance framework [Dav+12] as its basis and
adapt it for the Unreal Engine.

The current implementation is released under the MIT License and is avail-
able at https://github.com/KWARC/FrameIT, while the OMDoc/MMT content
can be found at https://gl.mathhub.info/groups/FrameIT. As a first step we
want to stabilize the system and extend the content (game situations and OM-
Doc/MMT formalizations) to a point, where we can start designing coherent
serious games from the collection of problems.

No Evaluation Yet The work reported on in this paper only constitutes of proof-
of-concept for the FrameIT method. In particular, the system is not currently in
a shape that we could qualitatively and quantitatively analyze the usefulness
and usability of the developed serious math game, which was the motivation of
the FrameIT method in the first place.

Acknowledgements The development of the FrameIT method has profited from
discussions in the KWARC group at Jacobs University, in particular from con-
tributions by Mihnea Iancu and Andrea Kohlhase.

References

[Dav+12] Catalin David et al. “Semantic Alliance: A Framework for Se-
mantic Allies”. In: Intelligent Computer Mathematics. Ed. by Johan
Jeuring et al. LNAI 7362. Berlin and Heidelberg: Springer Verlag,
2012, pp. 49–64. url: http://kwarc.info/kohlhase/papers/

mkm12-SAlly.pdf.
[Det+11] Sebastian Deterding et al. “From Game Design Elements to Game-

fulness: Defining ”Gamification””. In: Proceedings of the 15th Inter-
national Academic MindTrek Conference: Envisioning Future Media
Environments. MindTrek ’11. Tampere, Finland: ACM, 2011, pp. 9–
15. doi: 10.1145/2181037.2181040.

[GM08] George Goguadze and Erica Melis. “Feedback in ActiveMath Ex-
ercises”. In: International Conference on Mathematics Education
(ICME). 2008.

[Inc16] Epic Games Inc. Unreal Engine 4. https://www.unrealengine.com/.
2016. url: https://www.unrealengine.com/ (visited on 02/27/2016).

[KK12] Andrea Kohlhase and Michael Kohlhase. “Frames: Active Exam-
ples for Technical Documents”. 2012. url: http://kwarc.info/
kohlhase/submit/activeex-2012.pdf.

https://github.com/KWARC/FrameIT
https://gl.mathhub.info/groups/FrameIT
http://kwarc.info/kohlhase/papers/mkm12-SAlly.pdf
http://kwarc.info/kohlhase/papers/mkm12-SAlly.pdf
http://dx.doi.org/10.1145/2181037.2181040
https://www.unrealengine.com/
http://kwarc.info/kohlhase/submit/activeex-2012.pdf
http://kwarc.info/kohlhase/submit/activeex-2012.pdf

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active
Documents for STEM”. In: Procedia Computer Science 4 (2011):
Special issue: Proceedings of the International Conference on Com-
putational Science (ICCS). Ed. by Mitsuhisa Sato et al. Finalist at
the Executable Paper Grand Challenge, pp. 598–607. doi: 10.1016/
j.procs.2011.04.063.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug.
2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”.
In: Mathematics in Computer Science 2.2 (2008), pp. 279–304. url:
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf.

[Koh14] Michael Kohlhase. “Mathematical Knowledge Management: Tran-
scending the One-Brain-Barrier with Theory Graphs”. In: EMS Newslet-
ter (June 2014), pp. 22–27. url: http : / / www . ems - ph . org /

journals/newsletter/pdf/2014-06-92.pdf.
[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: CoRR

abs/1306.3199 (2013). url: http://arxiv.org/abs/1306.3199.
[Rab15] Florian Rabe. “Theory Expressions (a Survey)”. submitted. 2015.
[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”.

In: Information & Computation 0.230 (2013), pp. 1–54. url: http:
//kwarc.info/frabe/Research/mmt.pdf.

[Roc16] Denis Rochau. “FrameIT Reloaded: Serious Math Games from Logic”.
B. Sc. Thesis. Jacobs University Bremen, 2016.

[Zyd05] M. Zyda. “From visual simulation to virtual reality to games”. In:
Computer 38.9 (2005), pp. 25–32. doi: 10.1109/MC.2005.297.

http://dx.doi.org/10.1016/j.procs.2011.04.063
http://dx.doi.org/10.1016/j.procs.2011.04.063
http://omdoc.org/pubs/omdoc1.2.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
http://www.ems-ph.org/journals/newsletter/pdf/2014-06-92.pdf
http://www.ems-ph.org/journals/newsletter/pdf/2014-06-92.pdf
http://arxiv.org/abs/1306.3199
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://dx.doi.org/10.1109/MC.2005.297

