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Preface

This joint volume of proceedings gathers together papers from the work-
shops and Work in Progress section of the 9th Conference on Intelligent Com-
puter Mathematics (CICM), held July 25-29 2016 in Bialystok, Poland. CICM
has been held annually since 2008. Papers from the four main tracks at CICM
2016 (CALCULEMUS, Digital Mathematical Libraries, Mathematical Knowl-
edge Management, Surveys & Projects, and Systems & Data) are published in
volume 9791 of Springer Lecture Notes on Artificial Intelligence (LNAI).

CICM also gives the opportunity for researchers to present Work in Progress
(WiP) papers, of interest to the community but not yet ready for formal pre-
sentation. This year, WiP papers have been presented in the MKM and DML
tracks.

Finally, CICM traditionally organizes a “Doctoral Program”, where doctoral
students can present their achievements and future plans to the community and
receive mentoring by experienced members of the CICM community.

This joint volume collects these together with those contributed to three of
the workshops held at CICM 2014:

– The 11th Workshop on Mathematical User Interfaces (MathUI),
– The 2014 Workshop on Theorem Provers Components for Educational Soft-

ware (ThEdu),
– The 2016 Workshop on Formal Mathematics for Mathematicians (FM4M),

The workshop papers were edited by their respective organisers and the Work
In Progress papers by the General CICM PC Chair and the CICM track Chairs.
Please see the individual prefaces for more details.

Editors:
Michael Kohlhase Joint volume editor and CICM program chair
Andrea Kohlhase MathUI editor
Paul Libbrecht MathUI editor
Bruce Miller MKM WiP editor
Frank Tompa DML WiP editor
Adam Naumowicz FM4M editor
Martin Suda Doctoral Program editor

Acknowledgements: Thanks to all those who served on the program commit-
tee or reviewed the work in this volume, and to the organisers of CICM 2016.
We acknowledge the publisher CEUR-WS, and the authors of the EasyChair
software which greatly aided the publication of these proceedings.

20th July 2016
Michael Kohlhase

Jacobs University Bremen

iii



FM4M 2016: Formal Mathematics for
Mathematicians

FMM is a workshop affiliated with CICM 2016 intended to gather together
mathematicians interested in computer assistance and researchers in formal and
computer-understandable mathematics.

The mathematical community today seeks various ways to support their work
by accessing digital libraries and repositories, applying Internet search techniques
to better explore and classify the vast mathematical knowledge, and to combine
computer calculations with informal mathematics. Related methods have been
developed a lot recently by the formal community, allowing the building of very
large formal mathematical libraries and full formal verification of large compu-
tationally involved proofs such as those of the Kepler conjecture and the Four
Color Theorem.

It is very important to establish a platform for both communities to interact.
The successful development of computerized formal mathematics and its general
availability very much depends on the feedback that the formalized mathematics
developers can obtain from the community of working mathematicians. This
workshop’s main objective is to explore ways of building synergy between the
two communities.

Over the last decades, we witnessed a number of successful instances of
computer-assisted formalization of mathematical problems. Research in this field
has been boosted by the development of systems for practical formalization of
mathematics (proof assistants), a creation of large repositories of computer-
verified formal mathematics, and integration of interactive and automated meth-
ods of theorem proving. Proof assistants provide a very useful teaching tool suit-
able for undergraduate instruction, in particular for training beginning students
in writing rigorous proofs. An expected wider outcome of this workshop is there-
fore setting up of an annual series of meetings between working mathematicians
and researchers in formal mathematics as well as graduate students with strong
background in these fields.

July 2016, Adam Naumowicz
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Invited talk: Developments, Libraries and Automated

Theorem Provers

Chad Brown

Czech Technical University
Prague, Czech Republic

Abstract

When formalizing a mathematical development with an interactive
prover, it is helpful if the user can interface with a library (to avoid
starting from scratch) and with automated provers (to avoid needing
to give full details explicitly). We will consider an example of a develop-
ment in Mizar, leading to some discussion of how one can interact with
Mizar's library and how automated theorem provers can help construct
Mizar proofs. With this example in mind, we discuss criteria for three
aspects of formalization to work in harmony: formal mathematical de-
velopments, working with a global library of theorems and de�nitions
and making use of automation.
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Invited talk: On Di�erences in Proofs Between

Intuitionistic and Classical Logic

Aleksy Schubert

Institute of Informatics, University of Warsaw

ul. S. Banacha 2, 02�097 Warsaw, Poland

alx@mimuw.edu.pl

Abstract

The presentation will contrast the complexity results for proving asser-

tions in classical and intuitionistic logic. The comparison will be built

upon the known results for propositional logic and predicate one. The

predicate case will be based upon the Mints hierarchy in intuitionis-

tic logic which will be contrasted with its counterpart i.e. the prenex

hierarchy in classical logic.

The di�erences in complexity will be illustrated with examples of par-

ticular proving mechanisms that are responsible for the divergence,

which should facilitate the understanding of where the mathematics is

done constructively.
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Tarski’s Geometry and the Euclidean Plane in Mizar

Adam Grabowski
Institute of Informatics
University of Bia lystok
ul. Cio lkowskiego 1 M

15-245 Bia lystok, Poland
adam@math.uwb.edu.pl

Roland Coghetto
Rue de la Brasserie, 5
B-7100 La Louviére

Belgium
roland coghetto@hotmail.com

Abstract

We discuss the formal approach to Tarski geometry axioms modelled
with the help of the Mizar computerized proof assistant system. We
try however to go much further from the use of simple predicates in the
direction of the use of structures with their inheritance, attributes as a
tool of more human-friendly namespaces for axioms, and registrations
of clusters to obtain more automation (with the possible use of external
equational theorem provers like Otter/Prover9). The formal proof that
Euclidean plane satisfies all eleven axioms proposed by Tarski is an
essential development, allowing to show the independence of the parallel
postulate, one of the items from “Top 100 mathematical theorems”.

1 Introduction

For years, foundations of geometry attracted a lot of interest of resarchers from various areas of mathematics.
From the very beginnings, human thought was stimulated by geometrical objects, however from the modern
viewpoint of automated theorem-provers, diagrams can deliver some really tough problems. Here an important
example is the possibility of ruler-and-compass construction: impossibility of trisecting the angle and doubling
the cube (as two out of four problems of antiquity), where the treatment of constructible numbers is way more
efficient from the formal point of view.

The choice of the topic is not accidental – recent code available in Coq [BN12] and the use of automated
equational provers caught an eye of researchers and, as a by-product, some results which shed some new light
on the axiomatization of geometry were published. One of the bright milestones was also the publication of the
new issue of the classical textbook Metamathematische Methoden in der Geometrie by Schwabhäuser, Szmielew,
and Tarski (SST) with the foreword of Beeson.

2 Mizaring Affine Geometry

In Tarski’s system of axioms [TG99] the only primitive geometrical notions are points, the ternary relation B
of “soft betweenness” and quaternary relation ≡ of “equidistance” or “congruence of segments”. The axioms
are reflexivity, transitivity, and identity axioms for equidistance; the axiom of segment construction; reflexivity,
symmetry, inner and outer transitivity axioms for betweenness; the axiom of continuity, and some others. The
original set consisted of 20 axioms for two-dimensional Euclidean geometry and was constructed in 1926–27,
submitted for publication in 1940, and finally appeared in 1967 in a limited number of copies. There are many
modifications of this system, and Gupta’s work in this area [Gup65] offers an important simplification.
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Another notable axiomatization, proposed by Hilbert [Hil80] in 1899, has three sorts: planes, points, and
lines, and three relations: betweenness, containment, and congruence. In this sense it is a little bit more complex
than Tarski’s (but not necessarily in terms of numbers of axioms as it has also 20 of these). The two approaches
establish a geometrical framework, in which theorems can be proven logically (remember Euclid’s Elements proofs
are mainly pictures or graphical constructions and rely heavily on intuition). This allows to use computerized
theorem prover in order to find the proof or proof checker to check the theory for its correctness. We deal with
the proof checker Mizar based on classical first order logic and Tarski-Grothendieck set theory (a variant of
Zermelo-Fraenkel) and describe, how Tarski’s theory was built formally.

Geometry in the Mizar Mathematical Library is based on eight various structures, so it raises communication
issues between various approaches. The last article was PROJPL_1 dated back to 1994, and the series was not very
actively developed (with the exception of the paper of the combinatorial Grassmanians COMBGRAS). But in 1990
Mizar articles on geometry were about 30% of the whole Mizar repository (out of 140 files). Of course, after that
time revisions of this specific area were quite active: one of the main streams (done also by the current author)
was to get separate axioms of selected properties instead of a large block for the mode (i.e. the constructor of
the type in Mizar). Affine approach to geometry was less important as there was another big challenge which
for fifteen years stimulated geometry (in analytical setting, however): the proof of the Jordan Curve Theorem.

As notable affine geometrical facts already formalized in Mizar we can enumerate:

• Hessenberg’s theorem – HESSENBE;

• Desargues theorem (present in “Top 100 mathematical theorems”) – ANPROJ_2;

• Pasch configuration axioms – PASCH;

• Fano projective spaces – PROJRED1;

• Desarguesian projective planes – PROJRED2;

• Pappus, Minor, Major and Trapezium Desargues axioms – AFF_2;

• Minkowskian geometry – ANALORT.

In our opinion, the unifiying approach in Tarski’s spirit could be quite useful to bind all of these geometrical
results together. Among another significant facts in geometry we can point out Morley trisector theorem, Ceva,
and Menelaus theorem. These facts however deal with Euclidean plane, so the proofs are in the area of analytic
geometry; they were developed more than ten years later than the foundations of geometry in Mizar, when
Euclidean spaces were more thoroughly explored in MML.

The distinction between classical and abstract mathematics (i.e. the one based on ordinary axioms of set
theory, and all those using the notion of a structure, respectively) is important from the viewpoint of the
organization of the Mizar repository. We had to choose between two paths:

• it is possible to formulate Tarski’s axioms without the use of a structure, and also set theory could be
meaningless for that framework, only the classical logic with Mizar predicates is enough;

• the use of Mizar structures forces us paradoxically to use fundamentals of set theory – defining a signature
of Tarski’s plane needed to give a type of congruence of segments and betweenness relation, which was
set-theoretic (Mizar language is typed, and it the earlier case one should also give a type at least to points,
but it can be defined as Mizar object).

The latter was also chosen by us as the whole geometry in MML is written in abstract style (as the majority
of MML) as structures in Mizar are present for a long time. Even if in ordinary mathematical tradition they
are considered as ordered tuples, in the implementation in Mizar they are treated rather as partial functions,
with selectors as arguments, and ordinary inheritance mechanism (with polymorphic enabled, which will be
extensively used in our formalizations).

definition

struct (1-sorted) TarskiPlane

(# carrier -> set,

Betweenness -> Relation of [:the carrier, the carrier:], the carrier,

Equidistance -> Relation of [:the carrier, the carrier:], [:the carrier, the carrier:] #);

end;
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The betweenness relation can be treated as a ternary relation, but the choice of this concrete model
was quite arbitrary as the difference between dealing with ternary relations and relations between ordered
pairs and elements will not cause any major problems later (we use mainly predicates). Then we can use
a type POINT of S just for elements of structures S, and predicates between a,b,c and a,b equiv c,d as
[[a,b],c] in the Betweenness of S and [[a,b],[c,d]] in the Equidistance of S, respectively.

3 The First Part of Tarski’s Axiomatics

Original version of Mizar formalization of Tarski’s axioms done by William Richter with the help of miz3 did
not contained any existence proofs. This essentially caused the lack of the appropriate Mizar type. By using
attributes instead of predicates we can have modular building of a complex structure, all other can be reused;
hence in our Mizar article we focus on pure betweenness-equidistance part, not really mentioning the question of
dimensions. We proved 44 theorems (properties of the predicates), with the Gupta’s proof of Hilbert’s I1 axiom
(that two distinct points determine a line).

Our Mizar versions of Tarski’s axioms have descriptive names, and follow the ones from SST (using ≡ for
congruence of segments and B for betweenness relation):

• CongruenceSymmetry (A1):
∀a,b ab ≡ ba,

• CongruenceEquivalenceRelation (A2):
∀a,b,p,q,r,s ab ≡ pq ∧ ab ≡ rs⇒ pq ≡ rs,

• CongruenceIdentity (A3):
∀a,b,c ab ≡ cc⇒ a = b,

• SegmentConstruction (A4):
∀a,q,b,c∃x B(q, a, x) ∧ ax ≡ bc,

• BetweennessIdentity (A6):
∀a,b B(a, b, a)⇒ a = b,

• and Pasch (A7):
∀a,b,p,q,z B(a, p, z) ∧B(p, q, z)⇒ ∃x B(p, x, b) ∧B(q, x, a).

One attribute has the form which substantially differs from SST version: in order to shorten the notation, we
introduced technical predicate

definition

let S be TarskiPlane;

let a, b, c, x, y, z be POINT of S;

pred a,b,c cong x,y,z means :: GTARSKI1:def 3

a,b equiv x,y & a,c equiv x,z & b,c equiv y,z;

end;

denoting essentially SSS predicate for triangles. Using this notion, SST axiom (A5) could be encoded as follows:

definition let S be TarskiPlane;

attr S is satisfying_SAS means :: GTARSKI1:def 9

for a, b, c, x, a1, b1, c1, x1 being POINT of S holds

a <> b & a,b,c cong a1,b1,c1 &

between a,b,x & between a1,b1,x1 &

b,x equiv b1,x1 implies c,x equiv c1,x1;

end;

that is,
∀a,b,c,x,a′,b′,c′,x′ (a 6= b ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧ ac ≡ a′c′ ∧
∧ B(a, b, x) ∧ B(a′, b′, x′) ∧ bx ≡ b′x′) ⇒ cx ≡ c′x′.

Having separate attributes for distinct axioms could had already shown its usefulness in various geemetrical
settings. It could also allow later for defining equivalent axiom systems for Tarski geometry (and due to mech-
anism of clusters this equivalence will be obvious for the checker, once proven). But also additional attribute,
satisfying_Tarski-model, was defined as a shorthand for the above seven axioms.
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4 Adding Metric Ingredient

It is well known fact that every metric space can be equipped with the natural topology. This informally obvious
mathematical property brings some unexpected difficulties when dealing with structures if automated proof-
assistants play a role. Namely then, if one considers topological spaces in a quite natural way, that is 〈U, τ〉, and
metric space as 〈U, d〉, respectively, one can rather naturally merge both structures into common 〈U, τ, d〉.

During the formalization of the Jordan Curve Theorem in Mizar, however, another approach was chosen (and
pushed consequently until the successful finale): Euclid 2 denoted metric space concerned with the Euclidean
plane, and then special functor converting any metric space into the topoogical space was applied to obtain
TOP-REAL 2 (of course the conversion can be made for arbitrary natural number n, not necessarily 2, but Jordan
curves deal with two-dimensional case). The basic signature for metric spaces are MetrStruct, where distance is
a function defined on the Cartesian square of the carrier with the real values. Then, metrics (or pseudo-, quasi-,
semimetrics, etc.) can be defined in terms of attributes [KLS90], that is properties of the distance function.

definition

struct (MetrStruct,TarskiPlane) MetrTarskiStr

(# carrier -> set,

distance -> Function of [:the carrier, the carrier:], REAL,

Betweenness -> Relation of [:the carrier, the carrier:], the carrier,

Equidistance -> Relation of [:the carrier, the carrier:], [:the carrier, the carrier:] #);

end;

Then we have two worlds merged: affine, where we have two Tarski’s relations, and Euclidean, where in
terms of distance function, we can have betweenness relation and the the measure for segments. We argue that,
regardless of all the complications caused by merging structures (which increases the number of selectors, hence
the chain of notions gets more complicated), such approach – not converting between two contexts, but rather
to make reasoning in the world which is successor of both – allows for more flexible reuse of knowledge from two
original areas.

definition let M be MetrTarskiStr;

attr M is naturally_generated means :: GTARSKI1:def 15

(for a, b, c being POINT of M holds between a,b,c iff b is_Between a,c) &

(for a, b, c, d being POINT of M holds a,b equiv c,d iff dist (a,b) = dist (c,d));

end;

In merged structure, we want to have two segments congruent, if they are equal in terms of distance, and
betweenness relation uses the predicate is_Between, also given in terms of the sum of distances.

Recalling the previous discussion on the structure merging, the construction of such a space from scratch
(essentially more or less modified copy-and-paste work on the proof from [Try90]) can be avoided with the help
of some useful tricks, investigating knowledge already present in MML with its possible reuse. For example,
based on the geometry on the real line, appropriate geometrical structure from metric structure can be just an
extension with properly defined distance.

definition

func TarskiSpace -> MetrTarskiStr equals :: GTARSKI1:def 22

the naturally_generated TarskiExtension of RealSpace;

coherence;

end;

Then, we can show that in such extension the metric is well defined, i.e. this space is reflexive, symmetric,
and discerning. Furthermore, if we take into account “geometrical part”, all newly introduced Tarski’s axioms
are true.

5 Euclidean Plane Satisfies Tarski’s Axioms

At the beginning, we had to construct an example of the structure which satisfies all these axioms.

definition let n be Nat;

func TarskiEuclidSpace n -> MetrTarskiStr equals :: GTARSKI2:def 1

the naturally_generated TarskiExtension of Euclid n;

end;

7



Table 1: The statistics of our formalizations

Items Numbers in [RGA14] Numbers in [CG16]
attributes 10 4

lines 1522 1926
kBytes 50 73

theorems 47 50

and TarskiEuclid2Space is just the shorthand for the above functor with n = 2.
First part of the work, which was rather easy, was to show that such Euclidean plane satisfies seven axioms

from [RGA14]. It was expressed in terms of cluster registration:

registration

cluster TarskiEuclid2Space -> satisfying_Tarski-model;

coherence;

end;

Then, we defined the remaining four axioms, with both descriptive names and those corresponding to SST
namespace, as follows:

notation let S be TarskiPlane;

synonym S is satisfying_Lower_Dimension_Axiom for S is satisfying_A8;

synonym S is satisfying_Upper_Dimension_Axiom for S is satisfying_A9;

synonym S is satisfying_Euclid_Axiom for S is satisfying_A10;

synonym S is satisfying_Continuity_Axiom for S is satisfying_A11;

end;

Of course, their meaning is just as in SST. Then, finally we can deal with the remaining axioms:

registration

cluster TarskiEuclid2Space -> satisfying_Lower_Dimension_Axiom satisfying_Upper_Dimension_Axiom

satisfying_Euclid_Axiom satisfying_Continuity_Axiom;

end;

Some of the proofs were proven based on the space with the dimension 2 (mainly those done by the second
author), in few places we used Isabelle development and gave our Mizar proofs accordingly. The summary of
formalizations in two Mizar files can be found in Table 2.

6 Conclusions

Although the history of the development of the axiom system for geometry by Tarski is not very clear from the
beginnings (as the early works by Tarski seem to be postponed by the World War II), and even if the ultimate
source of information is

The book by Schwabhäuser, Szmielew and Tarski, reissued with the foreword of Michael Beeson, attracted
recently a lot of focus from automated deduction systems. The remarkable item here is of course Narboux’s
formal development of Tarski’s system with the use of Coq [Nar07]. We are planning to include some interesting
results from GeoCoq in the Mizar system; Nakasho’s et al. MML symbol reference system1 offers quite user-
friendly interface for browsing appropriate content. Of course, GeoCoq provides ready-to-use list of notions,
which are connected only with the Tarski’s system – that makes the browsing more convenient. Of course, after
rescaling all definitions and theorems can be browsed within MML providing a look in the style of GeoCoq
project.

We have created in [RGA14] (and GTARSKI2 [CG16]) complete formal axiomatization of Tarski’s geometry
which, at least in our opinion, has the advantage of higher readability for ordinary mathematicians than e.g.
Coq or Prover9 proof objects. In the same it is tightly connected with another axiomatization of Euclidean
plane, due to Hilbert, already available in MML. Important part of our development was the proof that the real
Euclidean plane satisfies all Tarski’s axioms.

1The system can be browsed at http://webmizar.cs.shinshu-u.ac.jp/mmlfe/current/ with the official version of the Mizar
system.
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Abstract

We present the formalization of Dirichlet’s theorem on the infinitude
of primes in arithmetic progressions, and Selberg’s elementary proof
of the prime number theorem, which asserts that the number π(x) of
primes less than x is asymptotic to x/ log x, within the proof system
Metamath.

1 Introduction

Dirichlet’s theorem, or the Dirichlet prime number theorem, states that for any N ∈ N and A ∈ Z such that
gcd(A,N) = 1, there are infinitely many primes in the progression A + kN , or equivalently there are infinitely
many pk ≡ A (mod N). Euler was the first to make progress on this theorem, proving it in the case A = 1, and
it was shown in full generality by Dirichlet in 1837 [Dir37].

The prime number theorem gives an overall order of growth of the number of primes less than x. Letting
π(x) denote the number of primes in the interval [1, x] (where x is not necessarily an integer), the prime number
theorem asserts that π(x) ∼ x

log x . This was first conjectured by Legendre in 1797, and was first proven using
complex analysis and the zeta function by Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896.
Two “elementary” proofs were later discovered by Selberg and Erdős in 1949 [Sel49, Erd49].

The first formal proof of the prime number theorem was written by Jeremy Avigad et. al. in 2004 [Avi07],
in the Isabelle proof language, following Selberg’s proof, a landmark result for mathematics formalization.
Hadamard and Vallée-Poussin’s proof was formalized in HOL Light by John Harrison in 2009 [Har09]. John
Harrison also later formalized Dirichlet’s theorem in HOL Light, in 2010 [Har10].

Metamath is a formal proof language and computer verification software developed for the purpose of formaliz-
ing mathematics in a minimalistic foundational theory [Meg07]. On May 12, 2016 and June 1, 2016 respectively,
the author formally verified the following theorems in the Metamath formal system:

Theorem 1 (dirith, Dirichlet’s theorem).

N ∈ N ∧A ∈ Z ∧ gcd(A,N) = 1 → {p ∈ P | N |(p−A)} ≈ N

Theorem 2 (pnt, The prime number theorem).

(
x ∈ (1,∞) 7→ π(x)

x/ log x

)
 1

The latter expression is Metamath’s notation for limx→∞
π(x)
x/ log x = 1, restricted to x > 1, which is the domain

of definition of the function.
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These two theorems are interesting formalization targets as they both have simple statements and “deep”
proofs, and they are also both members of the “Formalizing 100 theorems” list maintained by Freek Wiedijk
[Wie16], which tracks formalizations of 100 of the most famous theorems in mathematics.

Both proofs were written concurrently, over the course of about seven weeks between April 7 and June 1,
2016. This was done mostly because both theorems are in the same general subject (elementary number theory)
and required similar techniques (mostly asymptotic approximation of finite sums of reals). The primary informal
text used for the proof was Shapiro [Sha83], which devotes a section to Dirichlet’s theorem and the whole final
chapter to Selberg and Erdős’s proof of the prime number theorem.

2 Background

The present work is only a broad overview of the problem and proof method. Interested readers are invited to
consult the main theorems pnt and dirith at [Met16], where the exact proof is discussed in detail.

The main arithmetic functions used in the formalization are:

π(x) = |{p ∈ P | p ≤ x}| =
∑

p≤x
1 θ(x) =

∑

p≤x
log p

Λ(n) =

{
log p ∃p ∈ P, k > 0 : n = pk

0 o.w.
ψ(x) =

∑

n≤x
Λ(n)

Additionally, the Möbius function µ(n) is a very useful tool in sum manipulations. It is the unique multi-
plicative function such that µ(1) = 1 and

∑
d|n µ(d) = 0 for n > 1. This yields the Möbius inversion formula: if

f(n) =
∑
d|n g(d), then g(n) =

∑
d|n µ(d)f(d). Since |µ(n)| ≤ 1, this is a very powerful technique for estimating

sums “by inversion”.
The proof of Hadamard and Vallée-Poussin relies on some deep theorems in complex analysis, such as Cauchy’s

theorem, which were not available at the time of this formalization, so instead we targeted the “elementary”
proof discovered half a century later semi-independently by Erdős and Selberg. The key step in both proofs is
the Selberg symmetry formula:

Theorem 3 (selberg, Selberg symmetry formula).

∑

n≤x
Λ(n) log n+

∑

uv≤x
Λ(u)Λ(v) = 2x log x+O(x).

In Selberg’s proof, we leverage this theorem to produce a bound on the residual R(x) = ψ(x)− x:

Theorem 4 (pntrlog2bnd).

|R(x)| log2 x ≤ 2
∑

n≤x
|R(x/n)| log n+O(x log x).

The goal is to show π(x) ∼ x
log x , but it is easily shown that ψ(x) ∼ θ(x) ∼ π(x) log x, so it is equivalent

to show that ψ(x) ∼ x, or R(x)/x → 0, to establish the PNT. Given an eventual bound |R(x)| ≤ ax and
the estimation

∑
n≤x

logn
n = 1

2 log2 x + O( log x
x ), an application of Theorem 4 reproduces the original estimate

|R(x)| ≤ ax + o(x), but using improved bounds on R(x) on small intervals we can improve the estimate to
|R(x)| ≤ (a − ca3)x + o(x) for a fixed constant c, which produces a sequence of eventual bounds approaching
zero, which proves R(x)/x→ 0 as desired.

In Dirichlet’s theorem, the focal point is instead the Dirichlet characters modN , which are group homomor-
phisms from (Z/NZ)∗ to C∗, extended to Z/NZ with value 0 at non-units, but the general theme of estimation
of sums involving µ,Λ, log and the characters χ(n) is the same.

3 Formalization

In keeping with Metamath’s tradition of minimal complexity, we used a minimum of definition. Asymptotic
estimations are reduced to the class O(1) of eventually bounded functions, partial functions R→ C such that for
some c, A, x ≥ c implies |f(x)| ≤ A. An equation such as f ∈ O(g) is rewritten as f/g ∈ O(1) (which is correct
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as long as g is eventually nonzero, which is always true in cases of interest), and similarly f ∈ o(g) is rewritten
as f/g  0.

A few finite summation theorems take us a long way; two number-theory specific summation theorems are
the following divisor sum commutations:

∑

k|n

∑

d|k
A(k, d) =

∑

d|n

∑

m|n/d
A(dm, d)

∑

n≤x

∑

d|n
A(n, d) =

∑

d≤x

∑

m≤n/d
A(dm, d)

A small amount of calculus was used in the proof, mostly through the following sum estimation theorem,
which for example evaluates

∑
n≤x

logn
n = 1

2 log2 x+O( log x
x ):

Theorem 5 (dvfsumrlim). If F is a differentiable function with F ′ = f , and f is a positive decreasing function
that converges to zero, then g(x) =

∑
n≤x f(n)− F (x) converges to some L and |g(x)− L| ≤ f(x).

4 Comparison and Conclusion

Table 1: Comparison of the present proof with [Har10, Avi07]. “?” marks an estimated or unknown value.

Dirichlet PNT Dirichlet PNT
(author) (author) [Har10] [Avi07]

Total time spent 2 weeks 5 weeks 5 days 12 weeks?
Lines of code 3595 5100 1183 19713

Compressed bytes (gzip) 109683 156226 11762 97470
Informal text 10 pp. 37 pp. 192 lines 37 pp.

Informal text (gzip) 5500? 20350? 2524 20350?
de Bruijn factor 19.9? 7.67? 4.66 4.78?

Verification time 0.18 s 0.23 s 450 s 1800 s?

The comparison of parallel proof attempts in different systems is usually confounded by the many other
factors, so these statistics should not be given undue credence. According to [Avi07], Avigad’s PNT project was
a year-long project by four people, with the majority of the work happening during one summer, while this was
a solo project over about seven work weeks. Dirichlet’s theorem is 10 pages of informal text of [Sha83], and the
PNT is 37 pages. Although the number of lines in the current proofs seem competitive, this is lost in the gzipped
version, because the stored Metamath proof is already largely compressed, while the Isabelle and HOL scripts
are plain text.

The de Bruijn factors for this work had to be estimated because the TeX source for the informal text was not
available, but indications suggest that it fares poorly with comparatively large factors 19.9 and 7.67, respectively.
However, when reading these statistics it is important to realize that Metamath stores proofs, not proof scripts
like Isabelle and HOL. Every inference in the proof is an axiom or theorem of the system, and no proof searches
are conducted by the verifier. This is reflected in the incredibly small verification time, which is normal for
Metamath proofs. We do not have exact data on verification time for HOL Light, but it is believed to be on the
order of minutes to hours.

These proofs are important milestones for the Metamath project. They demonstrate that even the largest
of formalization projects in high level languages can also be conducted in a “full transparency”-style system
like Metamath, with entirely worked-out proofs and with all automation offloaded from the verifier to the proof
generation.
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Abstract

Topological manifolds form an important class of topological spaces
with applications throughout mathematics. However, the development
of this scienti�c area, even at the initial stage, requires non-trivial
Brouwer's theorems: the �xed point theorem, the topological invari-
ance of degree, and the topological invariance of dimension, where each
of them is provided for n-dimensional case.

We present a formalization, that is checked in the Mizar system, of
several results in algebraic topology that is su�cient to show the basic
properties of manifolds with boundary of dimension n.

Keywords: Topological manifolds, Formalization, Mizar.

1 Introduction

The Mizar Mathematical Library (MML) [1] can be considered as a compendium of proven theorems from
textbooks and papers, together with the necessary de�nitions. However, in contrast to the many informal
considerations, di�erent approaches to the same theory are generally merged in the MML. It is a consequence
of the fact that the overall goal is not only expanding MML by a new formalization � though this still is an
important part � but also facilitating the further development of the database based upon the already existing
formalizations. Therefore, some theorems or even whole theories contained in the MML are adapted to the
needs of new formalizations [4, 6]. To illustrate such situations we can consider the development of topological
manifolds in the MML.

2 Development of Topological Manifolds

The �rst Mizar style [2] formalization of a topological manifold in Mizar was created by M. Riccardi [17, 18].
There, a topological manifold was de�ned as a topological space that is second-countable Hausdor� and locally
Euclidean, i.e. the space resembles locally an open ball of the n-dimensional Euclidean space En near each
point for some n. M. Riccardi obtained several basic facts, e.g. if two topological spaces are homeomorphic
and one of them is an n-dimensional manifold, then the other one inherits its dimension; the work also showed
some examples of topological manifolds: whole planes, spheres in Euclidean space. However, in his approach the
parameter n was given a priori. As a justi�cation for this approach we recall that every connected component of
a compact manifold is a manifold with a determined dimension. However this fact cannot be clearly formulated
in this approach.

To resolve this problem, we can consider a slightly more general de�nition, where for each point there exist
some n and a neighborhood of the point being homeomorphic to an open ball of En. Moreover, if we replace
an open ball by a closed ball in the de�nition (see [3]) we can consider a topological manifold with a boundary,
but also without it. Such a generalization of the �rst approach was made by K. P¡k [8]. He proved that every
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connected component of a compact manifold is a manifold with a determined dimension and also he proved the
dependence between interior and boundary points. He showed for an n-dimensional manifold that its interior
is a manifold without boundary of dimension n and its boundary is a manifold without boundary of dimension
n− 1. Additionally, he showed that the Cartesian product of manifolds also forms a manifold whose dimension
is the sum of the dimensions of its factors and also determined the interior and boundary of this product.

3 Contributions

To establish these results, K. P¡k had to develop mainly the algebraic topology in the MML. It includes theory
of simplicial complexes in real linear spaces and its barycenter subdivision. The theory was necessary to provide
Brouwer's �xed point theorem based on Sperner's lemma [13, 16]. The theorem has been used in the formalization
of the Jordan curve theorem in Mizar [5]. But for this purpose, the 2-dimensional case was su�cient. Therefore,
this statement has been provided by A. Korniªowicz, only for this case using basic arguments concerning the
fundamental groups of the respective spaces [7]. Note that this approach for higher-dimensional cases requires
incomparably more di�cult facts about these groups. Another approach based on Sperner's lemma requires
only intuitively clear facts about the standard n-dimensional simplex and its arbitrarily small subdivision (see
[11, 12]). Additionally, the simplex structure is explored in one of the approaches to prove Brouwer's invariance
of the domain theorem that is helpful to distinguish points from the internal and the boundary of a manifold
(see [3]).

Obviously the realization of the selected approach required to develop several other areas of topology and
algebra. The most important of these are the small inductive dimension of topological spaces [9, 10]; an a�ne
indepedence of points and barycentric coordinates in an a�ne space including the theory that barycentric coor-
dinates with respect to an a�ne independence set is continuous [14]; the rotation group of Euclidean topological
spaces [15].
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Abstract

In this paper we brie�y discuss two constructions of the Mizar lan-
guage � rede�nitions and registrations. We focus on practical aspects
of using them in Mizar texts to be e�ectively processed by the Mizar

Verifier. We describe situations when rede�nitions can be and should
be replaced by corresponding registrations.

1 Introduction

The Mizar system [Ban15, Gra15] is a computer system invented for computer-assisted veri�cation of mathe-
matical papers. One of the main components of the system is the Mizar language � a formal language designed
for writing mathematical papers readable for humans and e�ectively processed by computers. The language
consists of rules for writing �rst-order mathematical formulas, proofs, and also syntactic constructions to launch
specialized algorithms increasing computational power of the Verifier (e.g. term identi�cations, term reduc-
tions [Kor13], �exary connectives [Kor15:b], property registrations [Nau04], etc.).

In this paper, in Sec. 2, we focus on two particular constructions � rede�nitions and registrations, especially
how they can be used in Mizar texts to be e�ectively processed by the Mizar Verifier. In Sec. 3, we present
two examples taken from the Mizar Mathematical Library which illustrate our discussion.

2 Rede�nitions and Registrations

In Mizar, rede�nitions can be used for three di�erent purposes: a) to specialize (if provable) result types of
de�ned functors and modes, b) to change de�nientia of notions (predicates, attributes, functors, and modes), and
c) to declare properties of particular constructors [Nau04]. The �rst application in�uences the identi�cation of
operations and types, the second application can be used for the processing de�nitional expansions [Kor15:a], and
the third one can be used for the justi�cation of chosen statements automatically (without explicit references to
appropriate theorems). An important feature of the processing rede�nitions performed by the Verifier is that
the order of rede�nitions accessible in a given text (rede�nitions imported from the database MML or declared
in the text) is important. The last rede�nition of a notion applicable for given arguments is applied.

On the other hand, registrations can be used for three other purposes1: a) to register the existence of objects
satisfying required properties written as adjectives (existential registrations), b) to declare that some objects
possess chosen properties (functorial registrations), and c) to declare that all elements of some type which satisfy
a set of properties satisfy also another set of properties (conditional registrations). A signi�cant feature of the
processing registrations is that the order of registrations accessible in a given text plays no role (in opposite to
the processing rede�nitions), all registrations which can be applied for given arguments are applied.

From the point of view of this paper, the fact that only the last rede�nition of a given notion is considered in
the process of computing types of objects, but all registrations are, is crucial. It is the fundamental reason for

1The Mizar word registration is also used in other contexts, to introduce items like: identify, sethood, reduce.
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which registrations should be used instead of rede�nitions, whenever possible. The question now is what are the
situations when rede�nitions can be replaced by corresponding registrations. Before we answer this question,
let us mention that the Mizar system provides two ways to introduce new types: not expandable (really new
constructors) and expandable (shortcuts for collections of adjectives assigned to radix types)2. Now, we can
formulate a rule which de�nes situations when rede�nitions can be replaced by registrations: If the result type

of a functor and the mother type of a mode to which the original type of the functor and the mode is rede�ned

is an expandable type, then such rede�nitions are replaceable by a functorial registration in the case of functors

and by a conditional registration in the case of modes. Practical examples which depict the rule are presented in
the next section.

3 Examples from the Mizar Mathematical Library

3.1 Functors

Let us consider the functor Balls(x) [Sko98] which de�nes a family of balls in a topological space generated by
a metric space:

definition

let M be non empty MetrStruct, x be Point of TopSpaceMetr(M);

func Balls(x) -> Subset-Family of TopSpaceMetr(M)

...

end;

To declare that Balls(x) constitutes a base in the space, the authors used the rede�nition:

definition

let M be non empty MetrSpace, x be Point of TopSpaceMetr(M);

redefine func Balls(x) -> Basis of x;

end;

But, because the mode Basis of x [Try97] is de�ned as an expandable mode:

definition

let T be non empty TopStruct, x be Point of T;

mode Basis of x is open x-quasi_basis Subset-Family of T;

end;

the rede�nition can be replaced by the functorial registration:

registration

let M be non empty MetrSpace, x be Point of TopSpaceMetr(M);

cluster Balls(x) -> open x-quasi_basis;

end;

3.2 Modes

To exemplify how rede�nitions of modes can be replaced by conditional registrations, let us consider the mode
Element of D [Ban92], where D is a set containing only trees:

definition

let D be constituted-Trees non empty set;

redefine mode Element of D -> Tree;

end;

Because the mode Tree [Ban90] is de�ned as an expandable mode:

definition

mode Tree is non empty Tree-like set;

end;

2In fact, there is another way to de�ne new types � structures, but it is not relevant to the topic.
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the rede�nition can be replaced by the conditional registration:

registration

let D be constituted-Trees non empty set;

cluster -> non empty Tree-like for Element of D;

end;

3.3 Experiments

To detect all cases in the Mizar Mathematical Library when rede�nitions of functors and modes could be replaced
by corresponding registration, a special tool has been implemented by the author of the paper. In the Mizar

Version 8.1.05 working with the MML Version 5.37.1267, 89 possible replacements of rede�nitions were found.3

A revision [Ala11, Gra07, Pak14] of the MML was proposed to the Library Committee.
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Abstract

The processing and analysis of the Mizar library has been performed us-
ing the infrastructure of the University of Bialystok High Performance
Computing Center.

In the current Mizar language, direct linking to statements formulated
as compound conditions is prohibited. This particular language feature
has often been considered by the users as an unnecessary disruption of
the natural course of proof steps. In this paper, we present an analysis
of the linking structure in the current contents of the Mizar Mathe-
matical Library which provides statistical data needed to implement
a usability-based solution to this problem and propose corresponding
changes in the library.

1 Introduction

One of the main design principles of the Mizar [Ban15] language has been to enable writing formal mathematical
documents checked by a computer for syntactical, semantical and logical correctness, while at the same time
the language should as much as possible resemble standard mathematical papers. The language's richness of
features adopted from the natural language contributed to its popularity, which in turn allowed to collect a
vast body of formalized mathematical data available as the Mizar Mathematical Library (MML) over the four
decades of Mizar's active use [Gra15]. However, there is still a lot of space for improvement, adding new features
and eliminating some of the language's idiosyncrasies which hinder its comfortable use. A detailed analysis
highlighting a number of di�culties posed by the complexity of the language was presented in a paper by
Cairns and Gow [Cai04]. Among such problematic features which users often complain about is that direct
linking to choice statements is prohibited in current Mizar. It is percived as an unnecessary disruption of the
natural course of proof steps. In fact, this problem have re-appeared several times in the Mizar Forum mailing
list discussions1. Apparently, this is a more general issue which concerns linking to many sorts of statements
formulated as compound conditions.

2 Compound Conditions in Mizar

A brief look at the Mizar syntax2 shows that there are quite a few constructs of the language that make use
of compound conditions. A complete list of such constructs includes: Loci-Declaration, Case, Suppose,
Generalization, Collective-Assumption, Existential-Assumption, and �nally the ChoiceStatement.
Their grammar speci�cations either explicitely mention the that and and keywords, or use the Conditions

nonterminal symbol:

Conditions = "that" Proposition { "and" Proposition } .

1See e.g. the following discussion threads in the Mizar Forum mailing list's archives: http://mizar.uwb.edu.pl/forum/archive/
0104/msg00002.html, and http://mizar.uwb.edu.pl/forum/archive/0203/msg00001.html.

2The Mizar language is described by its grammar available in the system's distribution (syntax.txt and syntax.xml �les) as well
as on-line on the project's website: http://mizar.org/language/mizar-grammar.xml
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Using a Weakly-Strict Mizar (WSM) [Nau16, Byl12] parser3, we have collected some statistical data which
shows the usage of these constructs in the MML version (5.33.1254) distributed together with the current o�cial
Mizar version (8.1.04)4. The table below shows the number of occurences of these language constructs.

Table 1: Occurences of compound conditions in current MML.
Language: Assumption Loci-declaration/ Case Suppose Existential Choice
construct Generalization assumption statement
With conditions: 17311 13811 59 587 2761 58909
W/o conditions: 91914 136733 4782 32136 n/a n/a

As we can see, some of the constructs are signi�cantly less frequent than others. Notably, case and suppose

are used only in special kinds of proofs (reasoning per cases) and the use of compound statements in this context
is usually connected with applying de�nitional expansion [Kor15]. Let us also note that loci declarations and
generalizations both use the same let keyword and so syntactically they are similar (what makes them di�erent
is the context, since loci declarations are only available within de�nitions). In most contexts the case and
suppose constructs can be used interchangeably and most users tend to prefer the more common suppose. The
syntax of choice statements (consider) and existential assumptions (given) requires a that phrase, so they
never occur without the conditions part, even if they are followed by a single proposition. In all other cases, a
user might decide to use only the simple forms of the constructs, e.g. a sequence of single assumptions, and never
use compound conditions. And so there are articles in the Mizar library whose authors avoided using compound
conditions completely. However, the compound conditions are in general used quite often in the MML. The
number of conditions used in an article ranges from 0 to 412 (total 94392). If we assume (very roughly) that
each condition is represented by one line of formal text and we compare it to the total number of 2473054 lines
of the WSM representation of all the articles, this gives about 4% of all the text content.

It is also worth mentioning that the existential assumption is actually a syntactic sugar construct which
replaces an assumption followed by a choice statement - this language feature is rarely used by less experienced
Mizar users who are interested primarily in the correctness of their proofs and not in their brevity or �good style�.

Now let us look at the simplest example which demonstrates the underlying linking problem. Here we have
a common choice statement with one chosen constant and two labelled compound conditions potentially related
to this constant, and we want to immediately refer to this statement in the next proof step:

consider x such that A1: α and A2: β by references1;
then γ by references2 ;

In the original Mizar parser the linking (here using the then keyword) is not allowed, because it is ambiguous
what it should link to. In consequence, the parser marks the second line with the �164: Nothing to link�
error message. In fact, the comment might as well say �Too many options to link�, because in this case there
are four possible interpretations of the linked statement, namely:

1. ex x st α & β

2. α & β

3. α

4. β

Although there are cases when option 1. would be useful, usually reasoning in Mizar requires an existentially
quanti�ed statements to be eliminated in order to advance the proof. As for option 2., it would be quite useful for
a small number of compounds. The average number of compounds in the current MML is 1.92, which makes this
option potentially useful for accumulating available facts rather than being very selective in inference statements.
However, there are cases of compound statements in the library composed of as many as 33 propositions5 and
in this case linking to a conjunction of all these propositions would produce too complicated inferences to be
practically justi�ed. Option 3. seems least useful and would be most misleading for the users, especially if
there were more than two compound propositions involved. This leaves us with option 4., and apparently this

3The parser can be downloaded from a dedicated Git repository: https://github.com/MizarProject/wsm-tools.
4http://mizar.org/
5E.g. the GATE_3 article developing the theory of digital circuits.
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is the semantics adopted by two Mizar-inspired systems: Mizar Light for HOL Light developed by F. Wiedijk
[Wie01] as well as Makarius Wenzel's implementation of the Isabelle/Isar language [Wen02]. Therefore, we
have implemented the fourth option in an experimental Mizar version. Mizar veri�ers pre-compiled for main
supported software platforms are available for download and further experimentation at the author's website6.
There you can also �nd an example of a simple set-theoretical Mizar article adapted to this new linking method
(�le xboole_0.miz) to demonstrate its usefulness.

3 Conclusions

First of all, the proposed enhancement of the Mizar parsing module might be bene�cial for some Mizar users.
But apparently, the inability of linking to compound statements is also one of the main obstacles that complicate
automatic improving the legibility of natural deduction proofs in Mizar [Pak14] and make lemma selection based
on the close reference principle equivalent to an NP-hard graph problem [Pak15]. So the enhancement might
help advance the research on proof legibility. And �nally, Mizar has been widely known for its in�uence on other
proof assistant systems and their proof languages - this work is an example that the in�uence might as well work
in the other direction.

3.0.1 Acknowledgement
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MathUI 2016: Mathematical User Interfaces

MathUI is an international workshop to discuss how users can be best sup-
ported when doing/learning/searching for/interacting with mathematics using
a computer.

– Is mathematical user interface design a design for representing mathematics,
embedding mathematical context, or a specific design for mathematicians?

– How is mathematics for which purpose best represented?
– What specifically math-oriented support is needed?
– Does learning of math require a platform different than other learning plat-

forms?
– Which mathematical services can be offered?
– Which services can be meaningfully combined?
– What best practices wrt. mathematics can be found and how can they be

best communicated?

We invite all questions, that care for the use of mathematics on computers and
how the user experience can be improved, to be discussed in the workshop.

July 2016, Andrea Kohlhase & Paul Libbrecht
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Abstract
A visual type theory is a cognitive tool that has much in common with
language, and may be regarded as an exceptional form of spatial text
adjunct. A mathematical visual type theory called NPM has been
under development that can be viewed as an early-stage project in
mathematical knowledge management and mathematical user interface
development. We discuss in greater detail the notion of a visual type
theory, report on progress towards a usable mathematical visual type
theory, and discuss the outlook for future work on this project.

1 Introduction
Suppose that you are a working mathematician with some promising new results that you would like to share
with other mathematicians in your field. It is exactly for this purpose that the library of mathematical symbols
and the language and style of mathematics were originally developed. It is no surprise, then, that this very style
is an excellent vehicle for your purposes.

On the other hand, suppose that you are a worker at a company in a data-intensive field, and you have a
problem for which it is necessary to utilize the tools of mathematics. For example, you may wish to automate
a finitary procedure, solve a problem in software verification, or apply a physical or economic model. The
aforementioned traditional language and style of mathematics was not designed for your purposes. The needs of
such users for new styles and new forms of expression are well known and have been felt now for many decades.
Many mediums of communication and tools for interacting with other members of such fields, as well as with
software and computers, have been developed in recent decades. This effort has been enormously fruitful and
transformative, for example, from them an entirely new branch of science (namely, computer science) has arisen.

However, for those in any third walk of life, different from either of these, a communication gap exists
whose natural tendency is not to shrink, but to further widen with the growth of scientific knowledge. At the
present time there is rising interest in mathematics and other STEM areas [Mau], a growing recognition of the
growing importance of STEM knowledge, and a parallel rise in awareness of this communication gap, as well as
broader challenges for STEM education. These developments have already attracted the interest of scientists in
several fields, and has been (in part) a driver of the development of new areas such as mathematical knowledge
management [Far] and mathematical user interface development and design [JP2014], fields that intersect and
interact with multiple large knowledge domains, particularly mathematics itself and computer science, but also
others such as, e.g., educational and cognitive psychology.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.
In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org
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In this article, two questions are addressed. First, we address the general question of what theoretical space
a tool for mitigating the communication gap named above might occupy. In seeking an answer to this question
we introduce the notion of a visual type theory in the long section 2, after establishing that such a notion is
distinct from existing notions in computer science (in particular programming language theory) and educational
psychology and therefore necessitates some kind of new terminology and a somewhat new, developing theoretical
framework. Then secondly, in the context of the general body of mathematical knowledge, e.g., the broad fields of
analysis, topology, geometry, and algebra, each of which contain numerous specializations, we ask: is it possible
to construct a mathematical visual type theory? We report that the answer is yes, and that a prototype model is
presently in development. In section 3, we describe in outline the prototype system, entitled NPM. We conclude
our preliminary report with an overview of the outlook of the project in section 4.

2 Visual Type Theory: Form and Function
2.1 Cognitive Model: Comprehension of External Representations, Ordinary Memories

According to the cognitive model of Schnotz and Bannert [SB2, Sch, SB1], the brain’s function of comprehension
of external imagery or text involves the creation of a mental model and propositional representation, which
are (respectively) depictive and descriptive representations constructed via schema-mediated structure mappings
from internal representations that more directly correspond to the given external representations (the imagery,
or the text, respectively). The distinction between depictive and descriptive representations is understood in
terms of the distinction between symbols and icons due to Pierce [Pie]. A depictive representation consists
of iconic signs associated to the content they represent through common structural features (or “similarity”).
A descriptive representation consists instead of symbols having arbitrary structure that are associated to the
content they represent by means of convention [Sch]. This model can be viewed as a refinement of the earlier
dual coding theory of Paivio [Pai] and the multimedia learning model of Mayer [May]. Such models are used by
psychologists to form hypotheses which can subsequently be tested by experiment.

We will adopt this model of visual and text comprehension as our basic framework, and we will refer to the
propositional representation and associated mental model generated by an external representation, collectively,
as an ordinary memory (an idealized but convenient notion). An ordinary memory is distinguished from other
memory types, for example spatially organized (as opposed to visual) memories [SB1, p. 616]. In [SB1] the ordi-
nary memory of a graphic (imagery consisting of a graph or chart) is divided into a deep structure and a surface
structure. The surface structure is “the outward form of the graphic,” and the deep structure is “a semantic
construct which expresses the meaning of the graphic” [SB1]. For our purposes, we seek an analogous definition
that would apply to cases other than graphics, in particular to descriptive as well as depictive representations.
Therefore we define the sketch component of an ordinary memory to be whatever serves (pragmatically) as the
individual’s immediate internal depictive representation of the ordinary memory when prompted. The reader
may perhaps wish to view this as the associated communication level representation [GMZ, Sch] of the ordinary
memory, but we will stick here to the more colloquial terminology of “sketch component”, since our entire ar-
gument is quite heuristic and only meant to suggest possible refinements, and since the terminology of [GMZ]
does not particularly isolate the depictive portion of the communication level representation as our definition
seeks to do. Notice that this definition can indeed be applied equally to external depictive as well as external
descriptive representations (as prompts). It is reasonable, and we will assume, that this sketch component or
depictive communication level representation is immediately placed in the working memory of the individual
upon exposure to an external representation of the associated concept or ordinary memory. Due to the capacity
limitations of working memory [SC], this can only be an incomplete part of the total content of the ordinary
memory, and we might regard whatever lags in a measure of time-of-recall to belong to the associated deep
component of the ordinary memory.

We can observe that the sketch component is not well-defined or uniform across space or time (in different
individuals, or even in the same individual as time progresses). However, often significant uniformity can be
observed in populations. For example, we might expect that a well-known person’s face is the sketch component
of the descriptive representation given by the person’s name (for example, an internal visualization of Bill Gates
is the sketch component of Bill Gates). Likewise, a steaming cup of coffee could be expected to be the sketch
component of the ordinary memory of the depictive representation coffee. It is also perhaps noteworthy that
the sketch component of a memory can be expected to be more well-defined (i.e., uniform/canonical), in general,
than the corresponding deep component.
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Images presented alongside associated text, or text adjuncts, have been shown to improve memnenic per-
formance, see, for example, [LAC, DSL], and references cited there. In [LAC] a taxonomy of decorational,
representational, organizational, interpretational, and transformational text adjuncts is defined, and experimen-
tal evidence is presented according to which the effectiveness of text adjuncts for mnemonic and comprehension
purposes varies according to the taxonomic type, a point that will be significant for the discussion in section 3.3.
In [DSL] evidence is given that other variables can affect the magnitude of such effectiveness, such as setting and
period of exposure. In addition they found a significant effect on preservation of learning against decay during
the one-week time interval between testing that took place immediately after exposure to a text passage and
follow-up testing, due to the presence or absence of a graphic (paired with the text) depicting an illustrative
visual metaphor (which they classify as a decorative graphic). Altogether, their study lends support to the view
that “extra processing prompted by the presence of the graphics creates a cognitive trade-off for learners” [DSL,
p. 202] that can be simplistically described as a short-term cost (the extra energy demanded, e.g., by assimilation
of the graphic with the text) that has long-term benefits (e.g., reduced memory decay).

2.2 Mathematical Memories

We next turn specifically to mathematical concepts in the setting of the cognitive model of section 2.1. While
many studies have been done on integrating pictures into learning of science and mathematics (see, for example,
[BSC], [CL, p.13]), the author is not aware of any that focus on mathematical structures. As is well known, during
the late nineteenth and early twentieth century, mathematics underwent several new developments due to the
contributions of many people including Dedekind, Hilbert, Ore, Noether, and many others, which transformed
mathematics, in the minds of many, from a numerical science to an abstract, structural science [Cor]. In
this section we approach this latter, structural view with a philosophical discussion based largely on personal
experience and introspection, in order to draw several conclusions that are crucial to our argument. At the
time of publication it is too late to explore further relationships with psychology and mathematical knowledge
management here (but see for example [KK] which suggests an approach via the theory of framings). We will
also ignore for simplicity the numeracy or numerosity function of the brain [Deh], as our focus is particularly on
the production of ordinary memories of mathematical structures.

Let us try a simple thought experiment. Suppose that an individual tries to think of a group (that is, tries
to think of groups, the well-known objects defined in any first course in abstract algebra). He or she would
normally recall, after a little thought, particular experiences or encounters with groups. He or she might perhaps
recall properties groups have (e.g., “all elements are invertible”), or a theorem about groups (e.g., the Jordan-
Hölder Theorem). These memories would, depending on the individual, vary widely. This is particularly true
for the depictive memory of groups—and it is just this which we would like to draw a focus on. While there
are examples of groups that evoke depictive representations (symmetric groups, dihedral groups, and orthogonal
groups, for example), and there are heuristic images that help us to see what groups in general are like, there
is no telltale visual cue, no “first-order association” of a group with a depictive representation—something that,
when visualized, prompts the entire mental model of a group. Depending on the individual, he or she might
have an intuition at hand—for example, spatial intuition for Lie groups, or model-theoretic intuition for polish
groups, or set-theoretic intuition for finite groups—but the group concept itself is beyond all such intuitions, or
rather, it is apparently a puzzling marriage of all these intuitions, and more besides that is apparently beyond
an individual’s power to clarify. In brief, the group concept can be regarded as a “dark” concept.

Indeed, (whether it is fair or unfair to use the evocative term “dark”) many other examples can be given to
illustrate that this “dark” quality is in fact commonly encountered in mathematics. While in the example of
a group given above it arises due to the formal application of mathematics and logic (the axiomatic method),
the same dark quality (the lack of a sketch component in memory) also arises due to the general application
of idealized infinite (i.e., nonfinitary or nonterminating) processes in derivations of mathematical formulas and
relations, as well as the ubiquitous use of quotient operations in mathematics (see below). Consider, for example,
the difference between a standard visual representation of the rational numbers (commonly denoted Q) and the
real numbers (denoted R or (−∞,+∞)) as ordered structures. In both cases, the ordering is linear and dense:
between any two elements in the ordering, there can be found another distinct element. Only in the latter case,
however, does the ordering have the additional property of completeness, which is perhaps most easily understood
in terms of a topological structure assumed to be present in both cases, or alternatively, by way of a construction
of the latter ordered set from the former one. This property, however, defies visualization: density and com-
pleteness are indistinguishable in an external or internal depiction, except via a heuristic (i.e., a diagram that
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heuristically indicates some phenomenon that cannot be directly visualized). Other examples demonstrating this
phenomenon include space-filling curves, real-valued dimension (fractals), and so-called “pathological” functions
(for example, the continuous, nowhere-differentiable function discovered by Weierstrass [GO]), many of which
arose in the nineteenth century and drove the earliest efforts to place calculus on firm foundations. Or, to reach
for examples from other fields, we can think of trying to visualize manifolds (abstract spaces that are curved,
like the surface of the earth) that are not embedded in three-dimensional space. The (perhaps) most well-known
example of such a manifold, the so-called Klein bottle, has a very famous and lovely depictive representation,
but in general, for higher-dimensional manifolds with arbitrarily chosen topological invariants, no such depictive
sketch component is available. The same can be said for structures defined only up to some equivalence class
(“only up to isomorphism”), i.e., concepts which are obtained via a quotienting operation applied to existing
families of concepts. It is not difficult to find examples in which elements of an isomorphism class—for example,
the isomorphism class of the plane R2 up to topological isomorphism (i.e., homeomorphism)—are themselves
accessible via a natural depictive representation, and yet there is nevertheless no meaningful or pragmatically
useful depictive representation of the entire isomorphism class.

If we set these examples in the context of our cognitive model, we can observe that the ordinary process of
creating a mental model and a propositional representation, and an associated sketch component, is confused by
the richness and complexity of the concept—in particular the lack of a fixed, canonical, uniform visualization.
To couch this point in empirical terms, an experiment could be performed in which mathematicians (or some
other chosen population) could be asked to draw pictures of mathematical objects. Our hypothesis, then, would
be threefold: first, that there would not be found any uniformity in these sketches, second, in fact in many cases
such an experiment might well yield descriptive representations serving as proxies to depictive representations (in
other words, there is in that individual’s mind no properly depictive representation at all, and the individual has
simply “doubled up” the descriptive representation to serve dual purposes, depictive and descriptive), and third,
that there would oftentimes be little or no pragmatic utility (for the purpose of problem solving or memnonic
value) in the sketches produced. Assuming this is accurate, what is therefore observed is a certain inefficient or
wasteful use of the brain’s cognitive system: immediate or sketch components of the brain’s recall of mathematical
concepts is of little use to the user or learner of mathematics.

2.3 Haptical Memories, Barriers to Entry

It is unclear just how it is, exactly, that mathematicians construct and maintain memories of mathematical
concepts. However, if the author ventures to argue on the basis of his own experience, he would cautiously
lean towards the view that mathematicians rely often on memory mechanisms of the brain other than the
ordinary memory system. In particular, they often rely on what we will refer to here as “muscle memory” or
“haptical memory”. Units of such haptical memory are produced in the course of problem solving: passing from
a question whose answer is not clear prima facie to an answer via logical inference and computation, which may
be abridged by prior knowledge or by assumptions and conjectures. (This, we believe, is what mathematicians
often refer to simply as “working”.) Let it be granted, then, for the sake of argument, that mathematicians,
at least in large part, rely for their memories of mathematical concepts on a posited haptical memory system
that is broadly available in the human population. This haptical memory system is assumed to interact, via
structure mappings, with the ordinary memory comprehension system, hence it influences the construction of
the propositional representation and—perhaps directly, or perhaps indirectly—the mental model of a concept as
well.

Haptical memory tactics can be very powerful. However, while an ordinary memory can be formed in an
instant, a haptical memory takes several minutes at the very least, and as noted in [SK] places significant
cognitive demands on the brain. This matters little in many situations, but with the sheer number of abstractions
present in modern mathematics, and the increasing demands for mathematical knowledge in fields outside of
mathematics, the acquisition of mathematics through haptical memory tactics is increasingly impractical in many
settings. Moreover, mathematical information, once acquired, still must be managed and maintained, activities
for which the brain demands energy (due to being so-called biologically secondary knowledge [SK, p.474]). This
establishes high barriers to entry at the boundary between those who are willing and able to invest significant
resources to acquire, manage, and maintain haptical memories of mathematical concepts, and those who are not.

Cognitive load theory [SC, SK] poses many potential strategies for confronting this conundrum. The findings
in [DSL] noted in section 2.1 lend partial support to an approach focusing on the use of visual adjuncts to
the normal descriptive representations of mathematical structures (i.e., the rigorous development and study of
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mathematical structures, written down in the language of logic). This, by itself, would not seem to be a new
idea, indeed modern math and science textbooks are rife with illustrations of mathematical concepts intended
to facilitate learning and boost concept retention, and there has been no lack of reflection on and criticism of
the famously influential “Bourbaki style”. However, in light of the observation in section 2.2 that mathematical
concepts are dark, we can focus attention in particular on the sketch component of memory for mathematical
concepts, which is, as observed there, (depending on the individual) missing and/or dysfunctional (serving little
or no practical purpose). This begs the question: what if this particular dysfunctional part of the full ordinary
memory was replaced by some sort of (in the language of [LAC]) transformational representation? The findings
in [DSL] indicate that through such a strategy the problems with the significant time demands and rapid decay
of haptical memories might be mitigated.

2.4 Visual Type Theory: Definition
A visual type theory is a system of depictive representations created in the course of implementation of the
strategy suggested at the end of the previous section. Such a system must have several properties in order to
properly be considered a visual type theory:

1. It should depictively reflect logical or natural relationships between the objects being depicted.

2. It should be almost regular in the sense that it should be regular in its prescribed use as a general principle,
however it should tolerate irregularity when such an irregularity compellingly suggests itself.

3. It should be generative in the sense that there is a natural way to generate new representations based on
the patterns of existing representations.

4. It should possess the property of density: the informational content [Sch, p.103] of each representation of
the system should be high in proportion to its visual complexity. For this it might rely on absence loading
(section 3.3).

A visual type theory can, in theory, function as a communication medium as language does. It differs from
language, however, by consisting of depictive, not descriptive representations. Thus we arrive at the “visual”
part of the term visual type theory. We use the terminology “type theory” because in the visual type theory of
section 3 the representations are very similar to types (for variables) written in a “visual” style of notation, and
also because calling it a form of type theory reminds us to distinguish it from language while preserving the idea
that such a system, like language, is nevertheless (almost-) regular and generative. Visual type theory provides a
system of representations that could be described as “anchors” or “visual anchors” that are particularly useful in
situations where concepts are otherwise highly abstract (or, in the language of section 2.2, dark). Through the
use of a visual type theory an individual acquires memory tactics in addition to the haptical tactics of problems
solving and computation, rote associative memory building, etc.

Now that we have defined visual type theory, a word of caution may be in order. No memory is as simple as
a sketch component (section 2.1), taken by itself, would indicate. Beyond the sketch memory there may exist
an effectively limitless complex of information. In practice, visual type theory can do no more than provide a
user with integrated systems of well-chosen sketch memories of concepts. It leaves to the user the job of filling in
deeper memories, and acquiring other abilities a user might need that the visual type theory is possibly unable to
provide alone. This is true in particular for a mathematical visual type theory and thus, in this case we caution
the reader that visual type theory is not (and is not advertised to be) a “Royal Road to geometry,” and does not
disprove the famous ancient dictum of Euclid. Sketch memories are simplistic and can contain inaccuracies that
only deep memories can correct. Sketch memories are accompanied by the hazard of false assurances, overhasty
opinions, and misguided actions. However, in light of the observation of section 2.2 that abstract mathematical
concepts often lack a sketch component (creating a vacuum that, as argued in section 1 and section 2.2, can also
impede mathematical cognition and comprehension), a trade-off is expected between which, perhaps, a balance
can be struck.

2.5 Visual Type Theory as Language
To conclude this section, we now ask the question: Is a visual type theory a form of language? If so, just what
kind of language is it? As a device with a formal definition and prescribed rules of use, a visual type theory
(if perfectly regular) may be viewed as being something like a formal language. As a device with a pattern
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of growth and an internally consistent set of heuristic (though not unbending) principles, it may be viewed as
being something like a natural language. Visual type theories also have many properties in common with both
types of language: their purpose, like that of all languages, is to express thoughts, display relationships quickly
and memorably, to facilitate the possession, understanding, and management of complex and abstract ideas, to
port well through different environments, and, potentially, to serve as a method of communication between users
who share the necessary prior knowledge. But, as we have argued in section 2.4, visual type theory technically
cannot be considered a language at all: it is not a mapping between syntax and semantics, or in other words,
a cognitive tool whose elements travel via the descriptive channels of the ordinary memory system—instead,
unlike in a language, they travel via the depictive channels. However, with so many commonalities with existing
language notions (and because the use of generally familiar vocabulary to discuss visual type theory is, by all
indication, inevitable), it might be wise to bend the notion of language slightly by referring to visual type theory
as a language paradigm. As such a paradigm, it is distinct from any of the major paradigms that currently exist
in computer science: it is not a formal language, nor a compilable programming language, nor a specification
language, nor a natural language. From this observation, we can draw several closely related and important
corollaries. First, we have seen that visual type theories are not developed as a language would be, in order to
replace existing mathematical language—neither in whole nor in part. It is not the case that the use of visual
type theory would impinge in any way upon mathematical practice if it is used as prescribed here. Second, a
visual type theory is not a universal formal system for expressing mathematics, for it operates within an entirely
different language paradigm. Rather, it is a supplementary system that runs in parallel with formal languages,
whether locally or globally defined. In other words, the depictive character of visual type theory provides it
with the property of independence: the mathematical formalization a user chooses can be switched out easily
while the visual type theory, say, T , stays in place, just as T can also itself be removed or added, turned off
or turned on at any moment, without affecting the rigor expressed by formal syntax. These formal languages
can be of virtually any kind—past, present, or future. This suggests particular uses for visual type theory in
mathematical knowledge management, in its role as custodian of past and present mathematical documents and
for confronting the problems of informality and logical heterogeneity [RK].

It may be noteworthy that an attempt to change this prescribed role—to use a visual type theory T as a basis
for an imagined “visual” formalization of mathematics, for example—regardless of success or failure, would take
away this property of independence, and force T to cease being a visual type theory, and to become instead a
“visual” formal language.1 The independence property removes the most stringent pressures that a language can
be subject to: the demands of rigor, compilability, security, searchability, etc. In contrast, these pressures fall
directly on formal languages and programming languages. Such languages must cater to the needs of machines
first, and human beings, second. In contrast, visual type theories, like natural languages, occupy a space in
which this priority is exactly reversed.

3 Progress Report: A Mathematical Visual Type Theory
3.1 Overview, Principles of Design
Now that we have explained at length the simple idea of setting up a visual type theory, we can discuss such a
visual type theory for mathematics that is currently under development, called NPM. (The abbreviation NPM
originally stood for “not Principia Mathematica,” but we will not dwell on this.) A system at minimum requires
a supply of depictive glyphs (which are intended to serve as canonical sketch components for ordinary memories
of mathematical abstractions, cf. section 2.2), rules that govern their use, and tools that make their use in the
real world possible. More concretely, we have:

1. a set of glyphs called the NPM glyphs. (more concretely, a scalable font, the NPM font).

2. the grammatical rules governing the use of glyphs (Briefly, the NPM grammar),

3. the “Principles of Design” of the NPM system. (Guidelines for the ongoing development of NPM.)

4. the correspondence between glyphs and mathematical concepts (the NPM meaning map or interpretation),
and

5. supporting software/technology (see section 4).
1Many such languages (and similar tools) exist, cf. [Mye].
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By the Principles of Design we mean to include both the informal or heuristic relationships between mathematical
concepts and visual elements of NPM glyphs, and the underlying motives and principles of visual type theory.
We also include the following basic principles (hereafter: Principles of Design #’s 1, 2, 3, and 4), which lay at
the heart of NPM. They have no relationship with the general notion of visual type theory explained above.

#1. NPM should aspire to be as beautiful as the mathematics it expresses. It should “fit in” with the notation
and methods of ordinary mathematical practice.

#2. NPM should be both printable and hand-writable (with a pen or similar stylus).

#3. NPM should have a many-one meaning map between the logical space and conceptual space of mathematics,
and be as close to a one-to-one map as possible.

#4. NPM should aspire to be universal: to provide one internally consistent set of glyphs for all of mathematics
(or more precisely, all reasonably well-established knowledge in all mathematical areas).

Principle of Design #1 and #2 impact various design decisions in the development of NPM glyphs. Principle
of Design #2 primarily aims, without specifying a reason, to preserve the traditional bond between haptical
experience and mathematical memory. Principle of Design #1, together with the density requirement of visual
type theory (section 2.4), suggests that the design be simple, with a minimum of flourishes. This conclusion
is supported by studies on text adjuncts which find that learning and memory outcomes may decrease due to
interference effects [SB2] and in accordance with a so-called coherence effect or coherence principle [MM, p.
95]. The glyphs should also strive to conform to typographical design standards and principles. For example, it
should aim to “induce a state of energetic repose, which is the ideal condition for reading” [Bri, p. 24].

Principle of Design #3 has two parts. First, it says that there should be no overloading of NPM glyphs. Just
like the syntax of a strictly typed formal computing language, every NPM glyph should have a definite, fixed
meaning, with nothing left to context to interpret. Second, it says that as much as possible, the sketch memory
of a mathematical concept provided by NPM should be like a fingerprint: it should be a unique identifier.
There are many cases in which this specification cannot be fulfilled. Consider notions that exhibit so-called
“cryptomorphism,” or nontrivial equivalences between several different definitions. The concept of a matroid,
the concept of a lattice, or the concept of a topos are just a few examples of cryptomorphic notions. It is
usually sensible to express such cryptomorphism in NPM, rather than choosing one notion and expressing it
visually, ignoring the others. Principle of Design #3 tells us, however, to select one of these glyphs and give
it precedence over the others. Principle of Design #3 provides a counterweight to the common experience of
encountering overloaded notation in mathematics, and disagreement between the notations and terminology
used by different authors. It is notable that without changing a single letter or a single word in the canon of
mathematical terminology and notation, we obtain in this way a tool for disambiguation that is always near
at hand, yet unobtrusive because it is depictive and thus does not share the same cognitive channel as the
descriptive symbolism. We note, echoing section 2.5, that this benefit to the use of NPM can be enjoyed without
explicitly writing or reading NPM glyphs. We also note that, although NPM commits itself to disambiguation
just as formal languages and programming languages do, it does so in response to the needs of a reasoning human
being maintaining a large, abstract, technical language, not those of a mechanical parser.

Principle of Design #4 states that NPM should be developed to serve as a tool on the broadest possible
base, where “base” refers to the potential users of the glyphs and grammar as a cognitive tool—even though, as
stated in the introduction, a major goal and motivation of NPM is to increase understanding and lower barriers to
entry to mathematics, particularly for those in career paths or life situations which do not permit them to pursue
focused, rigorous mathematical studies. Although this may seem like a point of ambition for the NPM project,
in the author’s view a mathematician would in fact consider it to be the only path forward, given the deep,
inescapable connections between mathematical knowledge in different fields. Any attempt to draw a boundary
around the parts of mathematics NPM does and does not attempt to assimilate into its linguistic pattern would
inevitably be disrupted, due to the natural course that mathematics itself tends to run.

Before taking steps to finalize a mathematical visual type theory, it must be checked whether such a con-
struction could really exist. In particular, it must be determined if it can in fact be universally applicable across
all (or at least, some significant majority) of mathematical specializations. Due to the minute, technical details
involved, this task cannot be considered completed until a real mathematical visual type theory has been found
meeting the specifications to an extent that convincingly indicates that the project can be continued all the
way to completion. Until then, it is still not determined whether a visual type theory could exist which holds,
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in one grammar and one glyph set, all the concepts of mathematics at once, or whether any attempt to create
such a system would inevitably burst at the seams, overwhelmed by unexpected, accidental conflicts between
patterns inspired by different background knowledge areas. An extensive effort to find an answer to this question
has recently been concluded, and it has been confirmed that a visual type theory, conforming to all the above-
named specifications, is indeed theoretically possible. (However, difficult challenges of a mathematical nature
still remain, as will be discussed further in section 4.) We now describe this system in outline.

3.2 Grammar

NPM (viewed as a language) has a large vocabulary of glyphs, but a simple grammar. NPM glyphs are primarily
used as identifiers and as modifiers on function and relation symbols. They may appear under arrows, under
relations, or standing alone. These are the only prescribed uses of NPM glyphs, though they may also theoretically
appear anywhere else they are determined to be useful.

The decoration of mathematical calculations with NPM glyphs performs several functions. It distinguishes
calculations in one setting from calculations in a different setting, when the two are formally similar. It also
allows users to assemble objects and notions into coherent conceptual wholes, or in other words, to build new
abstractions out of preexisting abstractions in a convenient and regular way. Often, these new wholes take the
form of categories, or sometimes (depending on the setting) 2-categories (more rarely, even higher categories can
appear). It is convenient to express such categories using NPM for several reasons. Such categories are abundant
throughout mathematics and can be difficult to manage due to their number. In a given mathematical special-
ization it is not uncommon for many dozens of categories to arise, even considering only the basic prerequisite
knowledge. Categories are also particularly susceptible to the property of having a complicated definition in
spite of playing a very basic role in some derived setting or field of investigation. NPM assists in managing such
levels of suppressed complexity, creating room to focus on the most relevant details in a given setting. NPM is
good at encapsulating complexities, allowing them to be stored neatly, extracted when needed, and stored again
when the need is met. Glyphs may be combined in natural ways, providing “ramps” leading from basic ideas
to more complex concepts. An NPM expression of a subtle and complex mathematical notion can be a helpful
guidepost, and a landmark in the memory of the user that can easily be recalled later, even sometimes used (to
one’s delight) to reconstruct a forgotten definition. It can also be helpful in drawing attention to relationships
between concepts. This is particularly helpful when (for whatever reason) terminology and notation cannot
perform the same role, as is sometimes the case. Nonetheless, as the reader can imagine, NPM does not do
everything well. Statements which are “decorated” with NPM glyphs can become heavy, and this can become
counterproductive and wasteful. This phenomenon reinforces the principle (section 2.5) that NPM might remain
in its role as a visual type theory as opposed to being viewed as an extension of mathematical formalism. In this
role its explicit appearance in mathematical calculations and statements would, a priori, be optional and left to
the user’s discretion.

3.3 Glyphs

Finally, we address the question of the appearance and design of the glyphs themselves. Although glyphs
of NPM bears some resemblance to other sign systems—most notably perhaps, Chinese Han characters and
chemical nomenclature—they rely for much of their power on a tool called absence loading, which we now define,
and which is not a part of the prior knowledge of either of these sign systems.

The space in which a glyph is written or imprinted is called the body, or bounding box. Absence loading is
the association of a spatial region in the bounding box (a region anywhere in the bounding box that may have
any size or shape) to a logical constraint Φ. Once this region is assigned, information concerning Φ may then
be associated, via convention, to hand-drawn or printed lines which are placed in that region. In particular,
an empty or vacant region (i.e., the absence of any line or mark of any kind) indicates that either nothing is
assumed about Φ, nothing is known about Φ, or that information about the status of Φ is not relevant to the
context where the glyph is drawn or printed. (It is left to context to determine which of these cases applies.)

Here is an example. Consider two sets A and B (in some fixed universe U). We can construct a simple glyph
using absence loading that would tell us whether something, say x, is in the set A, and whether it is in the set
B. Suppose that we take the symbolA as a guide for the eye, and “load” or “charge” the two regions below
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the horizontal lineA with information about membership in A and B, respectively:

region 1: x ∈ A
region 2: x ∈ B

Now let us assume that a dot in the loaded regions shall denote: positive, certain membership in A, and positive,
certain membership in B, respectively. Then we can see that our entire language consists of the symbolsA,
denoting the general universe of sets and elements U ,C, denoting the set of elements of A,B, denoting
the set of elements of B, andD, denoting the set of elements in both A and B. If we close off the grammar
and glyph system here, we can see that we have the power to denote only the sets A, B, and A ∩ B, along with
the universe U . However, we can fill the loaded regions with any symbol we wish. Next, suppose we place, say,
an open circle ◦ in the regions to denote positive, certain non-membership in A and B, respectively. Then we
generate the usual four disjoint classes: B −A, A−B, A∩B and U −A−B via the symbolsF,H,D,
andG. Notice the additional flexibility: we can, using the same symbol system, leave the region assigned to A
or B absent, leaving us with a smaller set of symbols germane to that setting, for example,A,C,E can
serve in any setting in which we are not interested in B, only in the set A. Hence if we were in a setting in which
we wish to ignore some information, we could continue use the glyphs we have defined rather than switching to
another set of glyphs. This is achieved by making use of natural visual processing mechanisms: upon exposure
to visual information, relative locations in memory are maintained, but visual information considered irrelevant
is filtered out in favor of visual information that is the focus of attention. For this reason, the notation is
interpreted as a depictive representation, not descriptive one. Certainly, in this notation the amount of depictive
power obtained is rather slight, but it’s not so bad for a line, two dots, and two circles. What we really mean by
this, of course, is that the notation has the property of density that was defined in section 2.4. This density is
more noticable if one compares an absence loading notation to other depictive representations of the situation.
Consider the most common depictive representation, a Venn diagram:

While we will not draw them, the Venn diagram above suggests other possible “visual” notations for the two sets
and their subsets. Note that while it is also possible to extend such a Venn-diagram-inspired notation to denote
three sets, already in the case of four sets, Venn notation is stretched to its breaking point and has practical
value only in exceptional cases where some of the intersections are empty. This is not so for the notation using
absence loading: given three sets A, B,C, we extend the line to produce an immediately evident extension of the
sign system: J
Given more sets A1, . . . , A7, we can continue further:K, etc. This, for example, would generate a
language of 37 or 2187 unique2 glyphs, or something close to the number of Chinese Han characters in frequent use
[L]. This extension of the notation naturally suggests itself because the use of spatial regions of the bounding box
naturally induces visual patterns. The corresponding descriptive representation (using formal logical symbols)
can easily be derived from the depictive representation, and vice versa. Although this set of examples has little
practical value, absence loading can provide a potentially useful notation alternative to descriptive notation
in any setting in which frequently recurring conditions Φ, Ψ, etc. arise in highly variable combinations. Such
settings are found in many technical and scientific knowledge areas.

Now we come to apply absence loading to the generation of mathematical glyphs, and the design choices
specifically made in the development of NPM. For the typeset glyphs we use in this article we employ a design
based on scripts of several natural languages.3 We begin with the glyph for a set. If pressed, we will say this is

2Unique up to equivalence defined by the Gestalt laws.
3Elements of the design were influenced by, e.g., the Hiragana syllabary and Sanscrit alphabet, Arabic and Khmer scripts, and

Chinese Han characters.
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Figure 1: Absence-loaded regions of the Hausdorff space radical.
the set concept determined formally by the Zermelo-Frankel axioms, including the axiom of choice:

L
We observe a vertical center line, to serve as a visual anchor, partially enclosed by a pair of dots (represented as
they might be drawn using a brush). We can now begin developing the glyph as structural features are added
to a set. This will give rise to the first of the two major families of glyphs, the structure glyphs. Following
terminology for Chinese and Japanese, we call the most basic glyphs radicals, and thus we say that the set glyph
is one of the basic radicals of the NPM system. From the set glyph immediately follow two of the most important
radicals, that of groups and semigroups (left), and that of categories (right).

M N
On the left is the NPM glyph of the category concept, and on the right is the glyph of the mathematical group
concept. The depictive elements in these glyphs are briefly the following: a group is a set with a little bit of
extra structure added (a binary operation satisfying various properties). This additional structure is represented
by extending the dots of the set glyph to the ascending diagonal lines of the group glyph. Thus, via absence
loading, when we write the glyph of a set, or invoke it, we simultaneously invoke all groups. (In other words, it
is unspoken whether or not the sets we invoke are in fact groups.) On the other hand, the relationship between
the category radical and the set radical is slightly irregular: a set is what is known as a zero category: in the
language of category theory, this is a set of objects with no morphisms between them. There is an ascending
sequence of 0-categories, 1-categories (which are the usual categories), 2-categories, 3-categories, etc. Since this
sequence and the “higher category theory” it leads to is foundational to many areas of mathematics, we build
into NPM the relationship between sets and categories. In other words, NPM views a set as a zero category—as
well as a structure with a coherent definition and theoretical area of study of its own.

These characters can now be recombined to give the character for a groupoid, a category in which all morphisms
are invertible:

O
Coincidentally, this character is reminiscent of the Han character for water, . Guided by the Han character,
we make the strokes slightly asymmetric, for this increases its aesthetic appeal and evokes the experience of
writing the glyph by hand. There are numerous variants of these basic glyphs that will not be discussed in this
overview.

Now we come to the second major family: the topological glyphs, which differ from the structure glyphs
semantically, grammatically, as well as typographically. The topological family has two radicals instead of one,

35



the Kolmogorov space radical (left) and the Hausdorff space radical (right):

P Q
The treatment of the Hausdorff glyph as a radical reflects the importance of Hausdorff spaces, particularly in
analytic areas of study (for example, harmonic analysis) where a topological space is needed that can support a
notion of measure (in the sense of Lebesgue theory). Kolmogorov spaces, on the other hand, are often studied
very differently. For example, they frequently arise in situations in which the so-called specialization ordering is
an important part of the structure (the specialization ordering is trivial in the case of a Hausdorff space). These
differences are reflected directly (depictively) in the associated NPM glyphs, in the sense that the Hausdorff
property is not added to the Kolmogorov space radical, even though a priori this is how one might have expected
to proceed.

For the sake of brevity, we will not develop the topological radical’s many variants here. Figure 1 indicates
absence-loaded regions of the radical, along with the class of properties reflected (or “loaded” or “held”) in
each region. Note that positions are disjoint and reflect design choices regarding proximity to the center of the
glyph. In particular, compactness is placed directly in the center of the glyph: this reflects the general fact that
compactness across virtually all of mathematics is among the most important and most impactful properties of
a topological space. We note, in passing, that the glyph of a compact Hausdorff space is denoted in NPM by

R
Here the intuition of compactness is represented depictively by a closed circle. It may also be noteworthy
that the algebraic structure region’s location is deliberately chosen to allow maximum flexibility concerning size
adjustment (or “expansion” of a region), as a great deal of the variation in topological spaces arising in practice
is due to variations in algebraic structure.

We will now give a demonstration of how NPM grammar patterns can be combined to create complex glyphs
out of simple ones. For this we will study the development of structures arising in analysis. Let us go back to
the group glyph

N
We can add the assumption that it is abelian by transforming the enclosing strokes into a cross:

S
This depictively evokes the symbol of addition, the Greek cross used by Widman (in 1489) and Descartes [Caj].
Next we can transform to a vector space by assuming the action of a field:

T
Now we begin to see that, in but a single glance, we can perceive via NPM the close relationship between many
diverse structures, each with a distinct theory and semantic space of their own: vectors spaces, groups, sets, and
categories.4 Now we combine the topological and structure glyphs to generate the notion of a topological vector
space:

l
4The concept of a module (in the mathematical sense) is also very closely related to the rest of these concepts, and is therefore

represented in NPM by an evocatively similar glyph:

U
The line depicting the scalar action of a ring or algebra is not so far extended (ascends not as far as the cap height).
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When such structures are studied, several properties come to the fore, generating a family of glyphs that in NPM
take the form:

V W X
The additional strokes in the glyphs reflect structural and topological properties: completeness, the presence of
an inner product structure, the presence of a norm structure, and several properties related to the presence of an
involution [Dix]. These glyphs (at left, at center, at right) depict structures that are known in analysis as Banach
spaces, Hilbert spaces, and C∗-algebras, respectively, each of which is the basis of a substantial mathematical
theory.

Next, we illustrate how NPM provides representations that can concisely express otherwise obscure relation-
ships between mathematical concepts. For this example, we return to the category radical,

M
and we develop it to the notion of a topos, whose glyph is

Y
which is abbreviated,5 for convenience, to

a
There is more to tell, however, in unpacking this glyph. The terminology “topos” is in fact used to denote
two mathematical concepts, the first known as elementary topos and the chronologically earlier concept of
Grothendieck topos. The Grothendieck topos can be defined as an elementary topos that is cocomplete and has a
small generating set. However, this definition does not reflect the (so to speak) “correct” intuition in all situations
where the notion of a Grothendieck topos is used. Therefore the position of NPM is that a Grothendieck topos
is denoted using a glyph based on a different radical than that of the elementary topos:

b
This glyph, which irregularly displays the category glyph in the geometric region (see Figure 1), evokes the
Kolmogorov space radical above—in other words, it evokes a spatial object, not a structural one. This reflects
the language of generalized spaces developed in the original work by Grothendieck and his school [SGA4], based
on geometric morphisms. The fact that the two approaches to topos theory in fact converge on the same notion
and a common underlying theory was the product of years of development by mathematicians; for better or for
worse, NPM can capture the entire thrilling story, more or less, simply by invoking their names.

For the last demonstration, we show how NPM may be used to express logical relations between structures,
and in particular its grammatical role with respect to morphisms. We choose a relation in order theory, known

5This abbreviation is a regular, recurring NPM pattern. The vertical line which is suppressed is called the limit file, and is
decorated with absence-loaded regions for expressing the limit properties of a category. Thus a category glyph with limit file

extended is writtenZ, and extra strokes are added which, in the case above, for example, reflect the fact that the structure is
assumed to be cartesian closed and to have all finite limits. This creates a depictive relationship between this and the order glyph

q (see Table 1) that once again reflects underlying mathematical structure. Cf., for example,

u
which is the Heyting algebra glyph.
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as Priestley duality:

Here, a glyph set above an arrow denotes the objects of a category whose morphisms are described using the
glyph centered below the arrow, and the symbolx denotes a duality (i.e., an equivalence between one and
the opposite of the other category). Within order theory there are at least two important cases of this duality:
Birkhoff duality

and Stone duality

Notice that the NPM representations suggest, via highly automated cognitive processing mechanisms, that there
are many relationships and patterns to be recognized between the three formulas. The task of bringing to the
fore the same parallels in the structure of these statements cannot be as easily achieved via descriptive methods.6
Variations of this broad duality relationship, which is a form of spectral duality, can be found not only in order
theory, but in many other mathematical disciplines as well. NPM captures each one of these and often succeeds
in capturing something of the metaphorical relationship between these different dualities in an evocative and
information dense, calligraphic, yet useful form.

Finally, the entire collection of NPM radicals is presented in Table 1.

4 Conclusion and Outlook
The problem of developing an implementation of a visual type theory for mathematics such as NPM demands
ventures in both the sciences and the arts, across the boundaries between mathematics, computer science, and
graphic design, and poses many challenges. For its grounding as a tool for cognition, it appeals to fields such
as educational and cognitive psychology for a model on which to base its mechanical function, and for empirical
results that may clarify its role. The empirical results reviewed in section 2.1 are encouraging in this respect,
but as these studies arise from experiments involving text adjuncts like (among others) graphs, charts, and
representational images, we could regard this evidence as not directly hitting the bull’s eye. For instance,
the evidence on transformational and decorational text adjuncts in [LAC, DSL] suggests that an information
dense, grammatically regular, depictive device like a visual type theory may in some settings boost learning
and memory performance. However, absence loading (section 3.3), construed as a memnonic device and tool
for schema-construction (cf. sections 2.5, 3.1, where it was noted that a visual type theory could be used as a
public or as a private language for this purpose), still has not itself been scientifically tested or evaluated. It is

6We cannot fully explain the glyphs appearing in the dualities here; however,w is the glyph of finiteness (the three strokes of the

glyph correspond to ascending and descending chain condition, and cochain-finiteness, respectively), andv denotes distributivity.
The rest can be inferred from formal statements.
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L set

P Kolmogorov space

Q Hausdorff space

c ring, field, algebra

U module, vector space

d pairs, extensions

N group

e group (topological)

f Lie algebra

g manifold, bundle

h classical variety

i sheaf (geometric view)*

j (dynamical) system, triple

k process

l topological vector space

m CW complex

n simplicial set, Kan complex*

M category

o globular set, generalized category**

p enriched category

q order, lattice

r deduction system, graph*

s lambda calculus

* subject to revision
** recent/experimental

Table 1: NPM: The Basic Radicals, July 2016.

also unclear how the prior knowledge demanded for the use of a visual type theory would affect its performance
as a memnonic and organizing tool in practice. However, the author would regard it as too much to argue that
the existing evidence falls off the target altogether, and would suggest that results so far are promising from the
point of view of visual type theory, and that further research is warranted.

As regards potential NPM enthusiasts who are mathematically trained, there appears to be, fortunately, only
two major axes along which NPM must be brought to smoother interoperability if NPM is to become usable: TeX
platforms, since TeX is the near-universal language of mathematical and technical writing, and the space within
and around the large family of proof assistants currently available (Coq, Agda, Isabelle, CompCert, Lean, and
others), perhaps via adaptation of existing middleware such as the Proof General [Asp]. A first-generation NPM
system could provide such inter-operability, however minimal. The creation and maintenance of a full library of
NPM glyphs even on this minimal basis would require not only facility in typographical design, but also broad
knowledge of mathematics, in order to maximize the quality and realism of the language. The author’s hope is
that the project is continued without losing the sense of purpose it has carried since its earliest beginnings: for
the NPM developer, the task faced is not only to be of service to its users, but also to be a participant in the
relationship, as old as civilization itself, between people and mathematics.

A working NPM platform would involve a usable glyph set easily numbering in the tens of millions. If
such a platform is one day available, the problem of how to improve user interface can then be approached in
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conformity with a plan for growth. This suggests connections to the fields of mathematical user interface design
and human-computer interaction, as well as programming language theory, which supplies an understanding of
the anatomy and life cycles of formal languages existing in diverse and rapidly changing environments. Further
study in these areas can perhaps provide models and guidelines which can be adapted to the visual type theory
paradigm. All research related to NPM’s development would also have to follow developments in a number of
areas including proof assistants and proof engineering, mathematical typesetting, mathematical software, and
mathematical knowledge management.
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Abstract

Intuitive user interfaces need a good understanding of the respective users
and practices. One important mathematical practice consists in using mathe-
matical expressions, which evolved as concise and precise representations of
mathematical knowledge and as such guide and inform mathematical think-
ing. We present an exploratory eye-tracking study in which we investigate
how humans perceive and understand mathematical expressions. The study
confirms that math-oriented and not math-oriented users approach them dif-
ferently and reveals implicit mathematical practices in the decoding and un-
derstanding processes. Further experiments are needed to confirm and study
them. We discuss how these practices could be used to improve mathematical
user interfaces.

1 Introduction
The art of expressing mathematical knowledge in mathematical expressions evolved over the last three centuries. From
the standpoint of Human-Computer Interaction they have a perfect usability score (at least for mathematicians) as they are
rated highly for the three components of usability: effectiveness, efficiency and satisfaction.

With the rise of the World Wide Web mathematical knowledge (in a very broad sense) can be shared easily. The field
of Mathematical Knowledgement Management (MKM) has achieved crucial breakthroughs to digitalize mathematics, for
instance the development of MathML or OpenMath with their respective content and presentation parts as Web formats for
math. In a nutshell, the technology for the traditional tools-of-the-mathematical-trade on the Web exist, but are they still as
usable on the new medium?

Let us have a closer look at the usability of mathematical expressions in digital documents. The effectiveness and
efficiency of formalizing mathematical information via mathematical expressions stays the same, but the satisfaction com-
ponent is influenced by traditional intuitions how they are to be used and modern intuitions about Web services for non-
technical documents. In our research, we are interested in the integration of traditional mathematical intuitions into modern
user interfaces for math (“mathUIs”) on the Web. With this study we aim at a deeper understanding of mathematical ex-
pressions as a tool so that we ultimately can provide new best-practice guidelines for the design of mathUIs.

For this we investigate implicit mathematical practices by conducting an eye-tracking experiment on the reading of
formulae. In several studies (see for example [11] for an overview) it was shown that there is a correlation between what
a participant attends to and where she is looking at. The “eye-mind hypothesis” [7] even claims a correlation between the
cognitive processing of information and the person’s gaze at the specific location of the information. In a former study [10]
it was shown that professional mathematicians have different requirements for search user interfaces not only compared
to non-mathematicians, but even to educated mathematicians who don’t do mathematics any longer. In particular, implicit
mathematical practices can be made explicit by direct comparison of practices by math-oriented and not math-oriented
people.
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GRAY AND TALL note in [5, p. 1] about mathematical expressions that their “ambiguity of notation allows the successful
thinker the flexibility in thought to move between the process to carry out a mathematical task and the concept to be mentally manipulated
as part of a wider mental schema”. For example, the very simple mathematical expression “1/2” can be looked at as a the
process of dividing 1 by 2 or as the product of this division, i.e., 0.5. Such expressions can be very elaborate and intricate,
e.g. look at the complex formula Expression 3 given in Fig. 1. As mental models [8] shape how people interpret and
experience the world, they can be very powerful.

Mathematical expressions provide a trained person with a specific mental model. They serve – as mathematical tool-of-
the-trade – the distinct purpose to enable mathematicians to proceptualize, that is to provide focus on either the process
(or procedure) of obtaining an information chunk, or on the conceptualization (or the idea) of the information chunk itself;
see [5]. ANDRA ET AL. found in [2] that a formula condenses its information in a shorter but more implicit inscription.
They note that a “formula constitutes both a procedure and a symbolic narrative” [2, p. 242, original emphasis].

As mathematical expressions can neither be considered text nor image, it was previously suggested that they form a
separate category (see e.g., [6]) which humans perceive differently. This perception was coined by ARCAVI “symbol
sense”, i.e., a “complex and multifaceted ‘feel’ for symbols [. . . ] a quick or accurate appreciation, understanding, or instinct regarding
symbols” [3, p. 31]. In 2005 W. SCHNOTZ presented a study proving that “comprehension is highly dependent on what kind of
information is presented and how it is presented” [12, p. 73]. Even though he used only text and image information chunks, it
is suspected that mathematical expressions build a category that enables math-oriented persons to understand math in their
own way. The “formula shock” [13] effect is well-known, but how exactly do math-oriented people read mathematical
expressions differently? If we can get a deeper understanding, then we might get new insights for the design of math
search engines.

In [4] an eye-tracking study showed that persons with a high mathematical expertise related proof items with an ac-
cording supportive image. They found that the participants tend to jump between text and image and it was suggested that
relating the different representations enables the relation in different memory stores. Therefore, mathematical expressions
with their visual and textual aspects present a cognitive tool for mathematical creativity by enabling proceptualization.

In [9] KAMALI AND TOMPA studied the retrieval for content in mathematical documents. Their empirical research also
indicates that mathematical expressions are special. They conclude that mathematical expressions should neither be used
as conventional document fragments nor with a too exact retrieval algorithm as both result in very poor search results.
Instead they showed that algorithms that are based on making use of the Content MathML representation of the document
corpus fare much better. So we know now that math search research should take the specifics of mathematical expressions
into account. But we still don’t know why and how exactly. In our experiments we approached the answer in a very broad
and exploratory way, so that we get clues for the answer. Our results should be viewed as hypotheses about the process of
understanding mathematical expressions. These need to be confirmed or rejected in future research.

In Section 2 we first describe the set-up of our eye-tracking experiment. Next we present our findings and discuss them
to develop first hypotheses for mathematical practices with respect to mathematical expressions. Section 3 concludes the
paper.

2 Our Study
Ultimately, we are interested in the potentially distinct user groups of technical documents in a broad sense and want to
create fitting mathUIs. Here, our goal consists in the comprehension of the intuitive use of mathematical expressions. One
strength of mathematical expressions is the exact and concise formalization of mathematical information. Therefore we
wanted to understand the process of reading and understanding mathematical expressions: How are they read and what are
the mathematical intuitions of use? To get a better understanding of the relevance of mathematical expressions and user
group behaviour w.r.t. them we set up an eye-tracking study.

With an eye-tracker a subject’s eye movements can be followed and measured while she is performing a task. According
to e.g. [7], semantically relevant information increases the number of fixations. Hence, we were interested in the specific
spots in a mathematical expression fixated the most or the longest and the order in which this was done by our users.
The location where people look at first is the one from which they decode the meaning of the expression. In turn, this
might indicate what they are trying to comprehend first and thus, what is the most relevant ‘object’ when searching for the
mathematical expression.

2.1 Set-Up

We invited 23 participants to look at concrete mathematical expressions, particularly the three expressions seen in Fig. 1
in the order of numbering. The first expression represents a very simple equation system, the second one is slightly more
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Figure 1: Mathematical Expressions Presented to Test Subjects (Expression 3 cited from [1])

complex as the variables are not on the same side of the equation symbol, and the third one is a rather complex mathematical
expression. After Expression 1 and 2 the participants were asked to select the correct answer.

To differentiate between mathematical practice and typical reading behaviour, we invited math-oriented and not
math-oriented persons to participate in the test. They were invited via e-mail and were asked to enrol online,
not knowing what kind of test to expect. This information was withheld to avoid losing participants that dis-
like mathematics in general. Before starting the test, the test subjects where asked to indicate their mathemati-
cal abilities and interest in mathematics on a range from low, medium and high. Based on this self-assessment
and our judgement based on the correctness of their answers given as solutions to math problems in the test
the subjects were grouped by “math-affinity” into MATH and NO-MATH participants respectively (see Fig. 2.1).

Group Female Male
MATH 5 5
NO-MATH 7 6

Figure 2: Participants

The mathematical expressions were shown to the participants as images on a
Tobii t60 Eye Tracking Screen (17” and 4:3 ratio). Note that the seating position
of some participants differs from normal positions while solving mathematical
problems. Therefore the screen and integrated eye tracker were adjusted accord-
ingly and had to be calibrated. In this set-up the user is able to speak and move

his head and upper body moderately in front of the screen which has its limitations in the tracking box of the eye tracker.
To avoid losing tracking data, the eye tracker had to be recalibrated after finishing a task with major tracking losses. This
could be the case if participants changed seating because of concentration.

2.2 Results and Discussion

As we were interested in the specific spots in a mathematical expression fixated the most or the longest over time, the
visualization of our results in this respect in form of a heatmap or a gaze opacity map seemed the most suitable. Heatmaps
as the ones in Fig. 5 were originally used to visualize the heat distribution on a surface for a set period of time, where
typically the color “red” indicates the hottest transitioning over yellow, green and light blue to the color “deep blue”
representing the coldest area. In an eye-tracking study the longest and most fixated areas are the hottest, the completely
ignored spots the coldest. A gaze opacity map, used for example in Fig. 3, works like a mask based on a heatmap: The
most looked at areas are the transparent, the ignored ones are the opaque areas of the mask. Therefore, with a gaze opacity
map one can only see those areas that the participant group has looked at and thus, seen. Everything else is blacked out.
To get a better understanding of the order in which objects in mathematical expression are looked at, we also used the
visualization in form of a gazeplot, in which fixations are represented by dots that are connected and numbered according
to their accumulated occurrence in a given time frame and whose size indicates the length of the gaze.

Let us first have a look at the result for the very simple Expression 1 in Fig. 1. We gathered the gaze opacity maps after
the indicated time for the MATH and NO-MATH participant group in Fig. 3. Human eyes are adapted to fast and efficient
information processing. In particular, there are certain visual patterns like vertical lines that are registered by optical cells
specialized for the perception of this kind of visual pattern. If nothing strikes the eye, then a typical grasp of the input given
starts in the centre. Thus participants in the NO-MATH group began to cope with the input in the center of the mathematical
expression as expected. Interestingly, the MATH members did not. Instead they started by looking at the first equation
symbol. We hypothesize that

Mathematical Practice 1: “Math-oriented people use visual patterns for math detection.”

3
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Figure 3: Development for MATH vs. NO-MATH Participants for Expression 1

If this could be confirmed, then this might have broad consequences. For instance, the formula shock which many people
suffer could be overcome by new visual training methods. Also, math search engines could offer new kinds of query
interfaces according to such visual patterns and they could be another facet for sorting search results.

The gaze opacity map taken after 400ms is also revealing. Here, NO-MATH members start to explore the symbols in
the mathematical expression near the center, whereas MATH members seem to gather information about the variable name
“b” and the operator “+”. This behavior is continued over the next milliseconds. After 1000ms the MATH participants
have discovered the last equation symbol, only afterwards they are interested in the actual numbers. In contrast, the NO-
MATH participants searched for another occurrence of the element “b” and its concrete value “11”. We noted earlier that
mathematical expressions have a procedural and a symbolic/calculational aspect at the same time. Using the procedural
aspect of the equation system, one has to gather information about the procedural structure first. That is, one observes the
kind of mathematical expression first (here after 100ms “equation”), then one looks for the major variable, i.e., the one
that is essential to understand the task, and the operator (here after 400ms “b” and “+”), and finally, one is interested in the
concrete values (here after 20,000ms “11” and “16”). Note that

Mathematical Practice 2: “The decomposition of a mathematical expression is organized along its procedural character.”

The second variable “a” in the second line of the equation system is not looked at at all: soon after 20,000ms all
participants of the MATH group progressed to the solution task. We suspect that the math-oriented subjects know that the
plus-operator is binary, so the name of the minor variable is not relevant at this point.

Expression 2 was the second mathematical expression shown to our suspects (see Fig. 4) and already more complex
than the first one because of its unusual structure. Note that the first clear fixation could already be noted after 100ms in
contrast to the first for Expression 1 which took 200ms. Our participants didn’t know before the test what kind of test to
expect. We therefore suspect that this time difference of fixations for Expression 1 and 2 is due to an adjustment to the test.
Now everyone was aware that some mathematical expression was to be expected.

It is quite stunning, how the strategy of members of the two groups differed from each other for Expression 2 in Fig. 4.
If we look at the first two screenshots taken at 100 and 400ms respectively, we notice that the numbers are singled out by
the NO-MATH participants whereas the variables were in focus by the MATH members. This means the grasp of these two
distinct types of objects (literals and variables) can be easily done as it is the first means to comprehend Expression 2 and
maybe generally mathematical expression. So we hypothesize:

Mathematical Practice 3: “Literals and variables can be easily differentiated by most people (with an educated back-
ground).”

If we look back at our subjects’ eye movements in Expression 1 in Fig. 3, we notice that the MATH members started with
focusing on the first equation symbol. According to Math Practice 1 they might do so because they perceive a specific
visual pattern. This pattern could be the one of an “equation system”, e.g. three columns with the middle one containing
“=”-symbols. Once this is established, as for example can be seen in the screenshot in Fig. 3 at 400ms, they look for
the variables (and arguably operators). The interpretation of “b” being perceived as variable in Fig. 3 and not just as
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Figure 4: Development for MATH vs. NO-MATH Participants for Expression 2

surrounding ‘text’ as in the screenshot at 400ms for the NO-MATH users is based on the contemporaneous gaze at the
operator symbol. The Expression 2 was shown to participants directly after having been presented Expression 1. Therefore
this first phase may have been dropped when reading Expression 2 and the subjects jump right in by looking for variables
in Fig. 4. We observe that the variable “a” in Expression 1 is not fixated at the beginning, whereas both variables “x” and
“y” are in Expression 2.

Note that the unusual form of Expression 2 makes the variable “y” into a suspected second major variable, whereas the
variable “a” in Expression 1 was a minor one in the sense that it was just the other argument for the binary “+” -operator
as can be seen in Fig. 1. Not only are variables placeholders for values, their names are also “holding a place” for operator
arguments. This specific placeholder role of variable names can be extended to simple mathematical expressions. As this
seems to be integrated in the decomposition of mathematical expressions, we hypothesize:

Mathematical Practice 4: “Simple mathematical expressions can be treated as placeholders for argument positions and
therefore as neglectable in the mathematical expression decomposition process.”

Subexpressions are treated like variables in the perception of mathematical expressions just as if they were placeholders
for syntactic constituents that make a formula functionally well-formed.

Now we might ask, why do the MATH members look at the variables first, that is, why is this the second phase in the
decomposition of a mathematical expression? We suggest that math-oriented persons want to grasp the task first. So here
they make out the “equation system” first, then they try to understand what the distinct elements of the task are. We noticed
the priorization with Math Practice 4, but we can also observe that variable names as signifiers for variables are important
for the task set-up. We argue that the MATH subjects’ focus on the variables in Fig. 3 can be attributed to their specific
placeholder role in a mathematical expression. Thus, as they were singled out so markedly, we like to note:

Mathematical Practice 5: “Variable names are interchangeable as they signify arbitrary but fixed values.”

This placeholder role of variables is already made use of in many math search engines. Concretely, content MathML is
used to allow the user to input arbitrary variable names, but search for the generic expression in the underlying corpus. Our
hypothesis rather confirms that math-aware search engines need the semantic capture of math knowledge to be intuitive.
It is a question whether the exchangeability of variable names as argument placeholders (and not just value placeholders)
has yet been considered. We observed that the name is not looked at if the operator is so well known that the existence of
this variable can be assumed, which we framed as their characteristic of being “minor” or “major”. This hypothesis may
be used to differentiate importance among substitutions in search results.

The difference of accessing the complex mathematical expression between math-oriented and not math-oriented subjects
in the respective heatmaps after one minute of watching – presented in Fig. 5 – is striking. The focus on the centre of the
expression by NO-MATH members supports Math Practice 1. We suspect that they also didn’t even try to comprehend the
formula, so they retreated to answer a question on the meta-level “What kind of mathematical expression is this?” with “an
inequality”. This is corroborated by the absence of the concepts “lower/upper bound (of an integral)” in the think-aloud
protocol by NO-MATH participants.
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Figure 5: HeatMap (1min) of Complex Formula for MATH vs. NO-MATH Participants

Interestingly, neither the integral symbols nor their limits were glanced at by NO-MATH subjects, whereas even the inte-
gral symbol itself was fixated by some MATH ones. Note that the precision of the hotspots in the heatmaps for Expression 3
suffered especially as all participants changed their seating position due to the complexity of the mathematical expression.
As a consequence the calibration of the eye-tracker to the individual pair of eyes deteriorated accordingly. Assuming that
MATH members really looked at the integration symbol itself, we may hypothesize:

Mathematical Practice 6: “In the decomposition of a mathematical expression, some symbols (e.g. the integral sign)
carry structural information, which is read independently from its functional information. The structural information does
not include parameter values.”

Math Practice 5 strengthens this statement, as major variables help to understand the structure, whereas minor ones the
function. For math search interfaces this might mean that LATEX is not a superior input language for search queries after all,
as it requires syntactic correctness, which according to Math Practice 6 might be too strict.

In Fig. 6 it is obvious that the MATH participants started out from the left to decode the mathematical expression. One

Figure 6: GazePlot (1sec) of Complex Formula for MATH vs. NO-MATH Participants

could think that this is due to the natural reading direction in Western societies and indeed, the very first deciphering of the
mathematical expression has to be expected to be on the very left. But it is not evident that they continued to do so until the

6

47



first meaningful sub-expression, i.e., the lower limit, was completed (compare with the overview scanning behaviour from
left to right by the NO-MATH members). For the MATH participants the entire decoding process starting after the grasp of
the first sub-expression contained back and forth jumps to comprehend the intra-relations of the expression.

Moreover, from Fig. 5 we can gather that they looked at each part of the formula separately, whereas the NO-MATH
subjects only understood it on the meta-level, that is the mere structure of the formula being an inequality that tells us
something about a function a(x). From this finding we can hypothesize that

Mathematical Practice 7: “The decoding of a mathematical expression starts from the left until a first meaningful sub-
expression is grasped. Further comprehension is chunked into understanding sub-expressions and their relations.”

This makes it very probable that they remember the parts in a formula that are located to the left better than ones to the
right as these sub-expressions will tend to be the recognition anchors. A potential consequence of this hypothesis consists
therefore in the suggestion that the ranking of search results has to include a factor that is concerned with the position of
the found fragment where more to the left should rank higher than one to the right.

2.3 Results and Discussion with respect to Proceptualization

To assess whether the MATH members scan the mathematical expression using proceptualization, we have to find out
whether the participants switch between its procedural and conceptual aspect. Instead of conducting a visual cluster
analysis for the data elicited in our study, here we had to turn to a visual inspection of each participant’s data in Expression 3,
particularly the order in which he or she deconstructed the complex formula. We exemplify this with one math-oriented
subject, but we verified this with all.
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Figure 7: Functional Structure of Expression 3 in Fig. 1

Let us first look at the functional structure of the complex formula, that is the content tree. Fig. 7 shows a a tree repre-
sentation of Expression 3 in Fig. 1, where the tokens (variables and symbols) are at the leaves and the applicative/binding
structure is given by internal nodes labeled with “@” (application) and “β” (binding). The top of the tree is an application
of the “≤”-relation to two products (apply “∗” to multiple arguments) and so on down the tree. The subtree rooted and
the node “β” is the representation of the integral

∫ η
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Now if we superimpose the sequence of fixations identified in our eye-tracking experiment (see Fig. 8), we obtain
@

∗ @ @c1

pow @ @

δ x − λ1

exp β

@ s @
∫

@

δ x

η / @

z1 s

s

0

1

2

3

4
5

6

7
8

9

Figure 9: Exploration of Expression 3

the situation in Fig. 9 – we restrict our attention on the first/left argument of
the inequality.

We interpret the first two steps (1,2) as formula segmentation process: the
proband looked at large left bracket for orientation, identified the first factor
c1(δ(x))−λ1) to its left, and then found the matching right bracket. Steps 3,
moves to the integral symbol and step 4 fixes the lower bound – the upper
bound does not seem to receive much by the MATH group. Finally, step 5
passes to the body of the integral before step 6 discovers that the integral has
the exponential function applied to it. Then the attention shifts to the first
factor again and explores its base and exponent (steps 7 and 8).

This exploration of the left-hand-side of the inequality is followed by an
orientation towards the right-hand-side via the two “≤” symbols, and then
an exploration of the right hand side that is very similar to the one detailed
in Fig. 9. We observe even though the constant c1 had not been fixated on the left –presumably, since it is very simple,
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Figure 8: Gazeplot of the Order of Single Saccades by a MATH and a NO-MATH Participant

the corresponding c2 was – presumably the reader noticed the contrast. The final part of the formula exploration by the
MATH group consisted in a systematic comparison of the left and right sides of the inequality: the fixations jump between
the corresponding subtrees (c1 vs. c2, λ1 vs. λ2, and z1 vs. z2, but δ(x) used uniformly).

Those patterns of visual exploration can be detected in recordings of multiple MATH participants which supports Math
Practice 7 and moreover, leads to

Mathematical Practice 8: “Proceptualization is not only used when using mathematical expressions but also when de-
coding.”

In contrast to this the NO-MATH subjects explored the inequality in two essentially left-to-right sweeps. The only
significant reversals in this are the decoding of the two infix “≤” symbols in the middle (see the second frame on the
right in Fig. 8) and some consideration for the large brackets on the left (see the third frame on the right in Fig. 8). After
these two sweeps, structured exploration of the inequality seems to cease: the sequencing of fixations seems essentially
random. We also observe that the not math-oriented group seems to have less fixations and those that are identified seem
less intensive, even though the overall time spent looking at the inequality is the same.

3 Conclusion and Future Work
Mathematical expressions are widely used in technical documents, therefore fitting mathUIs have to be created that em-
power their users to better utilise those tools of the trade. With our eye-tracking experiment we have identified a set of
mathematical practices when decoding a math expression.

We observed that math-oriented participants have visual patterns for math detection and are able to decompose math-
ematical expressions with clearly organized procedures. Literals and variables are easily distinguished by most readers,
whereas variable names are not the pivotal point essential for problem solving. This might be different with mathematical
symbols, that do not necessarily include all parameters of their information. The comprehension of mathematical expres-
sion by math-oriented participants is chunked into understanding sub-expressions and their relations. They start decoding
the mathematical expression from left to right, until a first meaningful sub-expression is grasped. Those six hypotheses
stated, enable a deeper understanding of the way mathematical expression are perceived and show that further research is
needed.

This set of math practices is still hypothetical but nevertheless give rise to interesting new perspectives for the design of
mathUIs, particularly math search engines. We admit that the observed practices are not yet orthogonal and that we have to
refine the primitives which we feel obliged to do in the near future. Moreover, it would be interesting to understand what
mathematicians memorize when having looked at mathematical expressions and what parts they indeed recall.
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Abstract

When an object, of any nature, is displayed and selectable on a com-
puter screen, users expect it to be copy-and-paste-able: one can invoke
the copy function and insert (paste) it at other places, within the same
programme or beyond. This holds for many different kinds of objects:
texts and images, at least. Unfortunately, for mathematical objects,
this is rarely so.

Most operating systems offer multiple channels to carry exchanged con-
tent but most mathematical systems do not take advantage of it: they
transfer the content in plain text, expecting it to have the right syntax
or, if necessary, expecting the user to use a different copy function so
that the right syntax is exchanged.

While ways to circumvent these issues are available, they are mostly
not used by mathematical software. We explore potential justifications
and describe for which type of users, these justifications do not apply.

To support this, we report briefly on the experiment students about
their expectations and observations on the above mentioned process.

1 Intro: Transferring naturally between Competent Softwares

Copy and pasting mathematical formulæ between different systems is a desirable and common action. It is widely
known that most mathematical systems have areas where they are very effective and while they only provide an
approximate service in other areas. For example, dynamic geometry systems are good at constructive geometric
figures and letting them be manipulated but also offer other functions in which they are rather less good: for
example, most of them support some part of the TEX language to display formulæ and some offer computer
algebra features; each of these extra features are very limited.

Most computer algebra systems (Maple, Mathematica, Macsyma, MuPad, Reduce) themselves have their own
user-input parser and use TeX for display purposes mostly [Zha03]

Instead of relying on such limited extra features, users have the possibility to transfer the mathematical object
between a system and another so that the receiving system offers its high quality features to solve the translated
problem.

To perform the transfer of mathematical objects, the natural procedure of copy and pasting is often expected
by users but, in the mathematical world, this procedure is decorated with special methods of many sorts, to

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

51



work somewhat properly. Switching between different systems, transferring relevant data, worrying about things
getting “out of sync”,differences in command sets and capabilities between different applications, soon becomes
overwhelming[Lie00].

A simple sequence select, copy, switch, insert, paste is mostly expected by users. However, it is not rare a more
complex procedure is needed such as the invocation of a special copy or adjusting the pasted content before it is
further processed. For example[Kin02], the Stanford Interactive Workspaces’smart clipboard can copy and paste
data between incompatible applications on different platforms[Kic00]. The smart clipboard must transparently
invoke the machinery whenever the user performs a copy and paste operation. A more sophisticated but less
general approach, semantic snarfing, as implemented in Carnegie Mellon’s Pebbles project, captures content from
a large display onto a small display and attempts to emulate the content’s underlying behaviors [Mey01].

In the middle of this process lies the exchanged content. Most operating systems offer multiple channels to
carry this exchanged content but most mathematical systems do not take advantage of it: they transfer the
content in plain text, expecting it to have the right syntax or, if necessary, expecting the user to use a different
copy function so that the right syntax is exchanged.

Why is this a problem? There are ranges of issues which are encountered by users and are all due to this
choice of plain text. They range from syntax mismatch to unmasterable expressions, from the failure of apparent
syntax compatibility to the somewhat arbitrary text-linearization of the text appearing within the formula.

While ways to circumvent these issues are available since long in a standardized form (clipboard flavours or
alternative representations in MathML), they are not used by mathematical software. We propose potential
justifications and describe for which type of users, these justifications do not apply.

2 Observation Methods for Copy and Paste of Formulæ

To be able to evaluate what are the expectations of users when transferring between systems, the authors employ
their usage and teaching experience. These includes courses dedicated to the introduction of various systems
(e.g. introduction to LaTeX, to computer algebra systems, or to dynamic geometry) in undergraduate teacher
education classes. While this class of users is clearly not representative of the complete population of users of
mathematical systems, it represents the important share of moderately technical users and also precludes those
that will educate broad masses of citizens.

With this class of users, a practical experiment has been done at the University of Ljubljana for about 30
students in the first cycle professional study program Practical Mathematics: a mathematical task was given,
explicitly requiring the exchange of mathematical expressions between various systems, of which comments and
reports were expected.

In the first weeks of the subject called Computer tools in mathematics they get used to typical examples of
mathematical software they are likely to apply in their career. They obtain mostly the basic knowledge, so they
know only the most common functions and functionality of the applications. After a few weeks they received the
experiment’s task as follows (one of the weekly assignments): They should solve a certain mathematical task (and
report in detail the process of obtaining the solution). In all the tasks given we foreseen the usage of different
tools. Most often the combination of computer algebra system, dynamic geometry system and numerically
oriented matrix software was needed. So even when certain tasks could be solved within one software, their their
limited familiarity with the software lead them to use multiple softwares. For reporting they mostly used the most
common word processing software. We were interested how they will cope with the process of exchanging the
mathematical object between programs and how they will report on that where transfer of various mathematical
objects has been expet. The subjects were instructed beforehand to report on all difficulties and obstacles.

To be able to evaluate what the mathematical systems are able to import, clipboard inspectors are used:
On Windows the ClipSpy utility which shows the bytes allocated for each flavour within the clipboard. The
application seems to show most of the information accessible by API as documented on [MSCl]. On MacOSX,
ClipboardViewer (an example application of the Apple Developer Tools) has been used. It shows, similarly, an
association between the “Uniform Type Identifiers” (the name of the clipboard flavour types defined by Apple,
see [ApUTI]) and the byte-values. Both the Uniform Type Identifiers (on MacOSX) and the Windows flavour
names are a flexible mechanism to encode the type of content-flavours: the strings define, in a kind of cooperative
agreement way, which data-type is put in the clipboard. Platform makers define basic types (e.g. basic images
and texts) while applications are free to define new formats. In the case of UTI, a mechansim of inheritance is
provided.
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3 Issues when employing plain text in copy and pasting formulæ

The first family of issues that we have met is that default copy mechanisms are rarely universally applicable and
are, very commonly, restricted to only copy and paste internally, for which the system clipboard is not used (as
copying from the system to itself is much safer). This same default copy function tends to copy a representation
that is close to a source format within the text flavours. While this representation may be readable by users,
it is not effective to input in most other mathematical systems as the input syntax is specific to each system.
Mismatches of syntaxes then need to be manually fixed by the user who has to understand both syntaxes;
something that is cognitively demanding when the mathematics thinking also demands cognitive resources.

Examples of such incompatibilities include an incomplete LaTeX compatibility of a dynamic geometry system:
the user is left to explore bits by bits what works and what does not and, contrary to LaTeX, the documentation
for the supported features is far smaller.

The second family of issues lies in the apparent compatibility of syntaxes between mathematical systems:
While some expressions seem naturally exchangeable, e.g. simple polynomials written with the “∧” as exponent,
this compatibility breaks very quickly (e.g. these polynomials might be usable in a JavaScript source but not in
a Python source because the exponent there is “**”). Much more delicate is the exchange of formulæ between
Mathematica and Geogebra as is displayed in the picture below, produced by one of the experiment subjects: it
shows that the Sum operator between the two computer algebra systems does not follow a completely similar
syntax even if it shares quite some similarity as is the case for elementary formulæ between these systems.

Figure 1: The same expression in Mathematica and GeoGebra...

A third issue lies in the need to use dedicated copy functions. It forces the user to navigate through sequential
menu choices to decide which format to copy (at worst she needs to use a dedicated command before). Among the
particularly invasive ones lies the frequent function “Copy as MathML” which puts the (generally big) MathML
source code as text source and which is intercepted by paste actions (“this looks like MathML”): the difficulty
to reach the menu and the rather wild appearance of the XML expression makes this operation very far from
natural.

Finally, another issue in using plain-text is on web-browsers: As MathML there is generally represented as
part of an HTML text page, the copied content is text, sometimes styled text. The copy function generally copies
only an unordered sequence of characters which may be valid only if fractions or roots are not present; moreover,
the copy function is supported by a selection mechanism which completely ignores the underlying mathematical
structure (even that of MathML).

4 User types and their affinity to fiddling with text

While we acknowledge that using plain text to copy and paste often yields readable syntax and, what is probably
more important, repairable syntax, it can be accepted differently depending on the users.
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Experts we have met generally accept well the syntax differences; they can even be a good hint to the capacity
spectrum of the computing system. However, there is a clear need to master well the different syntaxes, which
is generally not available in many user types we met.

Such comments appeared in our experiment to illustrate our case:

• ”.. that Copy/Paste method does not work with drawing plots in different programs. For drawing plots each
one of used programs has its own ‘language’ which we have to use. “

• “... we were very rarely able to use the Copy/Paste method to transfer expressions between programs and
even then some corrections were usually needed for programs to work”

• “After several tries I gave up. The only way to transfer an expression between programs is to manually type
it...”

• “To input matrix in X is surprisingly identical to input matrix in Y. But unfortunately here the joy ends.”

In the discussion of the task afterwards students we performed experimentation with all express their deep
disappointment about the softwares. When started the task they mostly all expected there will be just some
minor problems. As one students said “it is all mathematical software and mathematics is just one, so I expected
no problems in using Copy/Paste”

We conclude that the learning of syntaxes is the biggest hurdle for these students and that alternative ways
need to be found to make a more productive use of the interchanges between pieces of software.

5 Conclusion: Standards that Support Copy and Paste

While copying plain text formulæ has been considered a universal way, we have described a population of users
for which this approach fails and for which different exchange mechanisms are needed.

Standards exist to this end. They include the clipboard flavour names of Windows and UTIs on MacOSX as
specified in the media-types of MathML: these describe the names of three clipboard flavours that can encode
MathML for several applications. Using them, it is possible for a computing system to use its internal mechanisms
to export MathML content in the form of a parseable tree and MathML presentation in the form of a rendered
LaTeX fragment.

Similarly, embedding MathML within HTML fragments might potentially include the wealth of MathML ex-
changes as indeed a considerably bigger consideration exists for Web-pages’ content. However, many of the efforts
towards empowering web-oriented copy-and-paste such as the Clipboard API draft tend to consider [Che15].

Exchanging MathML offers another possibility to combine multiple types: through the semantics,
annotation, and annotation-xml, the markup may contain alternative representations of the formulæ in dif-
ferent media-types (which we consider equivalent to clipboard flavour names), see [Car13, §6.4]. It is not clear if
this competing alternate-representations mechanism may produce different results.

If doing this, the receiving party can choose the format it best understands from the list of clipboard flavour
names and from the alternate representations in MathML. Thus a layout software might use a MathML-
presentation or Rich Text Format fragment, or even a picture; however another computing system would use the
MathML-content fragment or another flavour which is potentially better suited (e.g. to accommodate for bilat-
eral import-export functions). Moreover, receiving multiple representations is possible with clipboard flavours
and with MathML alternate representations. This allows the recipient to request all of the data-streams for each
of the formats and potentially evaluate further its processability or offer a choice to the user using the internal
display mechanisms (as investigated in [Lib09]).

As for systems which do not understand any of the mathematical oriented flavours: a picture, a rich text
format or. . . a fragment of plain text (as a last resort) might be satisfactory.
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Abstract

Despite math notation is well-known and extensively used in many
fields, introducing math expressions into a computer device is not
straightforward and requires specific notations. For this reason, users
commonly use editors that make this task easier, and even handwriting
can be used directly as input method. In this paper, we propose a de-
sign of interface and behaviour for the coexistence of a keyboard-based
mathematical editor and a handwritten mathematical expression recog-
nizer. Advantages of both modes are analyzed and it is shown that they
are complementary, so a design based on coexistence is more appropri-
ate for the final user than single modes. Also, regarding accessibility
support, we provide some hints and guidelines on an implementation
that offers a good experience to users with disabilities.

1 Introduction

In recent years, the World Wide Web Consortium (W3C) and major web browsers have invested heavily in
developing and expanding web standards to provide a greater separation between content and presentation to
improve user experience. Specifically, HTML5 introduced new types of input fields for web forms. In the new
standard, an input field can be used to enter dates, time, colors, emails, phone numbers, ranges or even something
as simple as a floating number, taking in account users local designation of decimal mark.1

Years ago, if a developer needed to use one of those input types in a web form, the developer had to include
javascript code in the page. (S)he had to write his own code or use third-party libraries. This caused several
problems to the user. Since every page had to implement their own way of entering special input types, cohesion
in the user interface and behaviour did not exist. In addition, language support, accessibility features and
responsiveness depended on each implementation.

Web browsers do not have a native mathematical input field for web forms, since HTML5 specification does
not define it.2 In addition, due to the complexity of the edition of mathematical expressions (and even if HTML5
defined a mathematical input field), the existence of third-party solutions would improve the user experience
and notation coverage. Something similar to the case of rich-text editors, where third-party solutions such as
TinyMCE3 or CKEditor4 are used to provide a full featured web rich-text editor since W3C and web browsers
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do not provide a standarized solution for this requirement.
There are different libraries available to deal with math expressions in previously discussed scenarios. Some

of them let the user insert expressions using LATEX, like WikiEditor5 (content editor for Wikipedia), while other
libraries offer a more user-friendly interface, where what you see is what you get (WYSIWYG) and no previous
knowledge of any language or format is needed. Examples of this kind of libraries are DragMath,6 MathQuill,7

CodeCogs8 or WIRIS editor.9

With the rise of touch devices and artificial intelligence systems, new systems are appearing for recognizing
handwritten mathematical expressions, like MyScript10, MathBrush [ML15], min [SHP+12] or WIRIS hand.11

These systems have some advantages compared to keyboard input: they offer a more comfortable interface on
touch devices and they are more user-friendly and intuitive than classic overloaded toolbars that keyboard-based
editors usually have. However, sometimes a user may prefer to insert expressions using the classic keyboard for
several reasons:

• Lack of a touch device or not achieving the required accuracy with the mouse when drawing an expression.

• Suffering from visual impairment.

• In general, keyboard input offers a wider variety of mathematical expressions than a handwriting recognizer.

• Creation of expressions with a specific style and formatting (colors, position of elements, etc.).

For these reasons, the user should decide what input method (s)he wants to use, and should be able even to
change it during the editing session.

In summary, as a developer, there should be a mathematical input field, independent to the input method
(keyboard or handwritten); and as a user, the interface should offer a way to manage the input methods. Some
vendors already implemented this duality in their systems, like Learnosity12 and WIRIS.13

2 Keyboard Input Interface

A keyboard-based mathematical editor is traditionally composed by a toolbar and an editing area. Of course,
this structure can vary between implementations by adding or removing interface elements but these variations
are out of the scope of this paper. An example of this structure is shown in Figure 1.

x
y xn

√
x n

√
x ...

x =
−b±

√
b2 − 4ac

2a

Figure 1: Basic structure of a keyboard-based mathematical editor

5https://www.mediawiki.org/wiki/Extension:WikiEditor
6http://dragmath.bham.ac.uk/demo.html
7http://mathquill.com/
8http://www.codecogs.com/latex/about.php
9http://www.wiris.com/editor/demo/en/

10http://webdemo.myscript.com/#/demo/equation
11http://www.wiris.com/hand
12https://www.learnosity.com/
13http://www.wiris.com/editor/demo/en/

57



The toolbar of a keyboard-based mathematical editor is used for changing content formatting, switching
element properties, managing clipboard (copy, cut, paste), performing undo/redo actions and inserting mathe-
matical structures that cannot be typed using a keyboard (like fractions or square roots), among other features.

A keyboard-based mathematical editor also offers advanced features that are difficult to implement in a
handwriting recognition system, such as support for different character sets (chinese, japanese, korean, arabic),
Right To Left (RTL) support, syntax checking, copy/cut/paste, formatting or pixel-perfect element position. In
summary, a keyboard-based mathematical editor is a powerful tool that can be used not just to let the user
insert expressions, but also to decide exactly how they should look.

3 Handwritten Input Interface

It is difficult to determine the interface structure of a handwritten mathematical expression recognizer, since
the technology is still new and there are different implementations in the market without any established design
pattern.

The common characteristic in most of them is that there are two main components: the drawing area and the
action buttons, that can be displayed inside a tiny toolbar (Figure 2) or floating over the drawing area (Figure 3).

← → ...

Figure 2: Basic structure of a handwritten mathematical expression recognizer with toolbar

← → ...

Figure 3: Basic structure of a handwritten mathematical expression recognizer with floating buttons

Action buttons can be used to perform simple tasks, as undo/redo actions or clearing the drawing area.

The drawing area allows the user to write mathematical expressions using a touch screen or a mouse, but it
can be used also to enter gestures. A gesture is a special input that the system interprets as a command. For
example, drawing several strokes over an existing drawn character can be interpreted as a desire to delete the
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character (Figure 4); or touching with two fingers at the same time and changing the distance between them can
be interpreted as a desire to increase/decrease the zoom of the drawing area.

← → ...

Figure 4: Deletion gesture

This kind of interface is simpler than the interface of a keyboard-based mathematical editor. It can be useful
in environments where the semantic of the entered value is more important than the formatting.

4 Coexistence of Handwritten and Keyboard Input

As said previously, both interfaces have different and complementary characteristics. In some scenarios, just one
of them is enough to fulfill the given specific requirements, but in other cases the final decision is up to the user.

In this paper, we propose the coexistence between both interfaces. On the startup, the system detects and
uses the appropriate interface depending on the device, user preferences or developers decision, but the user can
interchange the interface at any moment, even during the editing session.

4.1 Interchange of Interface

There are several ways to interchange between a keyboard-based mathematical editor interface and a handwritten
mathematical expression recognizer interface. In this paper, we suggest the usage of an element that indicates
clearly the concept of duality, avoiding approaches based on gestures like swiping without any previous visual
clue. The described proposal can be implemented via toolbar (Figure 5) or float buttons.

x
y xn

√
x n

√
x ... Ò

2 + 2

← → ... ¥

Figure 5: Interchange between a keyboard input interface and a handwritten input interface via toolbar buttons

In this proposal, we also recommend the conservation of the existing content (if there is any) as long as
possible, converting it from one input method to another, as explained below.
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4.2 Conversion of Formal Content to Strokes and Vice Versa

Given a handwritten math input, once recognized, its conversion to a formal content for the keyboard-based
mathematical editor is trivial: the formal result of the recognizer is just passed to the editor, assuming that all
the pieces use the same format.

The conversion of content typed with a keyboard-based editor to a set of strokes understandable by the
handwritten expression recognizer is not immediate, because it is necessary to create a correct 2D structure
containing handwritten symbols. The technical details are out of the subject of this paper, but one possible
solution can consist on reusing the existing painting technology of the WYSIWYG editor, sending the paint
instructions directly to the drawing area of the recognizer.

For the conversion of text characters to strokes, an existent font made with drawing instructions can be used,
and the system just have to execute the corresponding paint instructions when a character must be drawn. A
real implementation of this proposal has been done in the WIRIS editor. Figure 6 shows the automatically
generated handwritten expression.

Figure 6: Automatically generated handwritten expression in WIRIS editor

4.3 Developer Tools

In this section, we present some guidelines for API development where keyboard and handwriting inputs coexist.

4.3.1 Providing Clues and Hints About the Expected Value

In some platforms, like in assessment environments, the mathematical input field is used to let students provide
an answer to a problem or question.

Since recognition of handwritten math expressions is not 100% accurate and due to handwriting ambiguities,
it is recommended to pass hints and clues to the recognizer in order to increase the success rate.

For example, if the platform knows that the student has to give an answer that is composed just by numbers,
notifying it to the recognizer can increase the success rate since the recognizer will not classify confusing drawings
of “2” like “z”.

Technical details about the format of those clues and hints go beyond the purpose of this paper.

4.3.2 Obtaining Information About the Input Mode

In some cases it is interesting for the platform to store the drawing of the user. For example, in assessment
environments, when the student answers using the handwriting recognizer and the system is unable to recognize
the expression with success, a teacher can inspect manually the strokes drawn by the student and determine if
the answer is correct or not.

In some formats like MathML it is possible to insert semantic content next to the formal representation of
the expression (in this case, using a semantics tag14). In other formats like LATEX, this semantic content can be

14https://www.w3.org/TR/REC-MathML/
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inserted just as a LATEX comment, and the real code that represents the expression is not affected by it.

This paper proposes the insertion of the user drawing as a semantic content inside the returned value when
the developer explicitly retrieves it in this way from the input field.

In the future, if new input methods are implemented (like voice recognition), other semantic content can be
returned next to the real representation of the expression using this method.

4.3.3 Interface Events

An API for managing interface events increases extensibility and adaptation to customer requisites, and allows
the developer to have full control on the input field behaviour. This paper proposes the following events, not
entering in details about the technical implementation. In general:

• An event that is fired when the value of the field changes.

• An event that is fired when the interface input mode changes.

For the keyboard-based mathematical editor:

• An event that is fired when the selection or caret position changes.

• An event that is fired when the formatting of the expression or the selection changes.

For the handwritten mathematical expression recognizer:

• An event that is fired when the drawing area changes.

• An event that is fired when the system recognizes an expression.

• An event that is fired when the system cannot recognize an expression.

With these events a developer can, for example, prevent the submission of a form if the entered strokes have
not been still recognized (or there has been an error in the recognition), in order to prevent wrong submissions.

4.4 Default Interface Mode on Startup

On the startup the system has to decide the appropriate interface to be displayed for entering mathematical
expressions. This decision is based on several factors.

The developer has all the power to decide what interface must be used, since the developer knows the context
of the page and, for example, if the entered value is going to be evaluated later or is going to be inserted in a
page with a specific formatting. The developer knows also the main user target (primary education, secondary
education, university students, etc.), and can decide that a complex expression should be entered just with the
keyboard-based editor (like, for example, a Taylor series development).

If the developer does not take a decision over the default interface, there are several scenarios. If there are
stored user preferences from previous sessions, the system can load them and display the default interface based
on the current configuration.

If a user configuration is not defined, this proposal suggests that the system should determine, as far as
possible, if the platform expects a given value and the user can use the handwriting recognizer to enter it.

In other words: if the handwriting recognizer is not able to recognize the expected value, the system must
display the keyboard-based editor interface by default (and in some cases, it is recommended to disable completely
the handwritten input). Of course, in this scenario the developer needs to provide a clue about the expected
value, as seen previously.

Otherwise, the system can detect characteristics from the device. For example, if the user is using a device
with a touch screen or a digital pen, the handwriting recognizer can be used as default interface. The system
can detect other properties, like if the user is using a screen reader due to a visual impairment and, in that case,
enable the keyboard-based editor by default.
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5 Accessibility

Web accessibility refers to the inclusive practice of removing barriers that prevent interaction with, or access
to websites, by people with disabilities. When sites are correctly designed, developed and edited, all users have
equal access to information and functionality.

The needs that Web accessibility aims to address include:

Visual Visual impairments including blindness, various common types of low vision and poor eyesight, various
types of color blindness.

Motor/mobility e.g. difficulty or inability to use the hands, including tremors, muscle slowness, loss of fine
muscle control, etc., due to conditions such as Parkinson’s Disease, muscular dystrophy, cerebral palsy,
stroke.

Auditory Deafness or hearing impairments, including individuals who are hard of hearing.

Seizures Photo epileptic seizures caused by visual strobe or flashing effects.

Cognitive/Intellectual Developmental disabilities, learning disabilities (dyslexia, dyscalculia, etc.), and cog-
nitive disabilities of various origins, affecting memory, attention, developmental “maturity”, problem-solving
and logic skills, etc.

By the nature of a mathematical input field and the subject of this paper, only visual and motor/mobility
disabilities are taken in account in this proposal.

In the case of motor/mobility disabilities, the major part of the work is already performed by the web browser,
the operating system and third-party native tools, performing the required zoom on the page and enabling
special features on mouse and keyboard (like enabling special keys or modifying the behaviour of classical mouse
drag&drop). In this paper we assume that these features are enough to offer a good experience to motor/mobility
disabled users and It does not propose any extra work. But, of course, implementations are free to include new
features that help on the removal of this barrier.

In the case of visual disabilities, due to the nature of a handwriting recognizer, this proposal recommends the
exclusive usage of a keyboard-based mathematical editor, which can include more advanced features for visual
impaired users than a handwriting recognizer, like keyboard navigation and support for screen readers.

5.1 Keyboard Navigation

On the keyboard-based editor, the system must implement a way of accessing all elements (toolbar, buttons,
editing area and others) using just the keyboard. This feature can be already implemented using the focus
property defined by W3C.15

When a user activates the button that changes the interface to the handwriting recognizer, we propose to
make focusable just the button to go back to the keyboard-based editor. By this, a user that suffers from visual
impairment or a motor/mobility disability can go easily back to the classical editor that offers full accessible
support.

5.2 Screen Reader Support

Modern accessible web technologies offer advanced support for screen readers, allowing the developer decide what
the screen reader should synthesize. On the keyboard-based mathematical editor, this feature can be used for
two purposes:

• Providing description of interface elements when they are focused, like tabs, action buttons and editing area.

• Providing a description of the context when the caret is moved, like in a classic input field. When the caret
is moved in a classic input field, the screen reader usually spells the name of the character at the caret
position (or other details, like if the caret is at the end of a line). This feature can be also implemented in
a keyboard-based mathematical editor using the standard aria-live region,16 providing a brief description of
the context of the caret (beginning of a square root, denominator of a fraction, etc).

15https://www.w3.org/TR/html5/editing.html#focus
16https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
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6 Examples and First Integrations

The model of interface proposed in this paper has been already implemented in WIRIS quizzes. WIRIS quizzes
(Figure 7) is a software component that allows teachers to create questions for students, containing random
variables, providing automatic evaluation of answers and using WIRIS editor as mathematical input field for
students.

Figure 7: Question creation in WIRIS quizzes

When a teacher creates a question and provides the structure of a correct answer (e.g. specifying what
variables, numbers or symbols are involved in it), WIRIS quizzes analyzes it and passes a set of constraints to
WIRIS editor to increase the success rate of the handwriting recognizer. For example, if the correct answer
contains only numbers and does not contain any “z”, the ambiguous strokes that might either be a number “2”
or a letter “z” will be recognized as numbers. Figure 8 shows an example of failed recognition due to unknown
information about the context, while Figure 9 shows how, with information, the recognizer has a higher success
rate.

Figure 8: Failed recognition of number “2” without context information about the expected input
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Figure 9: Once the system has information about the context, it recognizes correctly the character “2”

7 Discussion and Future Work

7.1 Technical Details and Standardization

This paper is a proposal for coexistence of mathematical handwritten and keyboard input in a WYSIWYG
expression editor, and is not an API proposal or a definition of a standard.

From the point of view of the authors of this paper, the following subjects are still pending of discussion and
standardization:

• Inclusion of a math type on standard HTML input field types.

• Definition of an API for the control of “math” input fields, including configuration parameters and event
listeners.

• Election of a standard mathematical format for “math” input field values, like MathML.

7.2 Other Input Methods

Advancements in artificial intelligence and machine learning are promoting the development of new technologies
that can analyze and classify information impossible to handle until now. Specially, advancements in ASR
(Automatic Speech Recognition) introduce speech as a new input method of mathematical expressions [WHP+09].
There are even some studies that combine both handwriting and speech input to enter a mathematical expression
[MMPVG13].

The interface proposal of this paper can be extended to these new input methods, adding a new button
for interchanging the interface to the new input modes, extending the functionality of the existing interchanger
button or adding a new button that just opens a modal dialog for speech input, like traditional text input already
do (e.g. Google, Apple, Microsoft).

7.3 Drawing over the Current Formal Expression

Another possible approach for the problem handled in this paper can consist in allowing the user to draw new
subexpressions over an existing formal expression in the mathematical editor. But this approach presents some
problems:

• Using the mouse or the touch screen to handle the caret position and selection can conflict with the feature
of drawing or performing gestures.

• Sometimes there is not enough space to draw a subexpression. For example, in this case it would be difficult
to draw a new fraction inside the square root: √

x

2

• Recognizing incomplete subexpressions has lower success rate than recognizing complete expressions.
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8 Conclusions

In this paper we proposed a design of interface and behaviour for the coexistence of a keyboard-based mathemati-
cal editor and a handwritten mathematical expression recognizer. Advantages of both modes have been analyzed
and it has been shown that they are complementary, so a design based on coexistence is more appropriate for
the final user than single modes.

In this proposal we also present some guidelines about the communication channel between developers and
mathematical input fields that fulfills the needs a platform can have on a real scenario.

Regarding accessibility support, we proposed some hints and guidelines on an implementation that offers a
good experience to users with disabilities.

Finally, future work should be focused on the definition of a standard API and format for real case scenarios
and exposed.
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Abstract

Considering a constantly growing body of mathematical knowledge it
becomes more and more difficult for individuals to take full advantage of
all information available. To semantify documents, we need to be able
to create annotations efficiently and conveniently – marking definitions
or declarations as well as usages of concepts – on a large corpus of
documents. Eventually this can be achieved automatically, but as a
first step a gold standard has to be created by humans. KAT – the
KWARC Annotation Tool – has the goal of allowing users to create,
view and update annotations on arbitrary (X)HTML documents. We
have presented our approach before and in this paper we want to give
an update on our progress.

1 Introduction

STEM – Science, Technology, Engineering and Mathematics – documents often not only introduce the user to new
areas but build heavily on previous knowledge. We want to make STEM documents, in particular mathematical
documents, more accessible and lower the burden of gaining access to a new topic. Users should be able to
intuitively navigate through existing knowledge as to make the process of understanding more efficient.

In the context of mathematical documents this requires annotating documents and marking up definitions,
declarations and other linguistic phenomena. Furthermore we want to mark up all usages of these concepts
within the document to allow readers to, for example, click on a concept and navigate to its definition. In order
to bring us closer to this goal it is necessary to do this on a large scale.

As it is non-trivial to annotate a huge corpus of documents one wants eventually to do this automatically,
with only little human interaction. During the development of tools to achieve this it is however common to
annotate a small subset of documents manually, creating a “gold standard”, that can then be used as a basis
for further the development – either using automated machine learning approaches or smart rule-based software.
Annotation tools to create, edit and view annotations are here necessary and can further be helpful during
later phases of development – in order to evaluate performance1. Additionally they can they can be used by
mathematical readers to interactively navigate through annotated content.

STEM documents usually consist of a multitude of content, ranging from pure text over mathematical/chem-
ical formulae to tables and diagrams. Most common annotation tools, such as brat [BR], Yawas [YW], and
Annotatie [AN], only work properly with textual content – they store the position of annotations as offsets in
a character string. While some of them can work with more advanced content, they do so by treating it as a
blackbox and replacing it with a placeholder. Such a treatment however prevents for example the annotation of
sub-formulae as any embedded formulae are considered as a single object.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
1Indeed our tool has been used during the development of a declaration spotter in order to evaluate performance, we refer

interested readers to [Sch16].
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We have developed KAT – the KWARC Annotation Tool – to address and solve these problems. KAT is a
browser-based tool that will allow users to annotate arbitrary (X)HTML documents. In this paper we want to
present the newest iteration of it, building on the previous versions presented in [DGKMMW14] and [GLKW15].
We proceed in Section 2 by giving a short review of the existing KAT system architecture. In Section 3 we then
proceed by giving a more detailed look into how annotations can be created in the browser and in particular
focus on the progress we have achieved since the last iteration. We then conclude in Section 4 with an outlook
on how we plan to develop the system further.

2 Recap of KAT system architecture

KAT
Annotator

interact

KAnnSpec

read

Anno-
tation
Onto-
logy

ref

Annotation
Store
RDF

ref

export
import

Document
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(X)HTML5
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Figure 1: The KAT System Architecture

KAT is implemented as a JavaScript library work-
ing with (X)HTML5 documents and can be inte-
grated into arbitrary websites with little effort.
The basic system architecture can be seen in Fig-
ure 1. This architecture consists of four main
components: i) the KAT Annotator, the KAT
tool running in the browser; ii) the KAnnSpec,
which serves as a description of iii) the Annota-
tion ontology and iv) a document management
system (here called CorTeX).

Instead of describing this architecture in detail,
we refer interested readers to [DGKMMW14] and
[GLKW15]. KAT is capable of working as a stan-
dalone tool, however it is best used in the context
of a corpus management system such as CorTeX
system [CT]. This scenario is intended for creating and improving a “gold standard”. Users receive a document
from the document store in CorTex and create annotations for it using KAT. These annotations are then sent
back to the system in RDF form. Alternatively the users receive an already annotated document and check
existing annotations. These two scenarios drive the KAT development.

KAT annotations are represented as RDF subject / predicate / object triples. The subjects are the text
fragments that we are annotating whereas the objects are either concepts from the annotation ontology (in the
case of classificational annotations) or other text fragments (in the case of relational annotations). KAT is not
tied to a particular annotation ontology. On the contrary, at startup time it loads a set of annotation descriptions
referred to as KAT Annotation Specification, or KAnnSpec for short. These are a set of custom XML documents
that describe the annotation ontology, its concepts and additional constraints for the KAT user interface.

As KAT is XHTML based we reference to text fragments using URIs. For this we make use of the XPointer
framework [GMMW03] and developed a custom XPointer scheme. Each text fragment is a contiguous range
of elements in the DOM tree and can be identified by giving the first and last elements contained in it. This
obviously imposes the limitation that text fragments must consist of entire elements, making it very difficult to
annotate linguistically meanigful concepts. In previous iterations of the system we worked around this by TEI-
tokenizing document, that is adding elements around each word in the document, however we are in progress of
implementing an updated XPointer scheme that allows us to reference text ranges within elements and thereby
eliminating the limitation entirely.

3 Editing Annotations In The Browser

KAT offers three different operating modes that can be navigated via a sidebar. Each of them facilitates a
different kind of working with annotations:

1. Annotation Mode. This mode provides a user interaction to create and edit annotations on documents.
This is semantically seperate from the viewing and evaluating of annotations by a different mode, allowing
specialized operations e.g. on right-clicking.

2. Reading Mode. Once annotations have been created they can be used to obtain a better understanding of
the structure of a mathematical document as a whole. This mode attempts to provide as much information
as possible about all given annotations in an intuitive way.
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3. Review Mode. When automating the creation of annotations, one wants to go over the created annotations
and evaluate them. This mode allows an evaluation of annotations by providing an interface for judging
them as good (thumbs up) or bad (thumbs down).

3.1 Creating Annotations

As KAT is a browser-based tool, the process of creating annotations is a heavily form-oriented process. A range
of text is selected and then an annotation category is chosen from a right-click context menu. Subsequently a
form appears in the sidebar where more specific information can be entered. An example of this can be seen in
Figure 2.

Figure 2: Creating annotations in KAT.

It is possible to make restrictions on input in the KAnnSpec, such as the format of a name by providing a
Regular Expression to be fulfilled. To ensure that entered content is valid it is only possible to save an annotation
once all conditions are fulfilled. To visually indicate this the color of a text field changes from red to green, and
only once the validation constraints are fullfilled the save button becomes active. Additionally the question mark
right next to the input-field can be used to obtain more information about said constraints (in this particular
case the Regular Expression restricting the input format would be shown).

3.2 Visualizing Annotations And References

In Reading mode all annotations are displayed to the user. The respective information are conveyed via multiple
means:

• Highlighting. Each concept from the KAnnSpec is assigned its own color and each annotation is highlighted
in the appropriate color.

• Tooltip. When hovering an annotation, information about its fields is displayed. The tooltip is generated
using the <template/> tag in the KAnnSpec.

• Relations. Some annotations may have referential fields. These are visualised on demand.

Upon creation of an annotation it is assigned a UUID (universal unique identifier). This is later on the only
way to refer to a specific annotation. As this is not a very intuitive way to reference an annotation there is a
need for visual cues in displaying relations.
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Figure 3: Paths can be used to visualize references.

To achieve this, KAT provides the ability to show the relations using paths between annotations that appear
by clicking on them. The paths are labeled with the type of reference between two given annotations. The
direction of a path becomes clear due to the user interaction that causes them to be displayed.

Internally this is implemented using an SVG-overlay over the document. Paths are then drawn from the
selected annotation to all other annotations that are referenced in respective fields of the KAnnSpec and decorated
with captions describing the kind of relation. As start and end points of the paths the upper left corners of their
selections are used.

3.3 Import And Export Of Annotations
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Figure 4: An Annotation Graph

By itself KAT only saves the state of annotations for the length of a given session. To make annotations
persistent, it is possible to export and later re-import annotations via buttons in the side pane, which is imple-
mented based on the Resource Description Framework [SR14]. This approach has been successfully tested in the
creation of a gold standard of declarations in math [Sch16].

The current implementation also features a prototype for retrieving new documents from a document storage
and submitting annotations to it. If one would fully integrate the system with CorTeX it would then no longer
be necessary to store annotations manually but could store it centralised together with the document.

In Listing 1 we show a sample of how an annotation is exported to RDF. Each annotation consists of a single
node (lines 6-12). Additionally, each annotation has meta-data, such as the used KAnnSpec, which is omitted
here. To generate this node, we use the properties of the annotation graph shown above in Figure 4.

Listing 1: Exported RDF generated for a single annotation of an OMDOC Symbol

1 <rdf:RDF xmlns:o="http://omdoc.org/KAnnSpec#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#" xmlns:kat="https://github.com/KWARC/KAT/">
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2 <!-- omitted a lot of meta-information here -->

3

4 <rdf:Description rdf:nodeID="KAT_1433087821332_4477">

5 <kat:annotates rdf:resource="https://kwarc.github.io/KAT/content/sample1.html#cse(%2F%2F

*%5B%40id%3D’sentence.11’%5D%2C%2F%2F*%5B%40id%3D’word.202’%5D%2C%2F%2F*%5B%40id%3D’

word.203’%5D)" />

6 <kat:run rdf:nodeID="kat_run"/>

7 <kat:kannspec rdf:nodeID="KAT_1433087757661_OMDoc"/>

8 <kat:concept>Symbol</kat:concept>

9 <kat:type rdf:resource="http://omdoc.org/KAnnSpec#Symbol" />

10 <o:symbolname>semi-Euclidean space</o:symbolname>

11 </rdf:Description>

12

13 </rdf:RDF>

The export starts by declaring the text fragment it annotates using the kat:annotates relation (line 5). For this
we use the KAT XPointer scheme – in this case given by the URI https://kwarc.github.io/KAT/content/

sample1.html#cse(//*[@id=’sentence.11’],//*[@id=’word.202’],//*[@id=’word.203’]). In this URI
cse stands for Container, Start and End. The URI itself consists of

• the document URI https://kwarc.github.io/KAT/content/sample1.html, the document in which the
annotated text fragment is located;

• an XPath to the deepest element that fully contains the annotated text fragment, here
//*[@id=’sentence.11’];

• an XPath that points to the start of the annotated text fragment – the first element that is contained in it
– here //*[@id=’word.202’] and

• an XPath that points to the end of the annotated fragment – the last element that is contained in it – here
//*[@id=’word.203’].

Next, a kat:run is passed (line 6). This is intended to provide meta-information such as when and how this
annotation was generated, which has been omitted from the listing. Continuing, it references a KAnnSpec (line
7) and then the actual concept it annotates (line 8). We further specify the type of the annotation with the
kat:type relation (line 9) as given in the KAnnSpec. Finally, we provide all the fields and their values. In this
case, we just give the concept the name semi-Euclidean space (line 10).

3.4 Evaluating Annotations In The Review Mode

After annotations have been created it is possible to evaluate them using a special review mode. Here automat-
ically created annotations can be assessed by a human operator. An example of the review mode can be found
in Figure 5.

Figure 5: Evaluating annotations using the review mode.

At any given time exactly one annotation is in focus – the one that is supposed to be assessed. This annotation
is visually contrasted by a dark overlay over the rest of the document. An information field in the side pane
displays all available information for the current annotation (which would appear in a tooltip when hovering
over an annotation in reading mode) and facilitates endorsing or flagging of a given annotation, such that the
automatic annotation generation can be improved based on the given feedback. The user can then iterate through
the annotations in the order of their appearance in the document.

Using this field it is possible to evaluate the accuracy of automated annotation-systems or to use ensure the
quality of existing annotations. One possible use case is as a stage in the development cycle in order to obtain
relevant feedback, as was done is the development of the declaration spotter in [Sch16].
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The reviews of annotations made in review mode can likewise be exported, whereas the format is essentially a
list of (UUID, Boolean)-pairs indicating which annotation was reviewed and what the binary review choice was.

4 Conclusion And Future Work

We have presented the KAT system, an open and browser-based annotation system for STEM documents encoded
in XHTML5. In particular we have presented the new and improved visualisation of referential annotations and
the new review mode. The code base is released freely under the terms of the GNU Public License and available
at [KG]. A running demo is further available at [KD].

While the basic utility of annotating documents is functional, there are some aspects that we want to improve
upon in order to allow a smoother user experience. The most important ones are

1. Allowing annotated text fragments within elements. At the moment it is only possible to annotate text
fragments on a DOM Element basis. Thus KAT works best with documents are TEI-tokenized into words
in order to process them. We are working on an XPointer-implementation that would allow any XHTML5
document to be immediately marked up. This would furthermore allow a better integration with CorTeX
[CG].

2. Distinction between overlapping annotations. Currently different annotation categories are visually set apart
by color. This is however not sufficient once there are overlapping annotations. In future versions the ranges
of overlapping annotations should be discernable by giving each of them a different height.

3. Adding feedback and other improvements to the review mode. It should be possible to provide more specific
feedback in review mode, as it is currently only possible to make a binary choice. One way would be to
provide additionally an input field in order to give an explanation, another one to pick a specific reason why
an annotation is inappropriate from a drop-down menu. Furthermore it is an open question how to properly
export the feedback given in review mode.

4. Using arrows for visualising paths. One might want to extend the visualisation of relations as to use actual
arrows indicating a direction. The current paths are suitable while using the system, however insufficient
when looking at a static image of the representation.

5. Allowing changing document content. Published papers are rarely changed, but one might nevertheless want
to accommodate the ability to handle a changing document structure for example when annotating just
sections of a document and merging them later on. The current implementation does not allow this.

We will also try to get more immediate user feedback by providing a version of the system to a larger audience.

4.1 Acknowledgements

We thank Frederik Schaefer for his feedback on further improvements of KAT especially in terms of usability
and Deyan Ginev for his input on how to avoid the need to tokenize documents. Additionally we would like to
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Notation-based Semantification

Ion Toloaca Michael Kohlhase

Jacobs University Bremen

1 Introduction
The scientific community produces a large number of mathematical papers (approximately
108.000 new papers per year [arX]), which raises the importance of machine based process-
ing of such documents. Unfortunately, the most popular formats in which these papers are
found (for instance, LATEX) do not contain much information that would allow the computers
to infer the human-understandable knowledge contained within a paper. Since, at this point,
changing these formats is not practically possible, the other solution is to add a semantic flavor
to the existing documents by translating them into a more suitable format, for instance, Content
MathML.

The current scientific community publication went through a series of evolutions in search
of the best method of writing scientific documents. This process was highly influenced by the
invention and spreading of the internet. Scientists understood the necessity of a standard that
could help them write and exchange their findings in an efficient way. A lot of effort has gone
into translating books into digital documents.

The next step in this evolution is translating digital documents into knowledge-rich digital
documents. This next step can only happen if a new feasible way of transition appears, which
MathSemantifier attempts to become.

Ambiguity is one of the main reasons that makes semantification complex. Mathematical
documents are not a simple collection of symbols. The main use of these documents emerges
only when the intended semantics of a document is accessible. However, humans tend to be lazy
in writing down the whole graph, but instead rely on implicit human knowledge to decipher these
documents. This is where ambiguity comes into play, when the author relies on the ability of the
human to use the context of document in order to pinpoint the actual meaning an expression.
Ambiguities can be largely divided into two: structural and idiomatic ambiguities.

A simple example that demonstrates the concept of structural ambiguities can be “sin x / 2”.
It can mean one of the following:

1. sin applied to x
2

2. 1
2
times sin applied to x

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: Alexandre Rademaker and Vinay K. Chaudhri (eds.): Proceedings of the 6th Workshop on Formal Ontologies
meet Industry, Rio de Janeiro, Brazil, 22-SEP-2014, published at http://ceur-ws.org
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Contrary to structural ambiguities, idiomatic ambiguities are not due to different parse trees.
Given one single parse tree, some formulae allow for multiple readings. A standard example
would be Bn. This could be:

1. The sequence of Bernoulli numbers

2. A user defined sequence

3. The vertex of one of a series of geometric objects

Consider c(a(b)). The most natural interpretation is c of a of b. However, there arise multi-
ple meanings if we consider that the application could be interpreted as multiplication. The
human reader discards such meanings by convention and experience of handling mathemati-
cal documents, however, teaching this to a computer is a complex task. The approach that
MathSemantifier takes is simply extracting all the possible meanings, while trying to apply
heuristics to weed out impossible ones.

Possible Applications of Semantification include:

• MathWebSearch [HPK14] is a search engine for mathematical formulas. Such search
engines could greatly benefit from semantification. The idea is that a search engine is only
as good as the database of information is. Semantification allows a new kind of queries
could be possible: semantic queries. Rather than searching for strings, or formulas with
free form subterms, the user could specify the meaning of the sought expression. This would
improve a lot the relevance of the results, since there will be no result that matched just
because it was presented in a similar manner.

• Another possibility for using semantification is theorem proving and correctness checking.
One possible application would be assisting authors in writing semantic content by providing
real-time feedback.

• The possibilities extend even beyond this. Using semantified content, rather than having
a database of CMML expressions, it is possible to create a smart knowledge management
system that could be used to create expert systems. The user could then ask questions, or
create complex queries, to exploit the full power of semantic content.

Semantification will not make all of the above directly possible, however it is a necessary step
towards achieving goals similar to the ones described above, that require more knowledge about
the used content than just how it is rendered.

1.1 An Introduction to MathSemantifier

In a nutshell theMathSemantifier algorithm converts Presentation MathML (PMML) to Con-
tent MathML (CMML [ABC+10]) it is the converse of the presentation algorithm that converts
CMML to PMML [KMR08] using a database of notation renderings. In Figure 1.1 a typical ex-
ample of what the presentation algorithm produces is displayed. The first child of the semantics
node contains the PMML that corresponds to the CMML contained in the annotation-xml
node. In order to produce this output, the algorithm used the notation natarith addition
(shown in Figure 1.1 as well). OMDoc Notations like natarith addition are initially written
in sTEX [Koh08], and then converted to OMDoc using LATEXML [Mil].
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Figure 1.1: Presentation Algorithm Output and the corresponding Notation Definition

MathSemantifier converts PMML into valid CMML as described above. In order to perform
this task, it needs to match PMML against a list of notations. This is achieved by compiling the
notations into a context free grammar, and using a CFG parsing engine to parse the PMML. A
parse returns a list of possible parse trees, out of which MathSemantifier extracts information
regarding what notations matched at top level and continues with the arguments of the found
notation recursively. We use the Marpa Grammar Engine (see [Keg]).

We generate a database of notations, we use the SMGloM corpus [GIJ+, Koh]., a mathematical
thesaurus, which contains over 1000 notation definitions for elementary mathematical concepts.
This sTEX-encoded corpus is converted to OMDoc using LATEXML. MathSemantifier is an
extension of the MMT system [Rab] a scalable mathematical knowledge processing engine that
reads the OMDoc notation definition and generates a context free grammar from them.
MathSemantifier takes this generated CFG and input from theWeb UI in order to produce

possible parse trees of the input. The Marpa grammar engine is the proposed tool for this
purpose. The main advantages are that Marpa handles ambiguous grammars and provides
control over the parsing process. The author of Marpa provides a more detailed analysis of the
advantages of Marpa.

2 The MathSemantifier System
The major idea of MathSemantifier is, as already described in the introduction, finding pos-
sible Content MathML readings for Presentation MathML input expressions.

The general flow of a single semantification can be described as follows:

1. Generation of Context Free Grammar from MMT Notations

2. Parsing using the Marpa Grammar Engine and the generated CFG to detect the top level
notation

3. Parsing the arguments of the top level notation recursively

4. Using the parse trees from step 2 and 3 to generate an internal representation of the meaning
trees

5. Converting the meaning trees to Content MathML

6. Displaying the Content MathML trees in the frontend
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Figure 2.1: MathSemantifier Architecture

A CFG-based solution was chosen because of the preexisting parsing frameworks like the Marpa
Grammar Engine. Such frameworks solve all the parsing-related technical problems, like parsing
ambiguous expressions, different kinds of recursion, while also providing a high degree of freedom.

The main goals of the system can be expressed in a concise manner as follows:

1. Generating the correct set of parses efficiently and effectively

2. Providing opportunities for improvement for further research in the area

The architecture can be roughly divided into four parts as shown in Figure 2.1.

2.1 The Web User Interface

The Web UI is a core component of MathSemantifier. It is intended to be a lightweight
solution that queries a server for the results of more computationally-intensive tasks.

The interface consists of an input area, where MathML needs to be inputted, and three
options:

1. Semantify (The user can guide the semantification of the top symbol directly, by choosing
the correct matching range, notation and argument positions)

2. Show Semantic Tree (The other option is to ask for all the possibilities and get all the
semantic trees)

3. Evaluation (The user is walked through a series of examples to demo the functionality)

The repository containing the Web UI can be found on GitHub [Tolb].
User Guided Semantification is performed as follows: The user provides Presentation MathML

as input to the system, then uses the Semantify button to reveal a list of top level notation
names. The names of the notations are derived from the notation paths as follows: archive
name + symbol name, for example, natarith addition refers to the addition of natural
numbers. After determining which notation is the correct one, the user needs to make sure
that the arguments were detected properly and, finally, the resulting Content MathML tree is
displayed (see Figure 2.2 for a similar representation of the result).
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The easier but computationally more expensive alternative is to simply generate all the pos-
sible parse trees at once and display them. The user simply needs to click the Show Semantic
Tree option.

Figure 2.2: MathSemantifier in Action

For the example shown in Fig-
ure 2.2, there is a total of 342
different readings. This can be
easily explained, since Invisible
Times, Arithmetic Plus and
Mod have each multiple nota-
tions definitions (that originate
from different MMT archives, for
instance), and there are no limita-
tions on what kind of notation defi-
nitions can go together in the same
CMML tree.

In order to minimize the Content
MathML, the standard allows sub-
tree sharing. To enable this option,
the Use term sharing checkbox
should be checked. In that case,
the terms is shared among differ-
ent readings.

2.2 The MMT Backend

The MMT Backend is a Server
Extension that is part of MMT.
As shown in Figure 2.1, it is linked
via REST with the Web UI and
the Parsing Backends.

Its role can be summarized to
the following core functions:

1. Compile the MMT Notations into a CFG Grammar

2. Receive the input from the Web UI and build its Semantic Tree

3. Delegate the parsing to the Parsing Backends

We decided to put the core logic of the application in MMT in order to make it easier to
interoperate with the MMT Notation Database, as well as with any other MMT components
that may need MathSemantifier.

The code can be found as part of the MMT codebase [KT].
Let us look at the components of the MMT Backends in more detail below.

2.3 The Grammar Generator

The Grammar Generator aggregates all the knowledge contained in the MMT Notations into
one Context Free Grammar. The grammar is shaped into the normal form accepted by the

77



Marpa Grammar Engine. To achieve this, the format used to store the notations in MMT is
decomposed into CFG rules. Otherwise said, the tree-like structure of each formula, that is
stored as nested applications of MMT Markers needs to be serialized into CFG rules.

Figure 2.3: CFG Preamble

This is done in several steps:

1. Break apart the MMT Marker trees
into level by level representations

2. Transform the intermediate representa-
tion into valid CFG rules

The fundamental structure of the CFG is
established using a preamble as shown in
Figure 2.3. Note the default action is the
Grammar Entry Point. It is precisely
what tells the Grammar Engine to build
parse trees, and also determines their struc-
ture.

The entry point into the grammar is the
Expression rule. It can be an MMT Nota-
tion, or Presentation MathML. The prec0
rule should be read as precedence zero, that
is - the lowest precedence there is.

Precedence handling is done using a
commonly-used method for including it in
CFGs. The Notation Precedences sec-
tion in Figure 2.3 gives a quick glance at
how exactly it is done. The number of prece-
dences needs to be known in advance, then,
for each precedence value a corresponding
precN rule is created.

The rule contains all the notations with
that precedence, and, one of the alternatives is going to a higher precedence value. In the
example below there are 15 used precedence values (prec0 corresponds to precedence −∞).
However, the Notation Precedences section shows only half of the concept.

Figure 2.4: MMT Notation in CFG

To make this approach work,
what is also needed is that the
arguments in a rule of a certain
precedence N can only contain no-
tations with precedence K if K >
N . This is done by theArgument
Precedences part in the preamble (as shown in Figure 2.3).

Finally, Figure 2.4 presents an example of what the natharith additionMMT notation from
the smglom/numberfields archive translated to CFG rules looks like.
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2.4 The Parsing Backend

The Semantic Tree Generator works by recursively querying the Parsing Backend and
using the result to construct the tree of possible meanings.

The parse trees stored in MMT have the following structure:

• Variants - represents a list of possible readings. It is always the top node in any parse
tree.

• Notation - a notation detected in the input. This node contains the name and arguments
of the notation it represents.

• Argument - an argument of a notation. The plugin is recursively called on it to construct
its meaning subtree as well.

• RawString - the ground term representation.

The final part of the semantification processes is converting the internal representation to a
standard one, which is CMML in this case. MMT provides a simple API which requires:

1. MMT notation path

2. Argument maps (maps from the argument number to the corresponding substring)

Both of which are available in the representation structure. The argument path is obtained
by extracting the argument number from the argument name, and looking up in a map of
paths created at the time of grammar creation. This implies the grammar rule names are
overloaded with meaning, however, the possibilities are very limited in this aspect since the
parsing framework used does not give complete control over the parsing process.

The Parsing Backend Figure 2.1 receives requests from the Web UI directly for Guided
Semantification and from the MMT Backend for Semantic Tree Generation. All the parsing
related work is delegated to this backend.

The code of the Parsing Backend can be found on GitHub [Tola].
The parsing backend consists of two parts.
First of all, the CFG needs to be queried and parsed. This is implemented using lazy evalua-

tion, which means that it is only done when a request actually comes.
The serialized CFG is unpacked and fed to the Marpa Parser Generator.
Second, useful information needs to be extracted from the generated parse trees. Note that

going through all the parse trees is not practical, so only the first N (currently 1000) parse
trees are processed. This still gives the correct results in most cases since the grammar rules are
optimized for giving preference to parse trees that are more likely to be correct.

3 Evaluation
This section presents an evaluation of MathSemantifier from the point of view of efficiency
and effectiveness of semantic tree generation. Next, the interoperability of the system with other
possible applications is examined, which mostly depends on the backend APIs.

Testing MathSemantifier through normal operation is not a trivial task, because the results
need a human expert to check whether the results are indeed correct. Fortunately, the Math-
Hub Glossary [KWA] contains a sufficient number (about 3000) of examples of Presentation
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MathML with Content MathML annotations that result from applying the Presentation Al-
gorithm discussed in the introduction. Since MathSemantifier is the partial inverse of the
Presentation Algorithm, checking whether the results are indeed correct boils down to com-
paring two Content MathML trees.

For the purpose of testing MathSemantifier on the MathHub Glossary, the Evaluation
option mentioned in the Web UI section is used. It processes examples from the MathHub
Glossary.

A visual control of approximately 500 examples from the MathHub Glossary revealed the
following results: About 40% of the examples are semantified correctly. However, this is largely
because of reasons that do not depend on MathSemantifier itself.

Contrary to what the percentage number suggests, for expressions with less than 1000 parse
trees that are correctly rendered, MathSemantifier produces correct results with a very high
probability.

Let us look into the reasons that make MathSemantifier fail. First of all, the reasons that
do not depend on the system itself.

1. The Presentation Algorithm fails to render CMML into PMML properly in about 30-40%
of the cases.

2. About 10% of the examples include symbols from archives that were not included in the
CFG

Up to this point, if we exclude the above mentioned examples, the effective success rate of
MathSemantifier is about 80-90%.

1. Some notations are omitted because they create cycles in the CFG

2. Input data that is too long or complex having more than 1000 parse trees

3. Assuming the input is more knowledge-rich than it actually is

While the effective success rate of 80-90% is inspiring for a proof of concept system, the main
issue of MathSemantifier is simply poor performance on long or complex input. Therefore,
MathSemantifier is a successful proof of concept, but not yet a practical tool.

4 Conclusions
The conclusion of this study is the proof of concept architecture and implementation of a system
capable of converting Presentation MathML to all the possible meanings, which is a list of
Content MathML. The testing revealed that the system is able to recognize correctly single
top level symbols, as well as the whole set of readings of expressions with less than 1000 parse
trees (this is not the limit, but no testing is done beyond that). Naturally, MathSemantifier
can only recognize the symbols that were used when building the Context Free Grammar it uses.
This shows that it is certainly possible to aggregate the knowledge from the MMT Notations
and to use it for parsing purposes. However, both the Notations and the Parsing Framework
need significant improvements in order for the system to be scalable beyond what is presented
in the previous section. The most important part of this study is, therefore, the optimizations
and heuristics used, and other techniques presented below that further research could benefit
from.
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ThEdu 2016: Theorem Provers Components for
Educational Software

ThEdu is a forum to gather the research communities for computer Theo-
rem Proving (TP), Automated Theorem Proving (ATP), Interactive Theorem
Proving (ITP) as well as for Computer Algebra Systems (CAS) and Dynamic
Geometry Systems (DGS). The goal of this gathering is to combine and fo-
cus systems of these areas and to enhance existing educational software as well
as studying the design of a next generation of educational mathematical tools.
ThEdu Web-page: http://www.uc.pt/en/congressos/thedu/thedu16.

Educational software tools have integrated technologies from CAS, from
DGS, from Spreadsheets and others, but not from TP with few exceptions: the
latter have been developed to model mathematical reasoning in software – rigor-
ous reasoning as a companion of calculating, which guarantees the unsurpassed
reliability of mathematics. Providing students with insight in and experience
with this kind of reliability is considered an essential aim of mathematics edu-
cation.

TPs intrude into science as well as into industry: They are used to tackle
difficult proofs in the science of mathematics, like the Four Color Problem or
the Kepler Conjecture. In industry TPs are successfully used to verify safety
critical software. This workshop addresses a window of opportunity during the
currently open development of TP.

The workshop provides a meeting place for educators and developers of ed-
ucational mathematics software and experts in TP. The discussions shall clarify
the requirements of education, identify advantages and promises of TP for learn-
ing and motivate development of a novel kind of educational mathematical tools
probably establishing a new generation of such tools.

July 2016, Walther Neuper & Pedro Quaresma
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Lucas-Interpretation from Users’ Perspective

Walther Neuper
IICM, Institute for Computer Media, University of Technology. Graz, Austria
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Requirements-engineering for educational software [14] raised the question, how much efforts would
be required for implementing substantial material from mechanics [16, 17] in a system based on technol-
ogy from Computer Theorem Proving (TP). The question appears relevant for several kinds of “users”:
for decision makers, for course designers and last not least for staff from faculties of engineering, who is
interested to implement their own examples and exercises in the future.

Since TP is new in the field, there are some general informations about how to implement material in
a TP-based system: First there needs to be a so-called “theory” which collects or imports all definitions
used in the material and which formailises respective theorems and proofs. The system under consider-
ation is Isac [3], a prototype based on the TP Isabelle [2]. Isabelle’s standard distribution contains most
of the mathematics required, multivariate analysis 1 etc. Further material is in the Archive of Formal
Proofs [1]. And what is not yet covered by these sources, can be defined as axioms preliminarily, see
for instance2 . Specification of problems is not much effort, see some prototype implementations3 . The
focus of the paper are the methods solving the problems.

The paper is organised as follows: §1 presents LI as a slight extension of usual interpreters for
programming languages and introduces an example used throughout the paper 4, §2 discusses the present
state and future development of Isac’s programming language. Because the latter is purely functional,
without any statement for input or output, there is the question “Where are the Interactions from?” raised
in §3 before a conclusion reshapes LI’s advantages for educational software.

1 A Slightly Extended Interpreter

An interpreter of a programming language works as sketched in Fig.1 on p.2: The interpreter reads a
statement at a certain location in a program; the statement is interpreted such that the location moves on
to another statement to be read next; the interpreter also maintains an environment, which pairs identi-
fiers encountered in statements with respective values; a step of interpretation updates the environment
according to the interpreted statement.

A Lucas-Interpreter (LI) extends the above with additional elements and actions: First a step of cal-
culation is constructed by each step of interpretation. Guarantee of correctness for steps in calculations
is the purpose of the additional elements; for logical details see [12], here follows a general explanation
according to Fig.1:

A theory provides the language elements for certain logical expressions collected in a context [18].
In each step of interpretation the context provides the logical facts required to correctly deduce the next

1https://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate_Analysis/index.html
2https://intra.ist.tugraz.at/hg/isa/file/e7afa662670b/src/Tools/isac/Knowledge/Biegelinie.thy
3http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html
4The running example is part of another example used with another perspective in [14].
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2 Lucas-Interpretation

step of calculation; this action is called prove in Fig.1. A blue square in this figure indicates, that input
of a formula or tactic to the calculation is proved correct by automated provers using the current context,
which is updated at each step of interpretation.

Figure 1: Survey on Lucas-Interpretation

The scope of environments with respect to programs with nested sub-programs has been clarified in
the discipline of compiler-construction. However, the scope of contexts in the presence of theories and
“locales” is not yet settled [18]. Isac uses the following scoping rules: a context is initialised by the
pre-conditions at the start of interpretation, it is visible in sub-programs; the context of a sub-program
remains local except predicates containing variables declared in the output of the respective sub-program.

The execution of the program’s statements is done by rewriting, as usual with functional programs
(where one speaks about “evaluation” of “functions” instead of “execution” of “programs” as we do
here). In the present state of Isac’s prototype there are lots of evaluators: for list-expressions in programs,
for normalisation of user input (for checking correctness). for pre-conditions, etc. Compiling these
evaluators is an elaborate, expensive and error-prone task. So migration of Isac’s programming language
to Isabelle’s function package [5] shall free the programmer from these tasks. As soon as this integration
is done, all the functions available for Isabelle/HOL are ready for LI, including those which implement
computer algebra (see for instance [7, 13]).

A program is accompanied by a “guard”; guard and program together are called a “method” in Isac.
The guard is not contained in Fig.1; below an example is copied from [14] §.1:

1 Guard:
11 Given: Masses m = 2 kg, Length l0 = 0.3 m, Consts {c1 = 1.1 kg

s2 , c2 = 2.2 kg
s2 }, Damper d = 0.4 Ns

m
12 Where: 0< m∧ l0 < 0
13 Find: Matrixes {M(m), D(d),C(c1,c2)}, DiffEq M · ẍ + D · ẋ +C · x = F
14 Relate: ∃x. ∀t. t > 0⇒M · ẍ + D · ẋ +C · x = F

Given in line 11 lists the concrete input items to the program, Find declares the output item(s). Where
is the pre-condition, which shows, that the Guard is a conjunction of predicates restricting input (and
restrictions imposed by physical contants could be added here as well). In Relate the post-condition
relates input and output (in the sense of [4]); this particular post-condition can be proved by the theory
of differential equations, but it is not immediately useful for an engineer, who wants the solution of an
equation and not only some promise by ∃.
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2 The Interpreted Language

Isac’s programming language has been implemented [9] before the “function package” [5] has been
introduced to Isabelle. But Isac’s language has been designed such, that it anticipated the function
package and now the former can be explained in terms of the latter.

Functions in Isabelle/HOL must be total in order to keep the logic consistent. Isac’s programs are
not total in general, their input is restricted by pre-conditions as shown in §1. Thus Isac’s programs are
declared as partial function in Isabelle.

A major difference between Isabelle and Isac concerns the purpose of functions: while the former
is built for proving properties of functions, for evaluating them and probably generating efficient code
from them, the latter is built for stepwise construction of calculations solving problems in (applied)
mathematics. Construction of calculations comprises interactively specifying and solving the respective
problem. Below the guard from §1 above is re-used by the Specification (thus not shown again and
folded in) for a Problem with a Solution as follows:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:
212 Solution:
2121 forces of springs
2122 [Fc1 = c1x1, Fc2 = c2(x2− x1), Fc3 = c1x2]
2123 forces of dampers
2124 [Fd1 = dẋ1, Fd2 = dẋ2]
2125 mass times acceleration equals sum of all forces
2126 [mẍ1 =−Fc1 + Fc2−Fd1−F1, mẍ2 =−Fc2−Fc3−Fd2 + F2]
2127 Substitute [Fc1,Fc2,Fc3,Fd1,Fd2]
2128 [mẍ1 =−c1x1 + c2(c2− x1)−dẋ1−F1, mẍ2 =−c2(c2− x1)− c1x2−dẋ2 + F2]
2129 Rewrite Set normalise
212a [mẍ1 + dẋ1 + c1x1− c2(x2− x1) = F1, mẍ2 + dẋ2 + c2(x2− x1)+ c1x1 = F2]
212b switch to vector representation

212c

(
m 0
0 m

)(
ẍ1
ẍ2

)
+

(
d 0
0 d

)(
ẋ1
ẋ2

)
+

(
c1 + c2 −c2
−c2 c1 + c2

)(
x1
x2

)
=

(
0
F1

)
+

(
0
F2

)

22

(
m 0
0 m

)
ẍ +

(
d 0
0 d

)
ẋ +

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F1

)
+

(
0
F2

)

The above Solution is considered as close to a calculation written by hand on a blackboard as possible;
on the left margin there are the formulas of the calculation (indented according to the calculation’s
structure), on the right margin there are the tactics and hints; the rest should be self-explanatory. The
Solution is the result of Lucas-Interpretation of this program:

. partial function diffeq 2 mass oscil (m, l 0, [c 1, c 2], d, springs, dampers, sums) =
1 let

11 begin parallel

1101 springs = Take springs “forces of springs”
111 parallel

1111 dampers = Take dampers “forces of dampers”
112 parallel

1121 sums = Take sums “mass times acceleration equals sum of all forces”
12 end parallel

13 diffeq = Take sums “”
14 diffeq = Substitute [ springs, dampers ]
15 diffeq = Rewrite Set normalise
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4 Lucas-Interpretation

16 diffeq = Rewrite Set vectorify “switch to vector representation”
2 in

21 diffeq

The partial function diffeq 2 mass oscil gets the arguments (m, l 0, [c 1, c 2], d, springs, dampers,
sums) from the preceeding specification phase. The first lines 2122..2126 of the calculation could
have been constructed in arbitrary order; this is reflected by the lines 11..12 in the above function:
the statement parallel models parallel execution, while the remaining statements 13..17 represent a
sequence.

Above there are specific statements, called “tactics” in weak analogy to TP: Take, Substitute and
Rewrite Set as examples for some dozen others. Tactics are handled by LI like “break points” by
debuggers: interpretation halts at the tactics and passes control to the dialog component, which decides
how to pass control back to LI, see the next section.

3 Where are the Interactions from?

As shown in §2 by example, a program in Isac is purely functional as is an Isabelle function, without side-
effects and without input or output. However, LI creates side-effects in a specific way and cooperates with
a dialogue component. The architectural design is shown in Fig.2. The WorksheetDialog implements the
observer pattern [6] and listens to two active components: the Worksheet as interface to the user on the
one side and to the MathEngine as interface to LI on the other side; the latter is active in the sense, that
response may be delayed due to heavy prover activity:

Figure 2: Isac’s dialog component

Here come some details, how automated dialog generation works, by use of the running example:
LI starts after successful completion of interactive specification, reads line 11 in the function on p.3 and
halts at the tactic Take. By delivering a CalcEvent the MathEngine passes control to the WorksheeDialog.
Now the dialogue is free to choose various kinds of interaction from the DialogRules according to the
UserModel: the user can be a novice and might prefer to watch passively, or the dialog-mode is set to
“exam” and forces the student to be active, etc. So, the dialog might . . .
• allow the student to request the next formula (passive watching)
• suggest the kind of next step by “forces of springs”
• provide a partial next formula like [Fc1 = . . . , Fc2 = . . . , Fc3 = . . . ] to be completed as shown by

[14].Fig.2.
• suggest further parts of the formula (some more activity)
• enforce input of the formula (maximal activity on the student’s side): each of the lines 2122,
2124 or 2126 could be input due to the parallel statement. And the input formula can have
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arbitrary format as long as it is algebraically equivalent, due to simplification to a normal form in
the MathEngine.
• allow to review the method helping in construction of the calculation (if not in “exam” mode)
• allow to investigate Isac’s mathematics knowledge base, look at other examples and continue with

the calculation eventually.
• etc.

Depending on the decision of the WorksheetDialg after some UserActions and DialogActions the respec-
tive CalcRequest is sent to the MathEngine. The latter responds with a CalcEvent, which notifies the
Worksheet (by the way controlled by the WorksheetDialog) that a new CalcElement waits to be fetched
from the MathEngine via a CalcIterator, which has read-access to the whole calculation under construc-
tion by LI.

The kind of interaction described above can be considered a dialog between partners on an equal
base: both, the student and the system, are able to do steps of calculation more or less actively. The
architecture reflects this balance, where LI is the source of power on the system side during interactive
calulation.

In the present state of development the DailogRules are implemented only to an extent which allows
demonstration of LI by Isac’s prototype. A general machinery [8] is ready to cope with the complexity
of interaction expected in the future. Respective “dialog authoring” will be an efficient investment:
interactions in doing mathematics are considered independent from various areas of mathematics; also
differences in behaviour of novices versus experts are considered the same in all areas.

The present state of development, the UserModel is still a stub. The stub is designed such, that
each student is assigned an indiviual data set, which can be preset as well as updated during a session:
error rates on specific knowledge items (rule, problem, method, example), preferences in interaction and
current dialog mode. Three modes are envisaged at least: investigation, exercise, examination (the modes
are subsets of DailogRules).

Relevant in the context of questions about efforts for implementation of interactive TP-based course
material is: the implementation of functions is not concerned with interaction at all, a “mathematics
author” can focus mathematics and nothing else.

4 Conclusion

In spite of higher complexity of TP-based systems with Lucas-Interpretation as compared with a Com-
puter Algebra System, the implementation of course material does not require more efforts in principle,
as soon as Isac’s programming languages has migrated to Isabelle’s function package. Purely functional
programs are specifically interpreted by so-called Lucas-Interpretation (LI), which generates steps of
calculation and respective dialogue guidance as side-effects of steps in interpretation.

Lucas-Interpretation maintains a context, which provide the most powerful technology available with
logical facts for checking correctness of user-input. Thus there is maximal freedom for input – for
algorithmic sequences as well as for formula representation: equivalence modulo a theory is checked
with maximal reliability. The ability to propose a next step in calculations is the novel feature contributed
by Lucas-Interpretation.

No additional efforts are required when programming methods to solve engineering problems: check-
ing steps and proposing steps is done by Lucas-Interpretation automatically and in cooperation with a
dialogue module user-guidance is generated automatically.
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6 Lucas-Interpretation

Finally, after fifteen years of conceptual work and of prototyping, a successful proof of concept
[10, 11, 15] some time ago and after the recent requirements engineering, Isac appears ready to start
development for a professional release usable at universities of applied sciences.
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The discipline of Computer Theorem Proving (TP) distinguishes itself by formal rigor in doing math-
ematics in various application domains [1]. This short paper is, however, not on TP but on educational
software based on TP components. Such software promises advantageous features [7] some of which are
demonstrated by a prototype [3] called Isac. Isac is based on the TP Isabelle [2] and generates dialogues
similar to interaction with chess software: moves in chess are considered as rigorous formal as steps
in calculations are when solving problems in engineering disciplines. Isac checks input of students by
use of Isabelle’s automated provers, which in turn are provided with necessary logical context by Lucas-
Interpretation [6]. This interpreter also allows to propose next steps towards a solution, so roles can be
arbitrarily switched between student and system.

This paper reports work in progress in cooperation with universities of applied sciences in Austria.
The work concerns a feasibility study on how Isac could serve in engineering education at these univer-
sities. Since Isac has been designed for “pure” mathematics, the study encounters several challenges.
Below one running example presents three major challenges for discussion; the example is from [9] and
slightly changed for reasons discussed in §2:

Given is a system with two oscillating masses, m = 2 kg, connected by linear springs with
length l0 = 0.3 m and damped with d = 0.4 Ns

m as shown in Fig.1. The respective spring con-
stants are c1 = 0.11 N

m and c2 = 0.22 N
m . The masses are located such that x1 = x2 = 0 with

relaxed springs; initially the masses are dislocated with x1 = x2 = 0.05 m and have velocities
v1 = 0.1 m

s and v2 = 0.2 m
s respectively. The right mass is excited by force F = 0.6sin(3t) N.

Change the given spring constant c2 such that the left mass becomes a vibration absorber for
the right one (i.e. make the masses oscillate in opposite directions such that the system shows
no vibration to the outside).

Figure 1: System with two oscillating masses c©W.Steiner 2015 [9]

A solution for c2 involves modelling the system and comprises several sub-problems: determine the
differential equation, solve the homogeneous part, determine the particular solution for F and finally
calculate c2. Below we start with the first subproblem and demonstrate the first challenge raised by
geometric descriptions typical for modelling physical systems.
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2 TP-based Educational Software

1 Formal Specification and Geometric “Intuition”
A formal specification in the sense of [4] makes the input Given and the output Find to a system’s model
explicit as shown below; it restricts input by a pre-condition Where and relates input with output by a
post-condition Relate. The first subproblem of the running example is formally specified as follows:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:

2111 Model:
21111 Given: Masses m = 2 kg, Length l0 = 0.3 m, Consts {c1 = 0.11 N

m , c2 = 0.22 N
m}, Damper d = 0.4 Ns

m
21112 Where:
21113 Find: Matrixes {M(m), D(d),C(c1,c2)}, DiffEq M · ẍ + D · ẋ +C · x = F
21114 Relate: ∃x. ∀t. t > 0⇒M · ẍ + D · ẋ +C · x = F
2112 References:
212 Solution:

The Problem in line 21 is named such, that a reference into Isac’s knowledge base is given 1. The other
References addressed by line 2112 point to a theory, which imports language elements like ẍ, and to a
method which can create a Solution, are collapsed here (as well as the pre-conditions in Where). The
notation M(m) establishes a literal connection between Given and Find; the notation is up to discussion.
The post-condition in 21114 comprises an ∃ not relevant for engineers and might be omitted.

In interactive construction of a Solution the challenge for students is to relate forces, for instance

mẍ1 =−Fc1 + Fc2−Fd1, mẍ2 =−Fc2−Fc3−Fd2 + F(t)

And for the task of relating the forces, figures like Fig.2 are used to capture coordinates and forces. Now
the problem with Isac’s design is, that such figures capture relations in a precise representation, but this
representation is geometric, not formal — and Isac is designed to work with formulas (which would be
clumsy in capturing geometric structure here), which can be handled by Isabelle’s components in the
background. So the section’s headline advocates “intutition” as opposed to formal specification.

Figure 2: Forces on the oscillating masses c©W.Steiner 2015 [9]

Such figural representations are used frequently and in different engineering disciplines, not only in
mechanical engineering. So efforts seem well invested to tackle this design challenge, to sustain Isac’s
claim to be a “system that explains itself” and to develop a generally usable component for that purpose.

Such a component shall allow to add coordinates, arrows and associated identifiers at certain posi-
tions in a figure. This component also shall provide feedback automatically generated from a formalisa-
tion, which has been prepared for each example by Isac’s math-authors. Generation of figural represen-
tations like Fig.2 shall become another duty of math-authors (while managing interaction is concern of
the component).

1http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html
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2 Learning by Switching Levels of Abstraction

Learning to comprehend abstraction requires experiencing a multitude of concrete examples — a fact
experienced in the practice of education in general, not only in engineering education and with abstract
models in mechanics. Mathematical abstractions, like differential equations, however, have an advantage:
they can be computed with concrete values, they even can be dynamically simulated given such values.

Another characteristics of complex learning processes, like comprehension of abstract models, is
that they succeed not in one go. Learning happens in phases in the brain, which usually are separated
by latency periods – and these cannot be planned from outside an individual brain; so, a lecture on the
behaviour of two oscillating masses (e.g. [9].p.122–129) is only a part of respective learning processes.

So, how to cope with these challenges in learning to comprehend abstraction? Good old LATEX
provided wide margins for personal notes in papers and textbooks again and again; interactive media can
do better nowadays, if they are designed appropriately. And it appears obvious: the more such media
cover the process of problem solving, the better. Isac claims to cover the whole process; §1 showed, how
problem specification is covered by Isac. Below is shown, what else can be done.

Include creation of models into concrete examples as done with the running example: The problem
statement on p.1 contains a concrete request for a particular value of c2 (below folded into Specification
in order to save space) — nevertheless the Solution should comprise the creation of the underlying ab-
stract model as follows:

. Problem [absorber, 2-mass-oscillator]
1 Specification:
2 Solution:
21 Problem [determine, 2-mass-oscillator, DiffEq]

22

(
m 0
0 m

)
ẍ +

(
d 0
0 d

)
ẋ +

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F

)

23 Problem [solution, 2-mass-oscillator, homogen, DiffEq]

24 x(t) =

(
1
1

)
(A1 cosω1t + B1 sinω1t)+

(
1
−1

)
(A2 cosω2t + B2 sinω2t) ,

25 Problem [particular, solution, 2-mass-oscillator, DiffEq]

26 x1(t) =

(
0
a1

)
sinΩt, x2(t) =

(
0
a2

)
sinΩt, a1 = F0c2

(c1+c2−mΩ2)2−c2
2
, a2 = F0(c1+c2−mΩ2)

(c1+c2−mΩ2)2−c2
2

27 Problem [complete, solution, 2-mass-oscillator, DiffEq]

28 x(t) =

(
1
1

)
(A1 cosω1t + B1 sinω1t)+

(
1
−1

)
(A2 cosω2t + B2 sinω2t)+

(
0
a1

)
sinΩt,

a1 = F0c2
(c1+c2−mΩ2)2−c2

2
, a2 = F0(c1+c2−mΩ2)

(c1+c2−mΩ2)2−c2
2

29 Problem [compute, spring]
2a c2 = 1.2345 N
. c2 = 1.2345 N

Since above the modelling process is included into the Solution, students are enabled, not just to
advocate some formula from somewhere (which seduces to use formal models without understanding).
A student can regard the (sub-)Problems as black-boxes, of course (if not forced by Isac’s dialog guide
to actively do the step). But Isac is designed to elicit experimentation, for instance to experiment with
different input values to a problem in order to approximate a solution by trial and error. Since solving
the above problem with trials soon turns out hopeless, a student might be motivated to make the sub-
Problems white-boxes, look into them, study details and to rework creation of the abstract model.
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Switch levels of abstraction: In the above calculation the concrete result c2 = 1.2345 N was possi-
ble, because the Specification contains the concrete values given on p.1, which were input at the
beginning of the calculation:
. Problem [absorber, 2-mass-oscillator]
1 Specification:
2 Solution:
21 Problem [determine, 2-mass-oscillator, DiffEq]
22 [2ẍ1 + 0.4ẋ1 + 3.3x1−0.22x2 = 0, 2ẍ2 + 0.4ẋ2−0.22x1 + 3.3x2 = 0.6]
23 Problem [solution, 2-mass-oscillator, homogen, DiffEq]
24 [x1(t) = 0.05e−0.1t(cos0.81t + 3.85sin0.81t),

x2(t) = 0.05e−0.1t(cos0.81t + 3.85sin0.81t)]
25 Problem [particular, solution, 2-mass-oscillator, DiffEq]
26 [x1(t) =−0.05e−0.1t0.59sin1.69t, x2(t) = 0.05e−0.1t0.59sin1.69t]
27 Problem [complete, solution, 2-mass-oscillator, DiffEq]
28 [x1(t) = 0.05e−0.1t(cos0.81t + 3.85sin0.81t−0.59sin1.69t),

x2(t) = 0.05e−0.1t(cos0.81t + 3.85sin0.81t + 0.59sin1.69t)]
29 Problem [compute, absorber]
2a c2 = 1.2345 N
. c2 = 1.2345 N

Note that above also intermediate results are numeric values (copied from a Mathematica notebook):
both representation, symbolic and numeric, have their advantages: the first tells about the structure of
the model, the latter tells about concrete results (which can be observed in dynamic simulation of the
enclosed differential equations, ultimately, see [5]).

Switching between symbolic representation and numeric representation can be done by computer
software: this novel feature seems of utmost importance for learning, so it shall be included to Isac
within the next development phase. Realisation requires to extend Isac’s Lucas-Interpreter [6] such that
the interpreter’s environment not only takes identifier-value pairs, but associates identifiers with lists of
values.

Both design features together, the feature to include models into concrete examples and the feature
to switch levels of abstraction, lead to radically new learning scenarios
• The student is offered to review the construction of the abstract model any time (every example

concerning, for instance, the two-mass-oscillator includes the respective model: this is accom-
plished by copy& past for some sub-problems in the respective program [8]).

• The student is not bothered by unwanted details: he or she can skip in a calculation whatever steps
they want to (if the dialog [8] allows to do so, which would not be the case in exams, for example).

• Even students of introductory courses can be offered to look into advanced examples like the
two-mass-oscillator under consideration: the dialog jumps to some subproblem in the calculation,
which is up to exercise in the course (e.g. differentiation, equation solving, etc). Then the student
interactively works on the respective subproblem, and if the problem is solved, the system finished
the calculation automatically. This way questions like “What for do we learn this method” are
anticipated in an unobtrusive way.

3 Formal Deduction and Physical Arguments

Isac is designed such that a student can rely on the system, that wrong steps in a calculation are rejected
reliably. From the assumptions (the input in Given and the pre-conditions in Where) the steps are
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formally deduced such that finally the post-condition (partially represented in Relate) can automatically
be proven; for details see [6].

Now, in §1 we encountered an example, where essential assumptions are given by geometric struc-
tures (arrows as forces in a figure) and not by formulas. So it seems straight forward, to add informal
arguments to the steps of formal deduction. We come back to this sub-Problem and proceed from the
Specification (folded in below) to the Solution:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:
212 Solution:
2121 forces of springs
2122 [Fc1 = c1x1, Fc2 = c2(x2− x1), Fc3 = c1x2]
2123 forces of dampers
2124 [Fd1 = dẋ1, Fd2 = dẋ2]
2125 mass times acceleration equals sum of all forces
2126 [mẍ1 =−Fc1 + Fc2−Fd1, mẍ2 =−Fc2−Fc3−Fd2 + F ]
2127 Substitute [Fc1,Fc2,Fc3,Fd1,Fd2]
2128 [mẍ1 =−c1x1 + c2(c2− x1)−dẋ1, mẍ2 =−c2(c2− x1)− c1x2−dẋ2 + F ]
2129 Rewrite Set normalise
212a [mẍ1 + dẋ1 + c1x1− c2(x2− x1) = 0, mẍ2 + dẋ2 + c2(x2− x1)+ c1x1 = F ]
212b switch to vector representation

212c

(
m 0
0 m

)(
ẍ1
ẍ2

)
+

(
d 0
0 d

)(
ẋ1
ẋ2

)
+

(
c1 + c2 −c2
−c2 c1 + c2

)(
x1
x2

)
=

(
0
F

)

22

(
m 0
0 m

)
ẍ +

(
d 0
0 d

)
ẋ +

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F

)

Above the numbers at the left do not belong to an Isac calculation, they are for referencing only. In the
middle there are the formulas of the calculation (with tree-like indentation). On the right there are the
justifications for the formulas.

In the lines 2127 and 2129 above there are tactics which contribute to formal deduction in the
Solution. But the lines 2121, 2123 and 2125 do not contribute to the formal semantics, they are
arguments addressing intuitive understanding of physical aspects of modelling. In line 212b there is
even a non-physical argument, useful just for structuring the calculation.

The two latter kinds of arguments are not contained in Isac’s original design. But now requirements
analysis suggests to extend Isac’s programming language with an additional tactic for textual arguments;
this extension seems simple. For details, how Isac guides the student during step-wise construction of a
calculation and how this guidance is generated automatically, see [8].

Conclusions

The paper demonstrated examples from mechanics in order to show, that Isac’s original design is appro-
priate for education also in engineering disciplines. Requirements analysis in cooperation with experts in
engineering education identified additional requirements, which appear realizable with reasonable effort
due to TP’s power. In particular, Isac as a prototype for TP-based educational systems seems ready for
the following three extensions, which have been introduced in §1, §2 and §3 respectively:

1. An interactive graphics-component for input of coordinates, arrows and associated identifiers at
certain positions in a figure, while correctness is checked by use of hidden “formalisations” already
present in Isac — this shall support geometric intuition in creating physical models.
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2. Extension of Isac’s Lucas-Interpreter such that the interpreter’s environment not only takes identifier-
value pairs, but associates identifiers with lists of values (symbolic and numeric) — this shall
support comprehending abstract models by switching levels of abstraction.

3. An additional tactic, which plays no role in formal deduction in a calculation, but displays informal
arguments for certain steps of calculation — this shall support additional arguments for intuitive
understanding.

As soon as these features are implemented, Isac can be considered a “system that explains itself” also for
mathematics applied to various engineering disciplines — a system which promises to establish novel
learning scenarios in the field.
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Marek Janasz UP Cracow
Thesis: Automated theorem proving for elementary geometry.
This study analyses automated proofs of theorems from Euclidean Ele-

ments, book VI, using the area method. The theorems we will be discussing
concern Euclidean field theory about equality of non-congruent figures and
similarity of the figures [1]. The proofs are generated by the program
WinGCLC.

My proposed hypothesizes:
1. The way of modification of the elimination lemmas while adding the

elementary constructions to extending the abilities of the area method
in proving theorems from Euclidean Elements, book VI.

2. The method of extension of the axiomatic system from [5] to proving
theorem for ordered geometry.

I would like to use my results to implement the prover to the programming
languages in logic (Prolog, Haskell) or to the applications like Coq. My dis-
sertation plans contain the analysis of the automated proofs of segment’s field
from Cartesian arithmetic using the area method by the program WinGCLC.
My study is concerned with proving equality of line segments using various
methods of constructions corresponding with multiplication of line segments
(uniqueness) and commutative property of multiplication of line segments.
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Knowledge Management across Formal Libraries
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Abstract

In my Ph.D., I want to contribute to developing an open archive for formalizations, a common
and open infrastructure for managing and sharing formalized mathematical knowledge such as
theories, definitions, and proofs, based on a uniform foundation-independent representation format
for libraries, integrate existing formal libraries into this archive and develop methods to efficiently
transfer and share information between them.

Research Problem: In the last 10 years, the formalization of mathematical knowledge (and sub-
sequent verification/automation of formal proofs) has – especially in conjunction with problems such
as as Kepler’s conjecture, the classification theorem for finite simple groups etc. – become of grow-
ing interest to mathematicians. By now, there is a vast plurality of formal/symbolic systems and
corresponding libraries; almost all of which are, however, non-interoperable because they are based
on differing, mutually incompatible foundations (e.g., set theory, higher-order logic, constructive type
theory, etc.), library formats, and library structures, and much work is spent developing basic libraries
for mathematics in each system.

Also, formalizations in current systems are usually based on the homogeneous method, which fixes
one foundation with all primitive notions (e.g., types, axioms, and rules) and uses only conservative
extensions (e.g., definitions, theorems) to model domain knowledge. For this purpose, most systems
support complex conservative extension principles, such as type definitions in the HOL systems [HOL],
provably terminating functions in Coq [Tea] or Isabelle/HOL [NPW02], or provably well-defined indi-
rect definitions in Mizar [Miz].

The combination of fixed foundation and homogeneous method means that a lot of – expensive
– formalization work is needed just to build the setting of interest (e.g., the real numbers) as a
conservative extension of the fixed foundation. However, the resulting formalizations are actually less
valuable: It becomes virtually impossible to move them between foundations. Therefore, almost all
current systems are mutually incompatible, with only a few ad hoc translations between them (e.g.,
[KW10; KS10]).

On the other hand, the heterogeneous method, going back to the works by Bourbaki [Bou64],
focuses on defining theories that may introduce new primitive notions, and considers truth relative
to a theory. The heterogeneous method optimizes reusability by stating every result in the weakest
possible theory and using theory morphisms to move results between theories in a truth-preserving
way. This is often called the little theories approach [FGT92]. Similarly, scientific practice prefers the
heterogeneous method. For example, while all mathematics can be reduced to first principles (e.g.,
using the homogeneous method based on axiomatic set theory), it is usually carried out in highly
abstracted settings that hide the foundation. For example, the category of categories is used routinely
without focusing on its foundational subtleties. Correspondingly, there is an inconvenient discrepancy
between the currently existing formal libraries and the way (informal) mathematics is usually done in
practice.

Research Objectives: We want to tackle these interoperability and plurality problems by develop-
ing an open archive for formalizations (OAF), a common and open infrastructure for managing and
sharing formalized mathematical knowledge such as theories, definitions, and proofs, designed to be
scalable with respect to both the size of the knowledge base and the diversity of logical foundations.
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Theoretically, the main prerequisite has been established in the LATIN project [KMR09]. The
LATIN logical framework [Rab13; Cod+11] integrates institutional representations of model theory
and type theoretical representations of proof theory and thus permits combining the benefits of both
worlds. A paradigmatic example was published as [HR11]. However, whereas LATIN provides a logical
framework, there still remains the problem of integrating the existing formal libraries.

There are two facets of library integration. Firstly, one can refactor a single library to increase
reuse through modularity, sharing, and inheritance. Secondly, one can connect or merge two libraries
from different systems. This requires translating the libraries into a common language (namely MMT)
and then identifying and eliminating overlap between the two libraries.

My initial focus will be on integrating the specification language PVS [ORS92], with others to
follow. PVS is a specification language integrated with support tools and a theorem prover under
active development at the Computer Science Laboratory of SRI International.

On this basis, I then want to tackle the problem of refactoring and merging libraries.

Methodology: The aim is to integrate the syntax, underlying foundation and (ultimately) available
libraries of different theorem provers into MMT [RK13; HKR12; KRSC11], a uniform foundation-
independent representation format for libraries, which allows formalizing the logical foundations along-
side the libraries and thus acts as framework for aligning libraries.

Integrating each such library entails four things:

1. Writing an MMT-Plugin, that allows for importing the existing archives into the MMT API,

2. writing an MMT theory, that provides the underlying foundational theory,

3. (potentially) implementing desirable features on the logical framework level (subtyping features,
recursive definition principles etc.) to provide syntactical constructors for the specific peculiarities
of the theorem prover under consideration and

4. (potentially) adapting and improving the MMT language and API in the process.

In the case of PVS, the particular work will be in translating the inductive/coinductive types,
record types and the sophisticated subtyping mechanism that PVS provides into the MMT system
and to match the conceptually different module systems of both languages (PVS uses theories and
namespaces quite differently than MMT).

Furthermore, I investigate methods for refactoring and integrating/connecting the various theo-
rem prover libraries. Useful notions in that regard are alignments [Kal+16] between semantically
equivalent symbols across different libraries and foundations, interface theories [KRSC11] that ab-
stract from the specifics of a given foundation and theory intersections [MK15] for generating interface
theories.

Preliminary results: Apart from the preliminary results due to others (mentioned in the previous
paragraphs), personal results include:

• A specification of the theorem prover TPS and a translation of its library into MMT (in progress),

• extensions of the logical framework LF to allow for specifying more complex foundational theories
with (among others) judgmental and predicate subtypes, an infinite type hierarchy and record
types, including a logical framework based on homotopy type theory as a case study [Mmta],

• an almost complete specification of PVS in MMT using the aforementioned LF extensions [Mmtc],

• a corresponding translation of PVS’s Prelude and NASA libraries into the MMT language
[Mmtb],

• a survey of different alignment types and a simple language to specify different kinds of alignments
[Kal+16],

• a first implementation of an expression translation machinery in MMT, that uses alignments and
various theory morphisms to translate arbitrary expressions between different formal libraries,

2
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• an implementation of an algorithm for finding alignments between libraries,

• various improvements on the MMT API (parsing, type checking, new language features, interfaces
to external databases and applications).

Future work: I am currently working on survey papers on subtyping principles and type hierarchies
– these are intended to serve as a starting point for implementing the corresponding features in MMT
as generic as possible.

The PVS specification and translation need to be improved with respect to record types, (co-
)inductive definition principles and more obscure language features, such as update expressions, to
faithfully capture the actual behaviour of the PVS system. Also, I want to additionally import PVS’s
proof files, to allow for e.g. exporting and translating proof sketches. The latter will require a generic
specification of various proof tactics.

The expression translation and alignment finding algorithms are in an early stage and need to
be improved, evaluated as to their usefulness and extended to allow for more complex translations.
Furthermore, I want to investigate methods for generating interface theories from alignments and
theory morphisms.

Last but not least, more formal systems will be imported into MMT, providing additional challenges
for all the presented research objectives.
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Augmenting	Mathematical	Formulae	for	
More	Effective	Querying	&	Presentation	

1 Summary	
Scientists and engineers search regularly for well‐
established mathematical concepts, expressed by 
mathematical formulae. Conventional search en‐
gines focus on keyword based text search today. 
An analogue approach does not work for mathe‐
matical  formulae.  Knowledge  about  identifiers 
alone is not sufficient to derive the semantics of 
the formula they occur in. Currently, for formula 
related inquiries the solution is to consult domain 
experts, which is slow, expensive and non‐deter‐
ministic. 

Consequently,  core  concepts  to  enable  formula 
related queries on potentially  large datasets are 
needed.  While  earlier  attempts  addressed  the 
problem as a whole, I identify three mutually or‐
thogonal challenges to formula search. 

The  first  challenge,  content  augmentation,  is  to 
collect  the full semantic  information about  indi‐
vidual  formula  from a  given  input. Most  funda‐
mentally, this might start with digitization of ana‐
logue  mathematical  content,  captures  the  con‐
version from imperative typesetting  instructions 
(i.e.  TEX)  to  declarative  layout  descriptions  (i.e. 
presentation MathML) but also deals about infer‐
ring the syntactical structure of a formula (i.e. the 
expression  tree  often  represented  in  content 
MathML). In addition, this first challenge involves 
the association of formula metadata such as con‐
straints,  identifier  definitions,  related  keywords 
or substitutions with individual formulae. 

The  second  challenge  is  content  querying.  This 
ranges  from  query  formulation,  to  query  pro‐
cessing,  actual  search,  hit  ranking  to  result 
presentation.  There  are  different  forms  of  for‐
mula queries. Standard ad‐hoc retrieval queries, 
where a user defines  the  information need and 
the math  information retrieval system returns a 
ranked  list given a particular data set.  Similar  is 
the  interactive  formula  filter  queries,  where  a 
user  filters a data  set  interactively until  she de‐
rives  at  the  result  set,  which  is  relevant  to  her 
needs. Different are unattended queries that run 
in the background to assist authors during editing 

or readers to identify related work while viewing 
a certain formula. 

The third challenge is content indexing for grow‐
ing data sets. This challenge includes the scalable 
execution of the solutions to the two aforemen‐
tioned  challenges.  While  well‐established  from 
the area of database systems i.e. XML processing 
and indexing can be applied, math specific com‐
plexity problems require individual solutions. 

Augmented content (challenge 1) opens up addi‐
tional  options  for  similarity  search,  and  poten‐
tially  improves  the  search  results  regardless  of 
the applied similarity measure. In order to sepa‐
rate the effect of content augmentation from in‐
trinsic improvements in the applied similarity fea‐
tures, I develop measures for formula data qual‐
ity  that  separates  those  aspects.  Afterwards  I 
compare similarity measures given a certain data 
quality based on that quality measure. The quality 
measure itself is a valuable contribution. Its use is 
not limited to search. For example a quality meas‐
ure can assist authors to check their documents 
for (1) missing definitions, (2) ambiguities, (3) de‐
pendency  problems,  and  (4)  redundancy.  Note 
that I focus on quality measure for individual for‐
mulae  assuming  that  the  relevant  meta‐infor‐
mation has already been extracted from the sur‐
rounding  text.  Since  the developed data quality 
measures are tailored to my approach of similar‐
ity search I’ll give more details on the data quality 
measures  after  having  introduced  the  similarity 
factors below. 

Math  search  engines  have  used  some  form  of 
similarity measure  since  the early days of Math 
search  in  the  2000'th.  However,  Youssef  and 
Zhang  [1] were  the  first who branded 5  factors 
that  contribute  to  similarity  measures  in  July 
2014. Those factors are the starting point for my 
systematic  approach  to  formula  similarity 
measures, which extends their work in the follow‐
ing way: 

First, I differentiate between proper‐ and contex‐
tual formula similarity factors. Proper factors are 
quantified  by  applying  a  distance measure  to  a 
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formula‐formula pair. I identify three proper fac‐
tor  groups  that  correspond  to  lexical,  structural 
and  semantic  similarity.  Typical  uses  of  proper 
factors  are  formula  clustering,  auto  correction 
and completion  for  formula  input while editing, 
and hit candidate retrieval in the search context. 
In contrast, contextual formula similarity factors 
describe  the  relatedness  between  a  formula 
search  pattern  and  a  candidate  hit  list.  Even 
though, contextual factors are less formal and do 
not  necessarily  depend  on  the  concrete  search 
pattern,  they play an essential role for Math  In‐
formation Retrieval Applications, i.e. in search re‐
sult ranking and cannot therefore be neglected. 

In  addition,  I will  describe existing MIR  systems 
using the notation of the discussed similarity fac‐
tors.  This will  provide  a  template,  on  using  for‐
mula similarity factors as building blocks for spe‐
cialized  applications  or  future  search  MIR  sys‐
tems.  Eventually,  not  all  features  can  be  de‐
scribed  by  the  identified  factors.  In  that  case  I 
would refine the factor list to ensure that all sys‐
tems  participated  in  the NTCIR  10  and  11  chal‐
lenges can be modelled using the factors as build‐
ing blocks. 

Second,  I  analyze  the  impact  of  each  individual 
factor and the inference patterns between differ‐
ent factors. Additionally, I create case studies and 
templates on how different factors can be com‐
bined into use‐case specific similarity measures. 

The  identified  factors  imply  dimensions  of  the 
aforementioned  formula  quality  measure. 
Namely, I define four dimensions of formula qual‐
ity: (1) typographic and lexical quality; (2) syntac‐
tic structure quality; (3) semantic quality; and (4) 
metadata  quality.  An  example  for  low  syntactic 
data quality is misinterpretation of ݂ሺܽ	 ൅ 	ܾሻ as 
݂ܽ	 ൅ 	݂ܾ rather than ݂ “applied at” ሺܽ	 ൅ 	ܾሻ. In 
a  search  context  this  might  hinder  relevant  re‐
sults from being matched. The associated quality 
measure for the structural data quality needs to 
measure to which degree the structure of the for‐
mula was captured correctly. Note that the qual‐
ity measure for contextual information needs to 
be  related  to  a  main  unit  of  possible  relevant 
meta‐information. 

To assess the similarity measures used by current 
MIR systems, I will describe existing MIR systems 
using the uniform similarity factor approach, and 
perform a comparative evaluation in NTCIR Tasks. 
This evaluation is twofold and depends on human 

relevance  judgement  for  document  sections  on 
the one hand,  and on  known  item  retrieval,  on 
the other hand. For the impact analysis of individ‐
ual similarity factors, I was using (1) gold standard 
driven sensitivity analysis [2] and (2) known item 
based evaluation [4]. The two metrics discussed 
above measure not only the performance of MIR 
systems, but they also evaluate the performance 
of  similarity  factors  individually.  The  similarity 
measures  evaluated  were  taken  from  existing 
MIR systems and additional measures proposed 
in the literature and taken from other disciplines. 
One result of this evaluation is that some factors, 
namely,  those  in  the  group  of  proper  semantic 
similarity measures,  require a minimum level of 
data quality to contribute to search result quality 
in a meaningful way. 

By collecting a  large and heterogeneous sample 
of similarity measures, I am confident to have laid 
a good foundation to evaluate measures that will 
be  developed  in  the  future.  I  used  the  existing 
arXiv corpus for the evaluation. In addition I cre‐
ated, based on the experiences gained with that 
corpus,  an  additional  corpus  from  Wikipedia. 
Since the HTML formats generated in this corpus 
was obtained automatically  from LaTeX or Wik‐
iText, respectively, data quality is not perfect, but 
I  consider  it  good  enough  to  get  qualitative  in‐
sights about the  impact on  individual measures. 
In  addition,  I  use  the  DLMF/DRMF  data‐sets 
which are partially available in different levels of 
data quality to analyze the impact of data quality 
on formula search and  individual  factor effect.  I 
expect to see that the original version of LaTeXML 
without any content enrichment has  the  lowest 
data quality and lowest precision in search result. 
The  DRMF  content  augmentation  process  will 
have  raised  the  data  quality  and  also  improved 
search  results.  The  best  results  with  regard  to 
data quality and search results are expected to be 
obtained  by  using  the  manually  generated  da‐
taset of DLMF chapter 1‐4 by Zhang and Youssef. 

The main contribution of this thesis is a system‐
atic analysis of the opportunities and limitations 
of formula similarity search for context free for‐
mula, in dependence of the formula data quality 
and  application  scenario.  Incorporation  of  for‐
mula  unrelated  information  that  is  given  in  the 
text only, is beyond the scope of this work. 
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Thesis abstract: “Design and development of a
tool based on Coq to write and format

mathematical proofs”

Théo Zimmermann Hugo Herbelin (supervisor)

Coq is an interactive proof assistant relying on a foundation language which is
both a logical framework and a strongly-typed programming language. It has
recently increased in popularity thanks to two ACM prizes and some significant
proof developments by George Gonthier and his team. Foundational mathe-
maticians have started to be really interested in Coq, in particular in the links
between type theory and homotopy theory. Yet, it is still a tool that requires
some “hacker” skills to use.

A general aim of my PhD thesis is to progress along the path of making Coq
easier to use for any mathematician. In particular, I wish to make it attractive
by transforming it into a tool to write and format mathematical proofs.

Mathematical writing

There has already been a lot of work in this direction, for various proof assistants.
We can cite in particular Mizar and its Journal of Formalized Mathematics, and
Martijn Oostdijk’s and Yann Coscoy’s PhD theses.

I plan to create a tool to transform proof scripts through a number of steps,
each adding constraints to the form the proof script should take. Coq’s tactic
language is indeed very flexible and the proof scripts can take many forms and
styles. We will target a style that is as close as possible to informal mathematical
writing so that the last step, which will be to transform a proof script into
English (and LaTeX), is as straight-forward as possible. Preliminary experiments
have shown that it is indeed possible to produce such a “mathematical” style in
Coq, using its tactic language, unmodified. Additionally, we want to make the
last translation (from Coq to English) reversible, so that the generated articles
can be re-interpreted and checked by Coq.

Technically, this tool will be based on Arnaud Spiwack’s infrastructure to in-
strument proof script execution, which is available in Coq 8.5. This will allow
transforming the scripts while they are being written, thus providing useful
feedback to the mathematician.
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On a theoretical level, one of the goals is to understand how transformations
between various proof styles maintain the ability to reconstruct the implicit
information (information which can be reconstructed by the unification algorithm
or some decision or semi-decision procedure).

In this thesis, we restrict ourselves by targeting only arithmetical proofs. However,
we also want to make the tool easily extensible, so that other domains can be
added. I will evaluate the quality of the tool by using it on some examples of
formalization projects and promote its testing by enthusiastic early adopters.

CICM being a community in which this project perfectly fits, I will try to attend
each of its meetings where I will strive to publish and present my progress.

Internship work continued: Theorem transfer

I had previously started working on ideas which make proof formalization closer
to pen-and-paper mathematics during an internship with Hugo Herbelin, now
my PhD supervisor. The main goal of the internship was to help reason modulo
isomorphism. The work I did then was to devise and implement an algorithm to
automatically transfer theorems between two related types, given the right kind
of user-provided declarations.

I generalized upon the work of Matthieu Sozeau, on generalized rewriting, and
of Cyril Cohen, et al., on type refinements, and obtained a set of inference rules
which allow the transfer to take place. I presented this work at CICM 2015 in
the work-in-progress track. The anonymous referees then pointed me to other
works on the topic, in the context of Isabelle, of which I had not yet been aware.
The ideas behind Isabelle’s Transfer package, which are described in great detail
in Ondřej Kunčar’s PhD thesis, are very close to my own, which, while validating
the path I had taken, also make it harder to publish my own work as novel.

Since the conference, I have finished implementing a prototype of my transfer
method. The implementation is a small library1, relying on Coq’s type class
mechanism. It is able to transfer all sorts of theorems, including theorems
about predicates, such as induction principles. Following my work and Jérémie
Koenig’s binary logical relation library, Matthieu Sozeau is now, with my help,
extending once more the rewriting capabilities of Coq to include rewriting with
heterogeneous binary relations (relations between elements of two distinct types).
I foresee that theorem transfer will then become a special case of generalized
rewriting, benefiting at the same time from a more robust implementation.

1This library is available at https://github.com/Zimmi48/transfer.

2105



DML Work In Progress

Mathematicians dream of a digital archive containing all peer-reviewed math-
ematical literature ever published, properly linked, validated and verified. It is
estimated that the entire corpus of mathematical knowledge published over the
centuries does not exceed 100,000,000 pages, an amount easily manageable by
current information technologies.

The track objective is to provide a forum for the development of math-aware
technologies, standards, algorithms, and formats that can lead towards fulfilling
the dream of a global Digital Mathematical Library (DML). The DML track
also serves as an interdisciplinary venue to share experience and best practices
among projects in digital libraries, natural language processing, optical character
recognition, pattern recognition, information retrieval, and other areas that could
change the paradigm for creating, storing, preserving, searching, and interacting
with a mathematical corpus.

July 2016, Frank Tompa
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swMATH - Challenges, Next Steps, and Outlook

Hagen Chrapary1,2, Wolfgang Dalitz2, and Wolfram Sperber1

1 FIZ Karlsruhe/zbMATH , Franklinstr. 11, 10587 Berlin, Germany
2 Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany

Abstract. swMATH [?] is currently one of the most comprehensive specialized
information services and search engines for Mathematical SoftWare (MSW). It
was the intention of the project to support the user community by providing infor-
mation about MSW and searching relevant MSW. Currently swMATH lists infor-
mation of more than 13,000 items and 120,000 publications which refer to MSW.
Maintaining and updating of the service is mainly done automatically, the num-
ber of requests is permanently increasing. This sounds like a perfect solution. But
swMATH is only a first step to a powerful information system on mathematical
research data. This talk addresses some open problems for the further develop-
ment of the swMATH service. It is shown that some problems for swMATH lead
to central questions for the information management of mathematical research
data, especially for MSW. This contains an extended content analysis of MSW,
versioning and citation standard of MSW, a typing of the swMATH resources
and the presentation of context information and high-quality control within the
swMATH service.

1 Introduction

The advent of computers has lead to the development of a new mathematical branch:
MSW. MSW has some unique features which are different from the classical form of
the presentation of mathematical knowledge, the publications

– MSW is written in a special programming language, not in a natural language as
publications. The source code of a MSW is not self-explaining and often inappro-
priate for human’s reading and automatic content analysis.

– MSW depends on hard- and software, programming languages or environments,
etc.

– For human users of MSW, special forms of instructions (documentations, manuals,
etc.) have been established. This information is often provided on own Web sites of
a MSW.

– MSW realizes a mathematical concept or an algorithm for solving special classes
of mathematical models (”computational model”) which can be presented indepen-
dently from the MSW.

– Typically, MSW has instances, e.g. versions and develops dynamically. Moreover,
MSW has a life cycle. This requires a version management of the MSW (in the
past, mathematical publications were static).

– The dynamic character of MSW has led to the development of repositories for
maintaining and providing MSW. There are some commercial companies but also
a lot of developer communities, e.g. the R community, who run own repositories.
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– The increasing use of MSW in mathematics and other scientific fields, industry,
services, and administration requires an exact citing of the MSW. Results without
exact references of the used MSW instance significantly complicate the reproduc-
tion of the results.

– Standardized data models for the description of and a citation standard for MSW
are missing. Metadata schemes for publications cannot be transferred one-to-one
for MSW.

– Methods for the quality control of MSW are under development. Some specialized
journals on MSW were founded. Typically, publications on Open Source MSW
consist of a text-based publication describing the algorithm or the MSW supple-
mented by the software code and testdata. The quality control of these publication
contains also a peer-reviewing of the MSW, typically an installation of the MSW
and a validation of the results.

The demands on information services for MSW are diverse, especially search, ac-
cess, version management, and archiving. This has led to the development of different
kinds of information services for MSW: directories which list MSW and provide infor-
mation about it, repositories, which maintain and archive MSW for a special subject
and programming language, and individual websites for a MSW or specialized mathe-
matical services.

The swMATH service is a directory for MSW. There are a lot of other directories for
MSW. The manual maintenance is expensive. Therefore we have developed a concept
for a machine-based concept.

2 swMATH in a nutshell

A central concept of swMATH is the so-called publication-based approach. MSW is
often accompanied by publications. By analyzing the mathematical literature, MSW is
identified and information about it is extracted. Instead of analyzing the full texts of pub-
lications, the information of the database zbMATH [?] is used, especially titles, reviews
or abstracts and references. Software citations in mathematical publications are often
short and restricted to the name of the MSW, e.g. ”SAGE", without precise information
about instances, e.g. versions. Often an exact information on the type of the resource is
missing. Sometimes also information which is closely related to MSW but not MSW
itself is detected, e.g. services, languages and environments, testdata and benchmarks,
etc. We have decided to insert also these kinds of information into swMATH. In the
following, all entries in swMATH are labeled as MSW.

The heuristic analysis starts with searching for characteristic patterns for MSW.
Each publication which has a link to a MSW is classified either as ”standard publica-
tion" if a MSW is the main content of the publication or as ”user publication" if the
MSW is used as a tool for calculation. As said above, publications and also zbMATH
data often don’t contain information about different instances of a MSW. Hence there
can exist more than one standard publication (a standard publication can exist for each
instance of a MSW). A citation standard for MWS would significantly improve the
situation. Some questions on a citation standard will be discussed in detail below.
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But the analysis of the publications offers great potential to gain relevant infor-
mation about MSW. This is done in a second step Currently the main information in
swMATH contains the following information (metadata) on MSW:

– the name of the MSW
– a short description of the content of the MSW. This description uses the review or

the abstract of a standard publication of the MSW and provides information about
the content of the MSW addressing such questions ’́Which problems can be solved
using MSW?, Which algorithms are realized by the MSW?, What are the special
features of the MSW? .̈

– a keyword cloud which aggregates the keywords of standard and user publications
– classification codes of the standard and user publications correspondingly to the

Mathematics Subject Classification 2010 (MSC2010) [?]
– a list of publications which cites the MSW
– a list of ”related software” is calculated by the data of publications
– a profile of the acceptance of the MSW measured by the number of publications

per year

Moreover, a simple and an advanced search feature over the swMATH entries is
provided. The number of references of MSW is used for a ranking of information. For
example, the importance of a keyword in the keyword cloud results from its frequencies,
the MSC codes provide relevant information about the mathmatical subjects and the
applications areas. The number of references in peer-reviewed publications can be also
interpreted as an indicator for the quality of MSW.

Publications contain not all information about a MSW. Typically, the Web sites of
a MSW are excellent resources for specific information, e.g. they contain manuals or
documentations, provide technical specifications, legal rights, etc. By a websearch the
URL of the website of a MSW – if existing – is determined. We are working on more
specific methods for the automatic analysis of the websites of MSW. We have started to
identify manuals and documentations of MSW on the websites.

Figure 1 shows the swMATH entry for the MSW ”Singular" .
Commonly, websites of a MSW contain more or less information about the current

instances of a website. But the publications refer not only to a current instance of a
MSW but also to outdated instances. Web archives which periodically store the Web
could enrich the information about the different stages of a MSW and help to assign
the publications to the corresponding instances. Therefore the swMATH directory of
swMATH will be used as a seed list for to search information about MSW. It is the plan
to combine this information with the existing information in swMATH.

All swMATH entries (families of MSW) get a persistent identifier, the running num-
ber of the swMATH input of the MSW. The identifier could be extended by adding data
of an instance.

The publication-based approach and the use of the zbMATH database allows a
widely automatic maintaining and updating of swMATH. The publication-based ap-
proach also ensures the presentation of MSW in the context with the mathematical
literature.

swMATH is an open access service for the mathematical community.
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Fig. 1. The detailed information for the software ”Singular"
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3 Challenges

3.1 MSW instances and citation standard for MSW

The analysis of mathematical publications seems to be an efficient way to search for
MSW. But the use of heuristic methods can fail, e.g. if the name is a word from the
natural language. Also, the heuristic methods don’t allow to determine instances. A
standardized referencing of MSW would have important advantages: a precise informa-
tion about MSW used, better visibility of the MSW, reproducibility of research results,
secure identifiability of the MSW, etc.

Software is ubiquitous on computers. A precise citing of the used instance of a
software is a precondition for reproducing the results which were achieved by using a
software. Different instances of a software can be incompatible, are derived from other
algorithms and provide other features. Software has other characteristics as publica-
tions, especially its dynamic character. Citing of software is a widely discussed topic in
different communities, see the general discussion Mike Jackson’s blog [?] ”How to cite
and describe software” . The standardization of citations has different aspects. MSW
is distributed in various different ways which has an influence on a citation standard.
Some publishers and software providers have developed and implemented own models
and recommendations for citing its MSW. A main requirement to a citation standard
for MSW is that the citation standard must guarantee the unique identifiability of the
software used, typically such a reference must refer the instance of the software used. A
MSW can have instances, e.g. versions or revision numbers. Instances can characterize
the state of the art of a MSW, dependencies from operating systems, programming lan-
guages, or other software, or different legal rights and usability conditions. MSW can
be accessible via a repository and explicitly defined versions are missing, here times-
tamps or hash tags could be helpful information for the verification of the used MSW
instance.

The current situation is characterized by proprietary standards and recommenda-
tions for the citation of software. A widely used approach for the citation standard is the
”Who – When – What – Where” -format, propagated, e.g. by the American Psycholog-
ical Association. This approach is derived from the citation standard for publications.
In principle, this recommendation can be used but the details of this recommendations
are not specified.

The R community, a community-driven initiative in mathematics statistics, recom-
mends to cite the corresponding manuals - if existing âĂŞ instead of directly referenc-
ing the MSW. Typically, there is an 1:1 relation between a manual and an instance of a
MSW. But, the link to the software cannot be generated from the manual. For the MSW
based on R this is not important because the CRAN repository allows a fast access to
the R packages.

Jackson has published some recommendations which contain necessary informa-
tion. His general hint: Publications on a software should cited as a complement not as a
replacement for citing software.

He distinguishes between the following four types for referencing:

– software purchased off-the-shelf which can be described by the following data:
Product name; Version; Release date; Publisher; Location
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– software downloaded from the Web which can be described by the following data:
Product name; Version; Release date; Publisher; Location; DOI or URL; Download
date

– software checked out from a public repository which can be described by the fol-
lowing data:
Product name; Publisher; Location; URL; Repository specific checkout informa-
tion

– software purchased by a researcher which can be described by the following data:
Product name; Author; Location; Contact details; Received date

These data describe the used software in a unique way. But the proposal requires
to apply different metadata schemes which hampers the acceptance and use. Further
information especially operating systems or used packages or libraries could be optional
parts of the citation standard.

A further problem of a citation standard of MSW is its implementation. For the
mathematical community, TEX is the lingua franca to write mathematical documents.
References are done in BibLATEX[?] which has widely substituted the outdated BIBTEX
software. BibLATEX is more flexible than BIBTEX and allows to define new types and
corresponding metadata schemes but doesn’t support a type ”software” until now. This
type must be specified, mandatory and optional fields describing the MSW must be
defined and the backend software. A first BibLATEX proposal has been created with
”Biber” as backend software.
Remark: The problem of a citation standard for MSW should be discussed more gen-
erally for all types of mathematical research data, not only for MSW. We discuss this
problem in more detail in the following section.

3.2 Context, resource types, and classification of swMATH entries

The publication-based approach described above links a MSW to the publications which
cite it. The publications contain data about the investigated problems and models, their
mathematical treatment, data of measurements which are used for the input, parame-
ters, etc. But often these data are incomplete, not explicitly linked to MSW (e.g. which
model is solved by the MSW?) which makes it difficult to reproduce and reuse scientific
results.

The mathematical subject, concepts, models, and methods as the application of
mathematics are very heterogeneous for MSW. A classification of mathematical re-
search data by its subject and type would be useful for retrieval and navigation. It allows
to present MSW in its context, especially the relation to the mathematical models which
are solved by using MSW, the algorithm, the used data and parameters for calculations.

A comprehensive and structured content analysis starting with the original math-
ematical models, the parameter and input data, the computational algorithms and the
computational models used for MSW as well as the computational results would make
the research process more transparent and improve the reproducibility of results.
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Subject classification in swMATH

The MSC2010 is the most accepted subject classification scheme for mathemat-
ical publications. The scheme covers pure mathematics as well as a broad spectrum
of application areas. For publications with the focus on MSW a special classification
code XX-04 for the most of the 63 top classes of mathematical subject in the MSC is
pÃ§rovided. Last but not least all zbMATH entries are classified by the MSC.

The publication-based approach of swMATH suggested to use the MSC also for the
characterization of the mathematical subjects of a MSW. Of course, other classification
schemes, e.g. the Guide to Available Mathematical Software [?] index could be added.

Type classification in swMATH

Currently, swMATH contains different types of mathematical data with the focus
on MSW. Currently, entries of the following types of objects are inside swMATH:

– MSW
A MSW could be defined as source code, computer programs, or software libraries
for analyzing or calculating mathematical problems or models

– Mathematical languages and environments for MSW
Languages and environments are programming languages for special mathematical
subjects, e.g. the language and environment R [?]for statistics.

– Mathematical services
The common property of mathematical services is the presentation of information.
The information can result from retrieval in databases or from online computing or
a mix of both. The Online Encyclopedia of Integer Sequences or the Digital Library
of Mathematical Functions are impressive examples of widely used mathematical
services.

– Testdata and benchmarks
Testdata and benchmarks are important for the verification of results of the use
of MSW, to test its performance and to decide which MSW is used for solving a
mathematical problem.

– Further mathematical research data, especially models and model parameters, vi-
sualizations and simulations This class is very heterogeneous and covers numerous
model parameters but also complex mathematical objects and models, e.g. polyno-
mials or ideals for computer algebra.

This first approach for classifying the types is resulting from a pragmatic point of
view on the swMATH entries.

But, the scheme reveals also the difficulties of a classification scheme for mathe-
matical research data: The classes are characterized by different properties. Different
classes can strongly overlap. The swMATH entries can be elements of different classes.
On the other hand, a classification of the resource types for the swMATH entries is
useful, e.g. for the presentation of related software. The feature ”Related software" is
important for the users of swMATH. It provides an overview about similar swMATH
entries. Up to now the similar entries are determined by common references in publi-
cations and common MSC codes. But if we don’t want to compare apples to oranges,

113



e.g. a MSW to a benchmark, we need a typing of the swMATH entries. The resource
type scheme allows a structured presentation of the environment of a MSW, not only of
similar MSW but also of related benchmarks, models etc.

As usual we propose a hierarchic classification scheme for the types in swMATH.
All these classes can be subdivided. Up to now, a first flat type scheme is implemented
in the production database of swMATH.

The typing could be presented as an additional facet in the UI of swMATH.

3.3 Applied specific information in swMATH

Here we restrict ourselves to two aspects. At first we discuss the enrichment of the
existing information of application aspects in swMATH. Currently, information which
is of special interest for users outside of mathematics is included in the MSC classifi-
cation, especially the MSC codes for the application areas, and in the keyword cloud
by application area-specific keywords. But there is no explicit tagging of mathematical
and application-specific keywords. Moreover, keywords and a classification codes of
the application areas are not mandatory. Typically, non-mathematicians actively partic-
ipate in the modeling and the evaluation process. They are especially interested to get
detailed information about the models, MSW and the results of the calculations. This
information would help the users to decide which models and MSW could be suitable
for solving their problems. Publications in applied mathematics often contain a descrip-
tion of the original problem and the mathematical models. Heuristic methods could be
developed for searching specific information for users in the publications which are
listed in the swMATH entries, especially for models.

A more general aspect is the ambiguous borderline between MSW and non-mathematical
software. The publication-based approach in swMATH is restricted to publications
which are reviewed by zbMATH. swMATH provides an interface to inform about MSW
outside of the scope of zbMATH.

3.4 Quality of MSW

Quality measures of MSW are difficult. The quality control of MSW cannot be reduced
to a single factor. It is a complex process. Up to now, swMATH doesn’t make any
statement about the quality of the MSW. References to a MSW within the zbMATH
data are a necessary condition for the inclusion of the MSW to the database swMATH.
Reference to a MSW in a peer-reviewed publication can be interpreted as an indirect
quality measure for the cited MSW. The number of references is also an indicator for the
quality. In the last 20 years, special journals with the focus on scientific software were
founded, in mathematics especially the journals ”ACM Transactions on Mathematical
Software" [?], ”Archive of Numerical Software" [?], ”Journal of Machine Learning
Research" [?], ”Journal of Software for Algebra and Geometry" [?], ”Journal of Statis-
tical Software" [?], ”Mathematical Programming Computation" [?], ”Numerical Algo-
rithms" [?], or ”The R Journal" [?]. For a complete list of journals with the focus on
software see Neil Chue Hong’s blog [?] “In which journals should I publish my soft-
ware". A typical publication in these journals consists of an article which describes the
algorithm and/or the MSW and the code of the MSW. All these journals have defined
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explicit more or less standardized policies for submission and peer reviewing which
involve also the software code. The policies include the installation and feasibility of
the MSW for the peer-reviewing process and accepted dependencies from other soft-
ware and programming languages. The verification of the results which were achieved
by using the MSW is a further important criteria for the quality control. Therefore,
the submissions must include the original testdata. Of course, the evaluation of MSW
articles is more expensive than this of a traditional publication. Some journals have
technical editors which are responsible for the reviewing of MSW.

Quality-controlled MSW, especially the one which is published in the journals men-
tioned above could be labeled in swMATH. This would strengthen trust into the MSW,
increase the usability of zbMATH, and be of great value for the user community.

3.5 Further problems

Long-term archiving of MSW is an open problem. It requires an archiving of the dif-
ferent software instances but also of the complete environment. The swMATH service
plans to check Internet archives to provide information of the lifecycle of MSW and
of outdated MSW. Also the linking of swMATH entries in swMATH with the software
code is on the agenda. The granularity of MSW is a further problem. There exists very
complex and powerful MSW which can be used for solving different classes of prob-
lems but also small MSW which is focused on solving a special problem. Until now
there are no standardized parameters which characterize the size of MSW. Often com-
plex MSW, e.g. Mathematica, Matlab, or R have a substructure. Packages are MSW
entries with the focus on special classes of problems. swMATH has to define a policy
for the handling of complex MSW. To improve the actuality of swMATH we plan to ex-
tend the publication-based approach of swMATH can be to other resources, especially
identifying MSW in the e-prints of ArXiv [?].

4 Final remarks

Mathematical research data and a qualified access are useful for the mathematical com-
munity and outside users. swMATH is a new information service for mathematical re-
search data especially for MSW. It was shown that heuristic methods can be successfully
used for content analysis and the maintenance of swMATH. Moreover the development
of the swMATH service has caused discussions about standards and classification. We
hope that swMATH can contribute to build up a lean and efficient infrastructure for
mathematical information.
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Abstract. In recent years, formal verification applications have attracted
significant attention. In particular, verification of the security of cryp-
tosystems has been investigated extensively. In this study, we attempt
to develop various mathematical libraries for cryptology using the Mizar
proof checking system. Polynomially bounded and negligible functions
play very important roles in cryptology. Therefore, we introduce for-
malized definitions of polynomially bounded and negligible functions for
formalizing cryptology in Mizar.
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1 Introduction

In recent years, formal verification applications have attracted significant atten-
tion. Verification of the security of cryptosystems is has been investigated exten-
sively. The objective of this study is to develop mathematical libraries to verify
the security of cryptographic systems using the Mizar proof checking system [1].
Mizar is one of the best-known projects in formalized mathematical knowledge
management. To achieve our objective, we attempt to formalize various topics
related to cryptology, such as computational complexity, probability and proba-
bility distributions [2–7], algorithms [8], and number theory [9, 10]. The security
of most current public-key cryptosystems is based on computational complexity.
A public-key cryptosystem is secure if attacks against the cryptosystem are not
easier than solving a problem for which there is no known efficient algorithm.
Discrete-logarithm and factorization problems are considered to be hard to solve
and are therefore employed in public-key cryptosystems [11, 12]. The difficulty
of such problems is classified according to their computational time.

Discrete-logarithm and factorization are subexponential-time problems that
are difficult to solve if the input size is sufficiently large. It is well known that
polynomial-time problems can be solved with a relatively low computational
cost. We consider a problem Pa to be as hard to solve as another problem Pb

if we can solve Pb by calling the algorithm that can solve Pa a polynomially
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bounded number of times. We are interested in the formalization of computa-
tional complexities. Polynomially bounded functions play an important role in
practical computational complexity theory. The class P is a fundamental com-
putational complexity class that contains all polynomial-time decision problems
[13]. It takes a polynomially bounded amount of computation time to solve
polynomial-time decision problems using a deterministic Turing machine. There-
fore, we formalize a rigorous definition of polynomially bounded functions.

To analyze the security of cryptographic primitives such as symmetric encryp-
tion or hash functions as well as that of cryptographic protocols, we evaluate
the success probability of any attack against them. In general, a cryptosystem
is secure if the probability of any attack succeeding against the cryptosystem is
negligible. Therefore, we formalize a rigorous definition of the negligible func-
tions [14]. Both polynomially bounded and negligible functions are described by
the behavior of polynomials. Polynomially bounded functions do not increase
faster than polynomials themselves, and negligible functions do not decrease
slower than the multiplicative inverse of polynomials. There are interesting re-
lationships between polynomially bounded and negligible functions.

In this paper, we first introduce our formalized definition of polynomially
bounded functions. Next, we formalize the definition of negligible functions and
prove that the set of negligible functions is a subset of the set of polynomially
bounded functions. Moreover, we introduce an equivalence relationship between
polynomially bounded functions using negligible functions. All formalized defini-
tions and theorems in this paper are described in the Mizar language, and their
proofs are verified by the Mizar proof checker. Our formal descriptions have been
stored in the current version of the Mizar Mathematical Library (MML)⋆ and
are available online on the Mizar Project official website [1].

1.1 Our contribution

Asymptotic notations allow us to describe the behavior of given real-valued
functions. In particular, O notation is often used to analyze the increase in real-
valued functions and to classify the computational complexity of solving the
given problems. Fortunately, there are formal definitions and theorems regard-
ing asymptotic notation in the MML. Therefore, we can use these definitions
to offer a formalized definition of polynomially bounded functions that do not
increase faster than polynomials. We then formalize some theorems regarding
polynomially bounded functions. Next, we formalize the definition of negligible
functions that do not decrease slower than the multiplicative inverses of poly-
nomials and formalize some theorems about them. It is well known that linear
combinations of polynomially bounded functions are also polynomially bounded
and that those of negligible functions are also negligible. These facts are very
useful for evaluating computational complexity and for proving the security of
cryptosystems. Thus, we formalize proofs for these theorems. Specifically, we

⋆ Indexed by the MML identifiers ASYMPT 2[15] and ASYMPT 3[16], for Mizar ver-
sion: 8.1.04 5.32.1246 or later.
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formalize the algebraic structure of polynomially bounded functions. We then
introduce an equivalence between the elements of the algebra of polynomially
bounded functions using negligible functions.

2 Mizar

Mizar [1] is one of the best-known projects in formalized mathematical knowledge
management. The Mizar system comprises the Mizar language, an automated
proof verifier, and mathematical libraries. The Mizar language normally uses
first-order predicate logic; however, it can use second-order predicate logic with
conditions.

3 Preparation

3.1 Asymptotic notation

In this section, we briefly review the asymptotic O notation and introduce related
formal definitions available in the MML. For our purposes (i.e., computer science
and cryptology) it is sufficient to analyze the behavior of discrete functions. In
fact, asymptotic notation in the MML is formalized on sequences, which are
synonymous with functions whose domains comprise natural numbers.

Definition: 1 Let f(·) and g(·) be functions from N to R. g(·) ∈ O (f(·)) iff ∃N
is a natural number and c is a real number s.t.，∀n s.t. N ≤ n holds 0 ≤ g(n) ≤
c · f(n).

The O notation is defined in Mizar as follows:

Definition: 2 (ASYMPT_0:def 9)

definition

let f be

eventually-nonnegative Real_Sequence;

func Big_Oh(f) -> FUNCTION_DOMAIN of NAT,REAL

equals

{ t where t is Element of Funcs(NAT, REAL)

: ex c,N st c > 0 &

for n st n >= N holds t.n <= c*f.n &

t.n >= 0};

end;

In Mizar, Real Sequence is an alias for a function from N to R and “eventually-
nonnegative” is an attribute for Real Sequence and is defined as follows:

Definition: 3 (ASYMPT_0:def 2)

definition

let f be Real_Sequence;

attr f is eventually-nonnegative means
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ex N being Nat st for n being Nat

st n >= N holds f.n >= 0;

end;

The sequence of the monomial f(n) = na is defined in Mizar as follows:

Definition: 4 (ASYMPT_1:def 3)

definition

let a be Real;

func seq_n^(a) -> Real_Sequence means

it.0 = 0 &

for n st n > 0 holds

it.n = n to_power a;

end;

The sequence of the exponential ab·n+c, where a, b, and c are given constant
real numbers, is defined in Mizar as follows:

Definition: 5 (ASYMPT_1:def 1)

definition

let a,b,c be Real;

func seq_a^(a,b,c) -> Real_Sequence means

it.n = a to_power (b*n+c);

end;

Note that for a given real number x, f(n) = xn is represented as “seq a^(x,1,0)”
in Mizar.

3.2 Polynomially bounded functions

In this section, we briefly review polynomially bounded functions.

Definition: 6 A real valued function, f(·), is polynomially bounded if there ex-
ists a natural number, k, such that

f(x) ∈ O
(
xk

)

3.3 Negligible functions

In this section, we briefly review negligible functions[14]．

Definition: 7 Let µ(·) be a function from N to R. µ(·) is a (negligible function)
iff for all polynomial p(·) holds ∃N be a natural number s.t.，∀n be a natural
number s.t. N ≤ n holds

µ(n) <
1

|p(n)|
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4 Formalization of polynomially bounded functions and
polynomial functions

In this section, we introduce our formal definitions of polynomially bounded
functions and polynomial functions.

4.1 Formalized definition of polynomially bounded functions

We propose a formal definition of polynomially bounded functions as follows:

Definition: 8 (ASYMPT_2:def 1)

definition

let p be Real_Sequence;

attr p is polynomially-bounded means

ex k be Nat st

p in Big_Oh(seq_n^(k));

end;

This definition may appear very similar to Def. 6 but is only a formalization of an
attribute for real sequences. In the Mizar language, attributes are constructors
of adjectives. We can define an attribute followed by the keyword “attr”. Def. 6
gives only a definition of an attribute for real-valued functions. However, formal
methods never accept the declaration of new objects without an evidence of their
existence in order to eliminate any errors in proofs. In the Mizar system, there
are several ways to treat polynomially bounded functions. One is to prove that
declared real sequences satisfy the definition of being polynomially bounded.
Another way is to prove the existence of polynomially bonded functions and
to define a new mode for polynomially bounded sequences as a sub mode of
a “Real Sequence”. It should be noted that in the Mizar language, “mode” is
similar to “type” used in other languages. Furthermore, all modes are derived
from the mode “set” because the Mizar system is based on the set theory. The
third option is to define a set of specific functions and their algebraic structure
as new terms. We will show an example of the third case in Sec. 6.

Let us now introduce some theorems about polynomially bounded functions.

Theorem: 1 (ASYMPT_2:25)

theorem

for a be Nat st 1 < a holds

seq_a^(a,1,0) is non polynomially-bounded;

This theorem shows that the exponential f(x) = ax is not polynomially bounded
if 1 < a. We first prove Theorem 2 as a lemma for proving Theorem 1. The
following theorem holds that 2x is nonpolynomially bounded:

Theorem: 2 (ASYMPT_2:16)

theorem

for x be Nat st 1 < x holds
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not ex N,c be Nat st

for n be Nat st N <= n holds

2 to_power n <= c * (n to_power x);

To prove Theorem 2, we assume that the proposition of Theorem 1 is not true and
derive a contradiction against Theorem 2. The actual formal proof of Theorem
1 encoded in the Mizar language is described in [15].

4.2 Formalization of polynomial functions

Although polynomials have been formalized in the MML [17], we propose a
formal definition of univariate polynomials as sequences for formalizing negli-
gible functions. Because this formalization defines polynomials as an algebraic
structure of multivariate polynomials, it is directly unsuitable for asymptotic
notation.

Definition: 9 (ASYMPT_2:def 2)

definition

let c be XFinSequence of REAL;

func seq_p(c) -> Real_Sequence

means

for x be Nat holds

it.x = Sum(c (#) seq_a^(x,1,0));

end;

“XFinSequence” is a finite sequence whose indices start from 0. In this definition,
XFinSequence c is the given coefficient for the representation of a polynomial.
For example, (seq p(<*a,b,c*>)).x = a + bx + cx2. Note that this definition
formalizes “func seq p(c) ”, where “func” is a keyword that shows that the term
is defined as a FUNCTOR. In the Mizar language, FUNCTOR plays the role of
a constructor of new terms. To define a FUNCTOR, the proof checker requires
proofs of at least the existence and uniqueness of the new term. In this case,
once we call “seq p(c)”, the checker automatically recognizes this term as a
Real Sequence. We can then refer to the defining theorem, “for x be Nat holds
it.x = Sum(c (#) seq a^(x,1,0))” to prove another theorem. We will discuss the
usage of FUNCTOR in Sec. 6.

Let us now introduce theorems about polynomials.

Theorem: 3 (ASYMPT_2:45)

theorem

for k be Nat, c be XFinSequence of REAL

st len c = k+1 & 0 < c.k

holds seq_p(c) in Big_Oh( seq_n^(k) );

This theorem holds that any kth-degree polynomial function whose most signif-
icant coefficient is positive is of O(nk). Theorem 4 follows Theorem 3:
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Theorem: 4 (ASYMPT_2:46)

theorem

for k be Nat, c be XFinSequence of REAL

st len c = k+1 & 0 < c.k holds

seq_p(c) is polynomially-bounded;

This theorem holds that all univariate polynomials are polynomially bounded.

5 Formalization of negligible functions

In this section, we introduce our formal definition of a negligible function.

Definition: 10 (ASYMPT_3:def 4)

definition

let f be Function of NAT,REAL;

attr f is negligible means

for c be non empty positive-yielding

XFinSequence of REAL holds

ex N be Nat st

for x be Nat st N <=x holds

|. f.x .| < 1/((seq_p(c)).x);

end;

We then introduce some theorems about negligible functions. The following
theorem holds that 2−x is a negligible function:

Theorem: 5 (ASYMPT_3:25)

theorem

for f be Function of NAT,REAL

st for x be Nat holds

　　 f.x = 1/ (2 to_power x)　 holds

f is negligible;

Theorem 6 holds that negligible functions converge to zero.

Theorem: 6 (ASYMPT_3:24)

theorem

for f be Function of NAT,REAL

st f is negligible

holds f is convergent & lim f = 0;

By providing a formal proof of correctness, we can automate inference rules
( i.e., namely clusters) in the MML as follows:

registration

let f be negligible Function of NAT,REAL,

a be Real;

cluster a(#)f -> negligible
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for Function of NAT,REAL;

end;

registration

let f,g be negligible Function of NAT,REAL;

cluster f+g -> negligible

for Function of NAT,REAL;

end;

registration

let f,g be negligible Function of NAT,REAL;

cluster f(#)g -> negligible

for Function of NAT,REAL;

end;

registration

let f be negligible Function of NAT,REAL,

g be polynomially-abs-bounded

Function of NAT,REAL;

cluster g(#)f -> negligible

for Function of NAT,REAL;

end

Once these clusters are registered, the checker automatically infers that addition
and scalar multiplication between negligible functions yield negligible results. For
example, the Mizar proof checker inferences the following theorem automatically:

Theorem: 7
for a be Real,

e,f be negligible Real_Sequence,

g be polynomially-abs-bounded

Real_Sequence holds

(a (#) f)(#) g + e is negligible;

In general, a cryptosystem is secure if the probability of a successful attack
against the cryptosystem is negligible. To prove this, we evaluate the total sum
of the probability of success of any possible attack. Adversaries are allowed to
attack in parallel or iteratively. In most cases, it is sufficient to evaluate the linear
combination of probabilities of successful attacks if the probability of all attacks
is negligible. We have formalized definitions and theorems concerning probability
and probability distributions that can treat concrete probabilistic events for
describing attacks against cryptosystems [2–7]. In combination with these formal
descriptions, the above-mentioned clusters would be useful for formal verification
of the security of cryptosystems.

6 Formalization of algebra of polynomially bounded
functions

In Secs. 4 and 5, we introduced our formalizations of polynomially bounded
functions and negligible functions. In this section, we propose a formal definition
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of the algebra of polynomially bounded functions and present some theorems
about negligible functions and this algebra.

6.1 Algebra of polynomially bounded functions

Set of polynomially bounded functions First, we define a relaxed attribute
of polynomially bounded functions namely “polynomially-abs-bounded”, as fol-
lows:

Definition: 11 (ASYMPT_3:def 1)

definition

let p be Real_Sequence;

attr p is polynomially-abs-bounded means

ex k be Nat st |. p .| in Big_Oh(seq_n^(k));

end;

Here, |. p .|is the absolute value of the given function p. Although we define
the attribute polynomially-bounded in Sec. 8, we formalize this definition for
technical reasons, i.e., in order to introduce the multiplicative inverse of addi-
tion between polynomially bounded functions. Naturally, polynomially bounded
functions are polynomially-abs-bounded. We then register the following clusters:

registration

cluster polynomially-bounded ->

polynomially-abs-bounded for Real_Sequence;

end;

Next, we define the set of polynomially-abs-bounded functions as a new term,
namely, “Big Oh poly”, as follows:

Definition: 12 (ASYMPT_3:def 2)

definition

func Big_Oh_poly -> Subset of RAlgebra (NAT)

means for x being object holds x in it

iff x is polynomially-abs-bounded

Function of NAT,REAL;

end;

We then register the following cluster:

registration

cluster Big_Oh_poly -> non empty;

end;

In other words, we made the proof-checker recognize the existence of polynomially-
abs-bounded functions.
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Algebraic structure of polynomially bounded functions In this section,
we define the algebraic structure of polynomially bounded functions as follows:

Definition: 13 (ASYMPT_3:def 3)

definition

func R_Algebra_of_Big_Oh_poly

-> strict AlgebraStr means

the carrier of it = Big_Oh_poly

& the multF of it

= (RealFuncMult(NAT)) || Big_Oh_poly

& the addF of it

= (RealFuncAdd(NAT)) || Big_Oh_poly

& the Mult of it = (RealFuncExtMult(NAT))

| [:REAL,Big_Oh_poly:]

& the OneF of it

= RealFuncUnit(NAT)

& the ZeroF of it

= RealFuncZero(NAT);

end;

In this formalization, we define the carrier, multiplication, addition, scalar multi-
plication, multiplicative unit, and additive unit. The carrier of R Algebra of Big Oh poly
(i.e., Big Oh poly) is included in the set of all real-valued functions. Instead of
defining a new operation, we use predefined operations on real-valued functions
by restricting their domain according to the carrier of this structure. We define
the additive and multiplicative units of this structure as being the same as those
of the algebra of real-valued functions.

We then prove the attributes that are held by the algebraic structure R Algebra of Big Oh poly,
and register them as the following cluster:

registration

cluster R_Algebra_of_Big_Oh_poly

-> strict Abelian add-associative

right_zeroed right_complementable

commutative associative right_unital

right-distributive vector-associative

scalar-associative vector-distributive

scalar-distributive;

end;

As a result, we proved the following theorem:

Theorem: 8 (ASYMPT_3:18)

theorem

R_Algebra_of_Big_Oh_poly is Algebra;
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6.2 Set of negligible functions

In this section, we define the set of negligible functions as a new term, namely,
“negligibleFuncs”, as follows:

Definition: 14 (ASYMPT_3:def 5)

definition

func negligibleFuncs ->

Subset of Big_Oh_poly

means

for x being object holds x in it

iff x is negligible Function of NAT,REAL;

end;

We then register the following cluster:

registration

cluster negligibleFuncs -> non empty;

end;

Note that we define “negligibleFuncs” as a nonempty subset of R Algebra of Big Oh poly.

In the rest of this section, we describe particularly useful theorems about
polynomially bounded functions and negligible functions.

Equivalence between polynomially bounded functions We define the
following predicate:

Definition: 15 (ASYMPT_3:def 6)

definition

let f,g be Function of NAT,REAL;

pred f negligibleEQ g means

ex h be Function of NAT,REAL st

h is negligible &

for x be Nat holds

|. f.x - g.x .| <= |.h.x.|;

reflexivity;

symmetry;

end;

Here “f negligibleEQ g” means that there exists a negligible function, h, which is
the upper bound of the difference between two functions, f and g. In other words,
we introduce an equivalence relationship between polynomially bounded func-
tions. This equivalence would be useful not only for cryptography and computer
science but also for approximating and analyzing functions.

Moreover, we prove the following theorem about multiplication between poly-
nomially bounded and negligible functions:
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Theorem: 9 (ASYMPT_3:39)

theorem

for v,w be

VECTOR of R_Algebra_of_Big_Oh_poly

st w in negligibleFuncs

holds v * w in negligibleFuncs;

where VECTOR is a synonym for an element of the structure, and “v * w” is
the product of two VECTORs v and w: (v ∗ w).x = (v.x) ∗ (w.x). This theorem
shows that the product “v * w” of two functions is negligible if v is a polynomially
bounded function and w is a negligible function. Recall the above mentioned the-
orems and clusters concerning negligible functions. The set of negligible functions
is a nonempty subset of the set of polynomially bounded functions. Addition and
scalar multiplication between negligible functions also yield negligible functions.
These theorems mean that the set of negligible functions is an ideal of the set
of polynomially bounded functions.

7 Case study: Evaluating the computational cost of
algorithms

In this section, we show an example of evaluating the computational cost of al-
gorithms. In [8], we did not formalize about computational cost of the Euclidean
algorithm, although we proved its correctness. Therefore we formalize Lamé’s
theorem to prove that the Euclidean algorithm is a polynomial-time algorithm.
The Euclidean algorithm is an efficient algorithm that computes the greatest
common divisor (GCD) of two given integers. Lamé’s theorem [18] is known as
the first application of Fibonacci numbers and it shows that the Euclidean al-
gorithm terminates after a maximum of 5X repetitions, where X represents the
decimal digits of the smaller one of the two given integers. The Euclidean algo-
rithm terminates after n steps such that Fib(n − 1) ≤ b, where b is the smaller
of the two given integers. By evaluating Fibonacci numbers, it was found that
n is not larger than 5X repetitions, where X represents the decimal digits of b.
Consequently, we conclude that n is not increasing faster than the polynomials.
In other words, we can evaluate that the computational cost of the Euclidean
algorithm is being polynomially bounded.

Theorem: 10
theorem

for a,b be Element of INT st

|.a.| > |.b.| & b > 1 holds

ex A,B be sequence of NAT,

C be Real_Sequence,

n be Element of NAT st

A.0 = |.a.| & B.0 = |.b.| &

(for i be Nat holds

A.(i+1) = B.i &
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B.(i+1) = A.i mod B.i) &

n = (min*{i where i is Nat: B.i = 0} ) &

a gcd b = A.n &

Fib(n+1) <= |. b .| &

n <= 5*[/ log(10,|. b .|) \] &

n <= C.(|. b .|) & C is polynomially-bounded;

In future works, we will formalize complex algorithms that include iterations or
subroutine calls even though we were able to formalize the Euclidean algorithm
using simple sequences.

8 Overview of verifying security of cryptologic systems

In this section, we briefly describe our future plans for formalizing the security
of cryptologic systems. It is well known that the security of cryptosystems is
dependent on the complexity of computational problems. Polynomially bounded
functions play an essential role in evaluating and classifying the complexity of
computational problems. We are attempting to formalize computational com-
plexity using our libraries mentioned in Sec. 4.

Probability distribution is a fundamental principal of cryptology. We can de-
fine other cryptologic topics using our formalization of probability distribution.
Currently, we are attempting to formalize the indistinguishability of probability
distributions. In modern cryptology, the security of cryptologic systems is es-
sentially defined by indistinguishability. For example, various cryptologic topics,
such as pseudo-random number generators and hash functions, are described us-
ing the concept of indistinguishability. We often design a cryptographic scheme
by employing ideal functions. However, we must replace such ideal functions
with feasible functions when we implement the schemes. Thus, an implemented
scheme is not always secure even if its ideal functionality has been proven to be
secure in design. Indistinguishability of functions means the indistinguishability
of the distributions of the outputs of the functions between an ideal function
(e.g., an ideal random function) and a feasible function (e.g., a hash function)
to prove the security of a cryptographic scheme. Two probability distributions
are statistically indistinguishable if the distance between them is negligible. We
intend to define a formalization of indistinguishability using our formalization
of negligible functions mentioned in Sec. 5 and probability distributions[2].

9 Conclusion

In this paper, we introduced a formalized definition of polynomially bounded and
negligible functions in the Mizar language. We then showed formalized theorems
related to these definitions. All formalized definitions and theorems in this paper
are described in the Mizar language, and the proofs of these theorems have been
verified using the Mizar proof checker. Our formal descriptions have been stored
in the current version of the MML and are available online on the Mizar Project
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official website. We prepared these formalized articles in order to achieve our
aim of constructing an automated formal verification tool for cryptology. We
will now attempt to formalize one of the most important concepts of cryptology
indistinguishability using the formalization of negligible functions introduced in
this paper.
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Abstract. Pixelated images of mathematical formulae, which are in-
accessible to screen readers and computer algebra systems, disappeared
recently from Wikipedia. In this paper, we describe our efforts in ma-
turing mathoid, the new services that provides better math rendering
to Wikipedia, from a research prototype to a production service and
a novel visual similarity image comparison tool designed for regression
testing mathematical formulae rendering engines.
Currently, updates to Math rendering engines that are used in production
are infrequent. Due to their high complexity and large variety of special
cases, developers are intimidated by the dangers involved in introduc-
ing new features and resolving non critical problems. Today’s hardware
is capable of rendering large collections of mathematical contents in a
reasonable amount of time. Thus, developers can run their new algo-
rithms before using them in production. However, until now they could
not identify the most significant changes in rendering due to the large
data volume and necessity for human inspection of the results.
The novel image comparison tool we are proposing, will help to iden-
tify critical changes in the images and thus lower the bar for improving
production level mathematical rendering engines.

Keywords: Wikipedia, Math rendering, Mathematical formulae, Image com-
parison

1 Introduction

In [11], we analysed different ways to improve math rendering in Wikipedia and
presented our solution, which we coined mathoid. However, two years later, only
a small group of registered users benefit from the improvements in rendering.
In the past two years, many bugs were reported and fixed. Those bugs can be
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categorized into two main concerns; performance and layout. While improving
performance is relatively straightforward to measure, improving the layout is still
an open problem [1, 9, 10, 17]. In particular, any work in this area is hindered by
the issue of ensuring that improving the layout of some aspect of math rendering
does not negatively impact other aspects. When such regression testing requires
humans to visually inspect and compare tens of thousands of images, progress
on layout can be slow and error prone.

In this paper, we present a method to automatically compare images of math-
ematical formulae generated by different rendering engines and thus automate
visual regression testing in this domain.

Our paper is structured as follows: We begin by presenting an overview of
the improvements over the old rendering, then we describe the request flow of
the new rendering process in detail and analyse its performance.

Thereafter, we describe mathpipe, the tool we built to compare different ren-
dering mechanisms at scale and finally present the current state of our image
comparison tool. Since this is work in progress, we encourage the reader to visit
http://png.formulasearchengine.com for the latest updates.

2 mathoid’s Improvements Over texvc Rendering

As described in [11], mathoid provides “Robust, Scalable, Fast and Accessible
Math Rendering for Wikipedia.” In 2014 mathoid was one of the first Wikimedia
nodeJS services, supporting the MediaWiki extension Math, which takes care of
the handling of mathematical expressions used in Wikipedia and other websites
running MediaWiki. Today mathoid is constructed from a huge number of services
such as citoid and graphoid, which support the MediaWiki extensions Cite and
Graph respectively. All of these service-supported extensions add complex func-
tionality to MediaWiki, which would be hard to reimplement with native and
efficient PHP code. Moreover, they all share the goal to be “Robust, Scalable,
Fast and Accessible”. The so called service-template provides a common ground
for robustness and scalability and reduces the maintenance effort.

For the Math extension, that means no binaries need to be installed on the
MediaWiki servers and no files in the file-system are created. Thus robustness
is improved with respect to the old approach that relies on the texvc binary
and creates local files [11], which uses MathJax [2] rather than LATEX for the
rendering. Note, that the set of supported ”LATEX like macros“ is exactly the
same for the old and the new system.

With the service template scaling the mathoid service is simple. As an im-
provement over the original version of mathoid presented in [11], now all formulae
of a page are processed in parallel (cf. Section 3) instead of sequential. That way
the page loading time is determined by the formula that takes the longest time
to render and no longer by the sum of all the rendering times. See Section 4 for
the time measurements of individual formulae.

However, most significant to the user are the accessibility component and the
change in the layout itself. After the new rendering was tested on beta clusters
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Fig. 1. Copying MathML expressions from the German version of Wikibooks to Wol-
fram Mathematica: On the left, there is a screen-shot, displaying a section of the book
on quantum mechanics taken on May’16 2016 (the day MathML rendering became the
default rendering mode for mathematical Formulae on Wikibooks) as non registered
visitor using Firefox version 45, with the Native MathML plugin enabled. The photon
momentum was selected, to demonstrate the bounding boxes of the symbols, and to
copy and paste it to the computer Algebra System Mathematica (screen-shot on the
right) as In[8]. The same step was performed for the relativistic momentum In[9].
Thereafter, an additional = sign has been manually inserted to In[8] and Solve[%8,λ]
was typed to compute the De-Broglie wavelength.

it has been enabled on Wikidata and the German version of Wikibooks on May
16th, 2016, and was enabled globally on May 31th, 2016.

As visualized in Figure 1, the MathML code is available to the browser. This
allows screen readers to verbalize the formulae from the additional information
that is neither available from the new SVG image nor from the old PNG image.
The documentation page of the Math extension contains links to examples of
this feature and [3, 4, 8, 12, 14] provide further information on that topic.

However, since MathML requires certain fonts that are not available on all
operating systems, MathML will only be provided to people that have installed
a browser extension that indicates that their browser actually provides good
MathML rendering. This could be either Mozilla Firefox with the Native MathML
plugin [16] or Internet Explorer with the MathPlayer plugin [13]. The majority will
see SVG images, which is already an improvement, especially for high resolution
displays, or in situations were the formulae are printed.
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Fig. 2. Overview of the Wikimedia infrastructure (based on an image from Luca
Toscano, which was released under the Creative Commons (CC3) license.)

3 Internals of the New mathoid Rendering

While the Wikipedia request flow as visualized in Figure 2 is quite complicated,
we summarize a typical visit of a page that contains mathematical formulae
below.

1. A user requests a page
2. If that page is not cached (neither physically close to the user or abroad),

MediaWiki renders the page from the internal representation (wikitext) to
HTML. Note that this is only true for a regular visit. If the user wants to
edit the page using the visual editor the page would be rendered by parsoid
(cf. 3).

3. All math elements on a page are collected
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4. A bundle of requests (the size of this bundle is a performance tuning param-
eter) is sent to restbase (check request)

5. restbase checks the requests; either the result is cached in the internal cas-
sandra data store

6. or it contacts mathoid which calls texvcinfo which calls texvcjs (this will be
explained later in detail).

7. restbase returns the results of the check and other information about the
formulae i.e. the sanitized tex, a hash and the SVG.

8. After a bundle of check requests is returned to the MediaWiki, the extension
evaluates each check response, and either replaces the Math tag with an error
message in case the check request was not successful or collects the hash of
the MathML and SVG.

9. Now, the math extension has collected the hashes of all valid input formulae
and a second request bundle is sent to restbase requesting the MathML
rendering.

10. restbase responds with the MathML rendering from storage. In the header
of the request response, the SVG dimensions are stored.

11. Thereafter, the math extension replaces the math tags with MathML and a
link to the SVG fallback image. The style-sheet is configured in a way that
the fallback image is visible by default and the MathML element is invisible.

12. Finally, MediaWiki returns the HTML of the page, including the links to
the SVG fallback images.

13. If the browser of the user does not overwrite the visibility information of the
MathML and SVG, the browser sends a request for each individual formula.

14. While most of the image requests will be served from either the browser
cache or varnish (a caching http reverse proxy [15]), the rest will go directly
to restbase without contacting MediaWiki.

4 Measuring mathoid’s performance

To evaluate the absolute performance of the new rendering, we performed mea-
surements with the following set-up: We use two identical work stations (Intel(R)
Core(tm) i7-3770 CPU @ 3.40GHz 16 GB RAM, Gigabit Ethernet, 2x1 TB HDD,
Ubuntu 14 LTS). One system (hereafter referred to as the server) has the Cas-
sandra storage engine, the restbase Client and mathoid. The other system (client)
has MediaWiki with the extension Math and MathSearch, it uses as many par-
allel workers as CPUs are present (8) to call to get the data as would be done in
production. Our performance tests script can be downloaded from github script.

For each formula, the requests are sent in as described in 3 and the time is
measured. Note that, for this test, we did not use the complete endpoint but the
MathML or SVG endpoint respectively. For each formula we randomly chose if
it was rendered first in SVG or MathML mode. The measurement results are
visualized in Figure 3. The figures indicate an almost linear relationship between
the formula length and the rendering time. It should be noted that formulae
whose request could be answered by restbase from the cassandra storage without
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Fig. 3. Rendering and verification time versus input length: Measurements for the
Test Collection, with different rendering modes. (a-c) shows the rendering, times and
standard deviations respectively. (a-b) Include two series, where the yellow (lower)
series is the cached result.
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Fig. 4. mathpipe processing chain

contacting mathoid were fast, independent of the length of the input tex string.
The average was around 4ms. These measurements indicate that, in the average
case, where already rendered formulae get requested again, most of the time
is spend at the checking phase (>20ms). Therefore, the most recent version of
restbase, which has not been tested yet, also caches the check responses from
mathoid. This is supposed to reduce the checking significantly.

Compared to the old LATEX based rendering, which created a LATEX document
for each formulae, rendered that document and thereafter converted it to a PNG
image, this is a significant performance improvement.

5 Comparing Different Rendering Engines with mathpipe

mathpipe is a program specifically designed for testing the different options for
rendering mathematics on the web. It starts with user input (currently limited
to texvc dialects) and goes via different routes to PNG output. All current
routes are visualized in Figure 4. From there on, we perform the analysis of
different generated png images and calculate the similarity scores as described
below. mathpipe has two modes of operation. A command-line mode that can
be used for batch jobs and a web interface. The command-line will be used to
identify the formulae that have the biggest divergence. The web interface will
provide a quick comparison for humans to manually investigate the difference
outputs and check the derived results. We encourage the reader to visit http:
//png.formulasearchengine.com and test an instance of our service.

6 Image comparison

The lack of practical automatic regression testing on mathpipe-generated ren-
derings of the huge collection of mathematical formulae in Wikipedia has been a
serious hinderance to speedy improvement of rendering quality and performance.
Currently, any change made to the rendering pipeline can only be checked vi-
sually by humans. Even then, it is very easy for a human inspector to overlook
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some small but important error that has arisen in the rendering. The motiva-
tion for automating this procedure with a suitably high precision machine-based
approach is clear.

The problem to be solved involves comparing two PNG images rendered using
different methods from the same input source. These methods vary in their choice
of fonts (and therefore also the thickness of the character strokes), the resolutions
of rendered images, the approaches to anti-aliasing and background transparency
rendering, spacing between characters and relative sizes of characters. Some of
the methods also generate extra empty padding around the images and most
generate some form of greyscale or colour images, the details of which can vary,
rather than monochrome.

In comparing these images, our ideal is to make judgements about the rela-
tive validity of these renderings as an extremely careful human inspector would.
Differences insignificant to the readability and correct interpretation of the un-
derlying mathematical formulas should be overlooked. For example:

– changes of font where corresponding characters from the two images are
visually very similar.

– differences in character spacing in the two images which are within aesthet-
ically reasonable bounds.

– characters that are spatially discrete but close together in one rendering
may touch in another. This is often due to the rendering resolution chosen
together with the antialiasing approach used. If the resulting touching char-
acters are perfectly readable, then this should not cause significant concern
or trigger reporting of errors unless the user is explicitly looking for such
problems.

– with symptoms very similar to the previous case, a single character in one
image may be broken into two or more characters in the other. This arises not
from characters touching, but by the renderer building a character, often an
extendable fence or integral character, out of separate character components.
The renderer is supposed to make such characters touch, but may fail to do
so completely. Such a case rarely interferes with the readability of the image,
but should be overlooked or highlighted as the user requires.

Conversely, significant issues should be identified and reported:

– characters in one image but missing from the other.
– characters that have significantly different shapes, for example if the char-

acter is missing or mis-indexed in the font used in one of the images.
– significant differences in spacing that may confuse the reader, e.g. a super-

superscript that is rendered on the same baseline as a superscript.
– touching characters that are unreadably overlapped.
– broken characters that are so spatially separated that it confuses the reader.

The tolerances used to determine many of the fuzzy quality issues (i.e. “visually
similar”, “aesthetically reasonable”, etc.) described above should be choosable
by the user to correspond to the user’s purpose at the time, although defaults
should be set to practical values for general purpose regression testing.
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In general, the system should be biased to not overlook serious issues, even if
that means that more insignificant differences are reported as significant (false
positives).

Finally, a practical and robust way of reporting issues found is necessary to
assist developers in quickly identifying problems and their sources.

6.1 Approach

The constraints of a solution as described above mean that a purely image-
focused approach is unlikely to be successful. Instead we have taken an approach
based on a structural analysis of the image into a form where we can deal with
the image components and their relationships more abstractly. This form is based
on connected components. A connected component in a monochrome image is a
maximal set of foreground pixels that are horizontally, vertically or diagonally
connected. Thus an equals symbol, “=” and the letter “i” both have two connected
components, while an equivalence symbol “≡” and a capital greek letter xi, “Ξ”,
both have three.

In brief, the general approach we have chosen involves binarising the images,
decomposing them into sets of connected components, scaling the meta-data
(bounding-box information) about the connected components to make them
comparable between the images, identifying viable pairings of corresponding
connected components in the different images based on relative positions, as-
pect ratios, and size, verifying the pairings using features of the underlying con-
nected component shape and pixel distributions, and finally treating connected
components not successfully paired as possible candidates for touching/broken
character analysis.

It should be noted that, though we use techniques borrowed from the areas
of document analysis and optical character recognition [5], we do not attempt to
classify characters or interpret the mathematical formulae in any way, and hence
we avoid the problems of classifier training, mis-classifications and incomplete-
ness of a model for the structure of mathematical formulae. More precisely, we
borrow only methods of binarisation, connected component analysis and some
simple shape feature extraction methods that are commonly used in document
analysis for character classification purposes but here are used only to provide a
basis for metric shape similarity measurements between corresponding compo-
nents of the two images.

We shall now discuss each part of the approach in detail.

Binarisation and Connected Component Analysis Connected component
analysis requires binary choices between foreground and background images.
Since these images are generated rather than scanned, a very simple binarisation
method selecting the pixel class based only on the RGBA (red-green-blue-alpha)
value of the pixel itself is sufficient. The only issue of (minor) concern is the
different approaches to background colours and anti-aliasing. Background pixels
and anti-aliasing in an effectively monochrome image is best implemented by
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using the same (foreground) colour for all pixels but varying the transparency of
the anti-aliased pixels down to fully transparent for background pixels. However,
some images do change the grey-scale/colour as well as the transparency while
others do not use transparency at all but merely blend the foreground into a
different background colour. Binarisation must be aware of these variations and
manage them all.

Connected component analysis is accomplished using the algorithms de-
scribed in [6, 7]

Cropping and Scaling Removing extraneous background padding is a simple
matter of cropping to the size of the rectangle union of the bounding boxes of
the identified connected components.

Scaling is slightly more subtle; Since these images can be of relatively low
resolution, the size of a pixel relative to the whole connected component can be
significant. Hence scaling the image to a common size can introduce discretisation
artifacts that impede the analysis. Hence the images themselves are not scaled
but a scaled version of the connected component bounding box information
is added. The scale factors are chosen so that one of the images’ information
is scaled to correspond to an image of width 1.0 (using floating point rather
than integer numbers of pixels) and a height that maintains the original aspect
ratio. The other image is scaled so that the image is exactly the same size, even
if that distorts its aspect ratio. This results in relative positions of connected
components in the scale spaces being directly comparable. The underlying image
pixels are not changed so shape analysis is not affected by the scaling.

Simple Component Pairing At this point we attempt to pair off connected
components in one image with the corresponding ones in another. A simple
matching of corresponding positions does not work for a number of reasons:

– While scaling ensures that the left-most and rightmost characters are in very
close to the same horizontal position, variations in spacing may mean that
characters in the centre of the image are significantly out of horizontal align-
ment with the corresponding character of the other image, and, indeed, may
be in exactly the same relative position as a non-corresponding character.
Ditto for vertical alignments.

– Multiple characters in one image may be touching and therefore occur as a
single connected component while they are separated in the other. Therefore
the correct pairing should be of at least one connected component with a set
of connected components.

– Depending on the actual parameters used, a component of one image may
viably, but incorrectly, be paired with any one of a number of different com-
ponents from the other. We call such a case a “multi-match”

– Because of variations of character fonts, positioning and sizing, any choice of
discrimination parameters that correctly accept/reject a pairing in one part
of the image tends to be wrong for another part of the image. An adaptive
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approach that varies the parameters over different parts of the image might
be possible but it is not clear what criterion can be used to accomplish it
without more in-depth classification or recognition.

For these reasons we chose an iterative approach, where we start with very tight
constraints on acceptable parameters to pair components based on their posi-
tion, aspect ratio and size (i.e. area of the bounding boxes), with a verification
element based on a metric shape similarity measure, to guarantee reliability of
the pairing. This ensures that any pairings found are robust and can be removed
from consideration. Repeating the process with slightly relaxed parameters on
the thinned out set of remaining components allows robust pairings to be made
where, with the full set of components, an unambiguous pairing would not have
been possible. This cycle continues until one of the following holds:

– no unpaired components remain (in which case the two images can be con-
sidered to have passed the comparison check) or

– any further pairings require relaxing the parameters beyond their upper lim-
its or

– there is a component which, at the current parameter setting, could viably
be paired with more than one component (a multi-match).

In the latter two cases further analysis is necessary.

Touching Component Analysis At this point, assuming there are multi-
matches or unpaired components remaining, there is a set of components from
each image that could not be paired with components from the others. The only
allowable remaining situation that would not justify reporting this as an error is
if components are touching in one image but not in the other, and there may be
multiple separate cases involved. Simply trying all possible combinations of ways
that components could touch is computationally infeasible for our purposes.

To find such cases, note that a touching component in one image that cor-
responds to a group of components from the other is necessarily larger than the
individual sub-components. Therefore we work iteratively starting at the largest
remaining unpaired component of both images, the target component, and se-
lect the set of unpaired components (the candidate components) from the other
image that overlap with an expanded version of the bounding box of the target
component. This excludes from consideration components that should not realis-
tically be considered as candidates, but the expansion allows for some distortion
of the spacing between the different images.

Even if the target does correspond to some of the candidate components, it
may not correspond to all. For example, consider the following expressions where
the left is from one image and the right from another:

√
xK

√
xK

Here the target would be the touching
√

K component from the right and the
candidate set would include all three components from the left, because all three
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are within the appropriate space. However, the x should not be included in the
pairing or it will cause the shape matching to fail.

For these reasons, all combinations of the candidate components are consid-
ered by calculating the comparison attributes of the union of each combination,
where the attributes involved are; centre of the bounding box, aspect ratio, area
of bounding box and, only if the checking of those attributes passes, the more
expensive shape similarity test. The final shape similarity test ensures that the
resulting merged shape is still readable. The limitation of the set of candidate
characters to those that overlap the expanded target component bounding box
ensures computational feasibility.

If a pairing is found, the components are removed and the process repeats on
any remaining unpaired components until exhaustion of unpaired components
or failure to find a pairing.

Reporting of Results The results of the above analysis is four-fold:

1. Simple matches: A set of pairs of single compatible components that are
within appropriate matching parameters.

2. Touching matches: A set of pairs of sets of components corresponding to
target/candidate set matching pairs for touching component cases.

3. First image unpaired: A set of components from the first image that could
not be paired with corresponding components from the second.

4. Second image unpaired: A set of components from the second image that
could not be paired with corresponding components from the first.

The test passes if all except simple matches is empty. It can be considered to
pass if touching matches is also non-empty and the user chooses that option. A
short narrative report is generated of the results to a log file or to the standard
output stream. However, a textual description of the problems when errors occur
is frustratingly difficult to interpret. Hence we also generate two error images,
These are cropped binarised images but with unpaired components drawn in one
colour, target components of touching matches in another and the corresponding
matching candidate components in a third. This is usually sufficient for immedi-
ate identification of the problem to the user. However, sometimes it is necessary
to investigate more directly the relative positioning or sizing issues that trig-
gered the comparison failure so we provide a python plugin for the GIMP image
processing tool that allows the two error images to be loaded as separate layers,
scaled and positioned to exactly the same size and position so that, by varying
the transparency of the layers with the GIMP’s layer tool, one can precisely see
the issues involved.

An example of the error results when touching matches are found are shown
in Figure 5

7 Further work

As a work-in-progress, there is still much work to do in refining and improving
the image comparison tool, testing and evaluating it on the various mathpipe
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Fig. 5. Error images from two different renderings of the same formula. The orginal
of the second image has been articifially edited to force the B′ characters to touch,
as indicated by the green colour. In the first image the two characters that form the
matching candidates are in blue. The third image shows the result when the two images
are scaled and overlaid using the GIMP plugin to demonstrate differences in the spacing
and character shapes between the two images.

rendering pipelines and, eventually, building it into the mathpipe construction
toolchain.

8 Conclusion

We have presented Wikipedia’s new approach to higher performance, higher
quality, scalable, accessible mathematical formula rendering and delivery and
the work we carried out in performance analysis of its results that demonstrates
its huge performance improvement over the previous approach.

We have also presented our work on addressing a critical need for speedier
and more robust development of further improvement in mathematical formula
rendering; namely an image comparison program suited for use in automatic re-
gression testing of mathematical formula rendering software. While this program
is still under heavy development, it is already showing promise in providing sup-
port for more aggressive development of new mathoid-based rendering methods.

Acknowledgments. The authors would like to thank the Wikimedia Foundation
employees, especially Marko Obrovac and Gabriel Wicke for their code reviews,
guidance, contributions, and discussions in the context of mathoid.
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Abstract. To understand applied physics, and physical formulae in par-
ticular, the investigation of identifier units is beneficial. However, nor-
mally the units are not given explicitly in formulae and have to be in-
ferred. In this paper, we investigate how this process can be automated.
As an example application, we use physical formulae from Wikipedia to-
gether with information from the related knowledge-base Wikidata. We
envision that this method can be generalized and describe how, in the
future, hard logical constraints may be used as a feedback mechanism
for statistical methods in the context of natural language processing.

Keywords: Wikidata, Wikipedia, Units, Natural Language Processing, Infer-
ence, Mathematical Language Processing, Constraint propagation

1 Introduction

Units play an essential role in the physical sciences. Especially, dimensional anal-
ysis is one of the most significant tools for comprehension and understanding
of physical formulae. We claim that this technique is not only beneficial for hu-
mans on their way to physical understanding, but also to machines that are
programmed to semantically enrich mathematical and especially, physical con-
tent.

In this paper, we consider physical units in Wikipedia, as a first step towards
a general solution of the underlying problem. We aim to: (1) identify formulae
that deal with physical relationships; (2) automatically derive the units of the
identifiers used in those formulae; and (3) integrate and store the learned data
in the central Wikimedia triple store Wikidata.

Our paper is structured as follows. First, we analyze related works that can
be used to complete the task at hand. In that context, we recap how possible
definitions can automatically be extracted from the text surrounding formulae.
Thereafter, we describe our method to relate the identifier to dimensions using
the Wikidata knowledge base and our approach to unit constraint propagation.
This will be followed by a refinement of the definition candidates based on the
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Fig. 1: As of January 2016, Wikidata users (visualized by the grey box ‘User’, top
left in the figure) can store mathematical expressions in Wikidata. Thereafter,
these expressions can be displayed in all language versions of Wikipedia (visual-
ized by “Wikipedia user”, bottom left). Moreover, other use cases for this data
are possible. For example, there is the article place-holder service which displays
information regarding a topic in languages, for which human generated articles
in that language do not exist yet. For more details see [6] (picture by Julian
Hilbig and Duc Linh Tran [6]).

constraints. Lastly, we describe the reinsertion of learned units into the Wikidata
knowledge base, which will be used for the formulae we processed. Finally, we
provide an outlook on how this method can be used for feedback driven self-
tuning of Mathematical Language Processing [11].

2 Related Work

A method to find identifier definiens tuples in natural language text is proposed
in [11]. There, the authors use Natural Language Processing (part of speech tag-
ging combined with word distance based scoring) to get the tuples. This approach
shows advantages over the more static pattern-matching approaches, because it
is able to also retrieve results that do not follow the pattern ⟨identifier⟩ is
⟨description⟩(see also [8]).

This method has been applied to Wikipedia articles to enrich formulae with
definitions for their included identifiers. It works for Wikipedia sites with different
languages. The result may have more than a single possible definition for an
identifier, each with a probability that expresses the likeliness for the definition
to be the relevant. The selection of the correct definition is a problem addressed
in our paper.
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A method to map the meaning to identifiers is used in [12]. In that paper
the namespace concept known from programming languages is used to assign
documents to namespaces and thus the meaning of the identifiers are mapped
to the meaning belonging to the chosen namespace.

In [9], an algorithm is proposed to use the need for dimensional homogeneity
in physical formulae compared with constraint propagation to prove formulae
that students gave as answers to physics problems. It aims on validating the
formulae for known units.

Dimensional analysis is also a widely investigated field in the area of program-
ming languages. In [4], the authors use the need for dimensional homogeneity in
physical equations in conjunction with constraint solving to automatically infer
unit types for programs handling scientific problems. Their approach infers a
general set of unit types using constraints created over the variables and con-
stants occurring in the program. The user can then annotate the inferred unit
types with real units thereby cannot violate the dimensional correctness as it
is proved for the inferred unit type system. In [1], constraint solving is used to
prove the unit correctness of calculations in spreadsheets. More examples for
validating dimensional correctness in programs can be found in [3, 7].

As preparation of this work, a new feature in Wikidata, the data-type math-
ematical expression, has been developed [6]. Properties with data-type mathe-
matical expression with for instance, defining formulae, represent mathematical
expressions. As of January 2016, these expressions are rendered by the software
which runs Wikidata.

3 Our Method

3.1 Identify Physical Formulae

In this paper, we limit ourselves to the following definition.

Definition 1 (physical formula). A physical formula is a binary mathemati-
cal relation of type equation or inequality containing one or more physical quan-
tities.

Consider the following examples:

E = mc2, (1)

sin2 θ + cos2 θ = 1, (2)
mmoon < mearth < msun, (3)

ℏ =
λp

2π
. (4)

Expressions (1), (4) are physical formulae according to Definition 1. They contain
the physical quantities E,m, c, λ, p, ℏ of which c, ℏ are physical constants.
Expressions (2), (3) are not physical formulae since (2) does not contain physical
quantities, and (3) is not binary. Note that the above definition can be extended
to non-binary relation chains without loss of generality.

This definition implies the following algorithm to identify physical formulae:
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1. identify mathematical expressions;
2. check if they are binary relations of type equation or inequality;
3. extract identifiers; and
4. decide for each identifier, if it is a physical quantity or expression.

While we will apply the heuristics from [12] for steps 1 and 3, we need to
develop new approaches for steps 2 and 4. A simple approach to 2, is to convert
the mathematical expression to content MathML using LATExml [10] and after-
wards analyze the content MathML tree using fixed rules. We thereby rely on
LATExml. Possibly occurring problems and limitations of LATExmlfor our appli-
cation will be listed in the final report. The main focus of our work will be on
step 4. While we can find Wikidata items from the algorithm presented in [12],
we might need to improve these algorithms.

Our main focus is on the development of an algorithm which decides if an
item is a physical quantity or entity. Our approach to address this problem is to
analyze the semantic properties of the relevant Wikidata item using the SPARQL [5]
3 endpoint. This means all information from Wikidata that expose information on
the units or dimensions respectively. More technically, we will develop a method
to check the relatedness to Q107715 (physical quantity)4. This will be one of the
key contributions of our research project.

3.2 Identifying units and dimension of physical quantities

Table 1: Dimension, base unit, and symbol according to the international system
of units (SI)

Dimension Unit Symbol
Length meter L

Mass kilogram M

Time second T

Electric Current ampere I

Luminous Intensity candela J

Temperature kelvin θ

Amount of Substance mole N

The dimension of a physical quantity is an inherent property of each quantity.
Dimensions are for example length L, mass M or time T . The derived quantity
3 SPARQL is used to query RDF (Ressource Description Framework) triples. They

consist of subject, predicate, object. Example: Find all subjects (items) in Wikidata
that have predicate "subclass of" and object "physical quantity"

4 Wikidata stores information in form of triples like ("length","subclass of","physical
quantity") where the unique id of "physical quantity" in Wikidata is Q107715. If a
Item like "length" has a relation like "subclass of" or "instance of" to the Item for
"physical quantity" we suppose it to be of kind physical quantity.
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speed has the dimension LT−1. For all physical quantities, we try to derive their
dimension from Wikidata using SPARQL queries.

To obtain that, we also take unit information into account, since it is more
prevalent in the Wikidata dataset compared to dimension information. Because
there are multiple unit systems (e.g., imperial units using yard for length versus
SI units using meter) more than one unit per dimension exists. However, physical
laws are usually valid independent from the unit system that is used. In this
context, it has to be noted that some adjustment needs to be done for units that
disregard conceptually important physical properties. For instance the Carnot
efficiency ηCarnot depends on the absolute temperature scale (e.g., kelvin) of the
hot TH and the cold TC reservoir via

ηCarnot = 1 − TC
TH

. (5)

Note that the fact that those temperatures are based on an absolute tempera-
ture scale is essential. This requires that non-cardinal temperature units such as
Celsius and Fahrenheit to be converted to prior to computation.

Given the extracted dimensions, the mathematical domain of physical quan-
tities can be specified better. Approaches to formally describe this domain are
presented in [2]. We introduce the following notation for a physical quantity x

x ≡
[
x
d

]
,

where x is the spatial part of x as defined in [2] and d is the dimension of the
unit of x. To simplify readability, we use the identifier for x and its spatial part.
We write x = x if d = 1. Thus, (1) can be written as

[
E

ML2T−2

]
=

[
m
M

] [
c

LT−1

]2
,

and (5) reads

ηCarnot = 1 −

[
TC

θ

]

[
TH

θ

] = 1 −
[

TC

TH

θθ−1

]
= 1 − TC

TH
. (6)

3.3 Compatible operations

This notation leads to our next definition

Definition 2 (valid physical formula). We call a physical formula valid, if
the dimensions are compatible with the mathematical operators used in that
formula.
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Table 2: Compatibility of Mathematical Operations with Physical units. Here,
|.|1 denotes the 1-norm.
class rule constraint operators

3: map o

([
a
x

]
,

[
b
y

])
→

[
o(a, b)
o(x,y)

|o(x,y)|1

]
times, division, integration, differ-
entiation

2: restrict o

([
a
x

]
,

[
b
y

])
→

[
o(a, b)

x

]
x = y plus, minus, equals

1: apply o

([
a
x

]
,

[
b
y

])
→

[
o(a, b)
o(x, b)

]
y = 1 power, roots

0: unitless o

([
a
y

])
→

[
o(a)
y

]
y = 1 function application

We exemplify the meaning of compatible operations based on (1). This physical
formula contains the mathematical operators equals (=), times (·), and power
(∧). For ‘equals’, the dimensions on the right-hand side and left-hand side must
be the same, for ‘times’, no restrictions apply and for ‘power’ the unit of the
exponent must be 1. If any of these constraints are violated (e.g., with the
incorrect E = mc) then the units or the formula can not be correct. Note also
that this method is not limited to scalar physical quantities and can be applied
to physical quantities of higher dimensions such as vectors like

[
W

ML2T−2

]
=

∫

C

[
F

MLT−2

]
d

[
s
L

]
=

∫ [
t2
T

]

[
t1
T

]

[
F

MLT−2

] [
v

LT−1

]
d

[
t
T

]
.

We will implement validation for the mathematical operations enumerated in
Table 2, which we group into four classes. For some of those cases [9] defined
detailed unit propagation rules.

3.4 Unit Inference

After having defined those fundamental concepts, we apply them to the actual
data extracted by the Mathematical Language Processing Project and the Unit
information fetched from Wikidata.

As an example, we demonstrate the work-flow for adding dimensional infor-
mation to formulae extracted from Wikipedia. The result of the process, proposed
in [11], is a probability distribution over identifiers and their possible definiens.
An identifier can have more than one definition candidate. That may lead to
more than one possible dimension for an identifier.
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Example 1: Mass-energy equivalence

The relation between energy and mass is described by the mass-energy
equivalence formula E = mc2, where E is energy, m is mass, and c is the
speed of light.

For Example 1 (from Wikipedia), which was also used in [12], the identifier-
definiens pairs for E may have this form:

Id. Definition score
E energy 0.42
E mass 0.42
E speed of light 0.16

Id. Definition score
m energy 0.35
m mass 0.35
m speed of light 0.30

Id. Definition score
c energy 0.30
c mass 0.35
c speed of light 0.35

All three definitions are found in the same sentence, but have different distances
between identifier and definiens. That results in different scores. Note, that the
actual scoring computation is more evolved and the score values have been made
up for demonstration purposes. We now describe this more formally.

For a physical formula f(x1, . . . , xn, on+1, . . . , om), with the identifiers (phys-
ical quantities and other identifiers) xi and mathematical operators oj , and a set
of definiens candidates N , the MLP Project returns a probability distribution
for the identifiers χ(x) =

∑
N∈N w0,nN , with

∑
N∈N w0,N = 1. From Wiki-

data we get the unit and implied dimension information denoted as ρ1(x) =∑
N∈N w0,n dim(N) =

∑
i w1,idi, where w1,j is the sum over all w0,N with

dimN = dj . Next, we apply the operator compatibility rules, which affects
the probability distribution according to their constraints. The dimension prob-
ability distribution of an operator o, dim (o(a, b)) implies operator dependent
constraints to dim a and dim b.

class(o) = 3 =⇒ dim o(a, b) = o(dim a,dim b).

class(o) = 2 =⇒ dim a = dim b.

class(o) = 1 =⇒ dim b = 1.

class(o) = 0 =⇒ dim a = 1, o(a, b) = o(a).

To reflect that, we define a refined probability distribution ρ(x) =
∑
i w2,idi,

with
∑
i w2,idi = 1. Finally, we need to solve a system of linear equations describ-

ing the w
2

= Aw
1
. We propose the following method to realize that. Assume

that the mathematical notation is good enough to extract the operator tree,
with tools such as LATExml. We convert this operator to the root form and call
O(f) ∈ Nm×m the adjacent matrix. Since the tree is not directed O(f) = O(f)T ,
and since identifiers are always connected by an operator, the top left entries of
the adjacent matrix are zero, i.e., ∀i ≤ n ∧ j ≤ n =⇒ O(f)i,j = 0. Based on
that, we will elaborate different strategies for the most efficient execution of the
constraint propagation problem. Our first approach is the following sketch of an
algorithm:

1. start with the identifiers (x) as working set;
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=

⎡
⎢⎢⎣

E
.42 ML2T−2

+.42 M
+.16 LT−1

⎤
⎥⎥⎦

·

⎡
⎢⎢⎣

m
.35 ML2T−2

+.35 M
+.30 LT−1

⎤
⎥⎥⎦

∧
⎡
⎢⎢⎣

c
.30 ML2T−2

+.35 M
+.35 LT−1

⎤
⎥⎥⎦

2

(1) Set identifier dimensions

⎡
⎢⎢⎣

=
? ML2T−2

+? M
+? LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

E
.42 ML2T−2

+.42 M
+.16 LT−1

⎤
⎥⎥⎦

·

⎡
⎢⎢⎣

m
.35 ML2T−2

+.35 M
+.30 LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∧
.30 M2L4T−4

+.35 M2

+.35 L2T−2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c
.30 ML2T−2

+.35 M
+.35 LT−1

⎤
⎥⎥⎦

2

(2) Propagate upwards

⎡
⎢⎢⎣

=
? ML2T−2

+? M
+? LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

E
.42 ML2T−2

+.42 M
+.16 LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

·
? ML2T−2

+? M
+? LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

m
.35 ML2T−2

+.35 M
+.30 LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∧
.30 M2L4T−4

+.35 M2

+.35 L2T−2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c
.30 ML2T−2

+.35 M
+.35 LT−1

⎤
⎥⎥⎦

2

(3) Propagate downwards

⎡
⎢⎢⎣

=
? ML2T−2

+? M
+? LT−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

E
.42 ML2T−2

+.42 M
+.16 LT−1

⎤
⎥⎥⎦

[
·

ML2T−2

]

[
m
M

] [
∧

L2T−2

]

⎡
⎢⎢⎣

c
.30 ML2T−2

+.35 M
+.35 LT−1

⎤
⎥⎥⎦

2

(4) Process maps

[
=

ML2T−2

]

⎡
⎢⎢⎣

E
.42 ML2T−2

+.42 M
+.16 LT−1

⎤
⎥⎥⎦

[
·

ML2T−2

]

[
m
M

] [
∧

L2T−2

]

⎡
⎢⎢⎣

c
.30 ML2T−2

+.35 M
+.35 LT−1

⎤
⎥⎥⎦

2

(5) Propagate upwards

[
=

ML2T−2

]

[
E

ML2T−2

] [
·

ML2T−2

]

[
m
M

] [
∧

L2T−2

]

[
c

LT−1

]
2

(6) Propagate downwards

Fig. 2: Demonstration of our constraint propagation algorithm.153
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2. propagate the constraints to their parent operators of classes 0-2 and re-
member the parent operators of class 3 (maps);

3. update the working set to consist of the updated parents;
4. propagate the constraints downwards;
5. the changed children are now the new working set;
6. continue with upwards and downwards propagation until the working set is

empty, and a steady state is reached;
7. update the working set with the class 3 operators;
8. resolve the class 3 operators, in appropriate order (note that this might lead

to many possible dimensions for the class 3 operators);
9. propagate the new constraints by going back to step 2;

10. the algorithm terminates if the working set and the set of unprocessed class
3 operators is empty.

We demonstrate this algorithm in figure 2 based on Example 1. Formula (1)
depends on (E,m, c, 2,=, ·,∧) and the adjacent matrix reads

O(“E = mc2”) = O

⎛
⎜⎜⎜⎜⎜⎜⎝

=

E ·

m ∧

c 2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

E m c 2 = · ∧
E
m
c
2
=
·
∧

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 0 0 0 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎠
.

One alternative to this approach is [9]. The evaluation of our approach must
show the performance of the probabilistic approach.

3.5 Wikidata insert/update

After having propagated the units, we might have found a unique solution as
demonstrated in Example 1. In cases where we found this unique solution, we
will write back the dimension information to Wikidata. If the formula already
has an item in Wikidata, we check the properties and update/insert the missing
information. Since we use the Wikidata database for finding information for all
the identifiers in a formula we have automatically a defining item to link to for
every identifier.

3.6 Limitations

For level 3 operators, numerical artifacts (such as scalar factors from the integra-
tion) and probability density are mixed. For example in

∫
sdt and a hypothetical

ρ0(s) = .5M + .5T leads to a propagated probability of

ρ

(∫
sdt

)
=

∫
ρ0(s)dt⏐⏐∫ ρ0(s)dt

⏐⏐
1

=
4

3

(
1

2
MT +

1

4
T 2

)
=

2

3
MT +

1

3
T 2.

The likelihood for MT is higher in comparison to T 2, which does not seem
plausible at the first place. Consequently, we will search for better suitable ways
to re-scale the unit vector to length 1.
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4 Future work

The finding of items in Wikidata can be improved by using methods like stem-
ming to match the definition with the item caption. This is due to the fact that
the definitions are extracted from free-text and may be conjugated. The iden-
tification of the units/dimensions can be done by the querying property, has
quality. Due to the community-driven inserts of items, it is not guaranteed that
every item has all of the possible properties. For example, the authors may omit
a property such as, has quality. Instead the property, quantity symbol, may be
queried.

Moreover, our algorithm can be used as a feedback mechanism for the MLP
process. With the additional unit and dimension information, the algorithm
will learn about mistakes from the unit checking. With this information, the
algorithm will be able to tune itself.

5 Conclusion

The knowledge about units in physical formulae is fundamental. However, in
most cases they are not marked up explicitly. We investigated how they can
be determined automatically. We described a process to automatically infer the
unit information for identifiers in physical formulae. This process is based on for-
mulae and identifier-definition pairs that are extracted from text using Natural
Language Processing techniques. The process may result in multiple definition
candidates for identifiers. To infer a consistent identifier-definition mapping, we
use an algorithm based on the principle of dimensional homogeneity in physical
formulae. The unit/dimensional information for the definitions is retrieved from
the structured data store Wikidata. The results are then used to extend Wikidata
with the formulae and links Wikidata entries describing the identifiers.
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MKM Work In Progress

Mathematical Knowledge Management is an interdisciplinary field of research
in the intersection of mathematics, computer science, library science, and sci-
entific publishing. The objective of MKM is to develop new and better ways
of managing sophisticated mathematical knowledge, based on innovative tech-
nology of computer science, the Internet, and intelligent knowledge processing.
MKM is expected to serve mathematicians, scientists, and engineers who pro-
duce and use mathematical knowledge; educators and students who teach and
learn mathematics; publishers who offer mathematical textbooks and dissemi-
nate new mathematical results; and librarians and mathematicians who catalog
and organize mathematical knowledge.

The interests of the MKM Track of CICM necessarily, and intentionally,
overlap those of other CICM tracks but generally with a broader point of view.
Authors of papers dealing more specifically with Theorem Proving or Mathemat-
ical Libraries may consider submitting to the CALCULEMUS or DML tracks,
respectively. Work involving prototypes of or enhancements to systems may wish
to submit to the Systems and Data track, possibly as a complementary paper.

July 2016, Bruce Miller
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Abstract. Both easily readable and obscure proof scripts can be found
in the Mizar Mathematical Library (MML). Many authors do not want
to invest additional e�orts in improving readability of their deductions,
once the computer accepts their scripts. In their opinion, text of the
proofs are ignored by most of the readers and the readability is essential
only at the top level of scripts where statements of theorems are formu-
lated. However, the analysis of such scripts is unavoidable if we have to
rebuild some theorems to make them stronger or more easily applicable.
Therefore, it is important to develop tools that can improve legibility of
proofs, in particular those that shorten reasoning by removing technical
sub-deductions, and this requires development of criteria that lead to ex-
traction of statements which, in the opinion of human readers, describe
well the extracted reasoning.
We propose characteristics of formula complexity that can be applied
to determine which sub-deductions should be extracted so that resulting
lemmas are more comprehensible. To better understand their signi�cance
we study the distribution of these characteristics on statements of theo-
rems that are collected in the MML.

Key words: Lemma extraction, Complexity of formulas, Legibility of
proofs

1 Introduction

1.1 Motivations

The legibility of proof scripts might be considered as one of the most important
factors of formalization quality, but in practice the growth of proof databases is
not always accompanied by the improvement of the formalization quality of the
articles. Analyzing proof scripts developed with proof assistants, especially the
longer and more complex deductions, leads to a conclusion that their legibility
often seems to be of the secondary importance to their authors since computer
assisted proof development frameworks can check the correctness of such deduc-
tions. According to the opinion of some proof authors any attempt to analyze

? The paper has been �nanced by the resources of the Polish National Science Center
granted by decision n◦DEC-2012/07/N/ST6/02147.
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details of the proofs scripts created in this way is extremely di�cult or even
impossible. However, analysis of such proofs is unavoidable if we try to adapt or
modify them [5].1

This concerns especially systems such as Mizar [2, 10], where the proof script
language is close to the natural language, which makes it possible to create leg-
ible deductions. Therefore, authors of Mizar proof scripts can manually try to
improve the comprehensibility of their work spending a lot of time over their
readability [13, 6], similar as it is done for informal mathematical proofs. How-
ever, many authors do not want to invest additional e�orts in this process and
assume that the task can be handled automatically for them, since having a dig-
ital form of structured formal proof, a computer can not only automatically
verify the correctness, but also automatically enhance proof scripts. Therefore,
it comes as no surprise that Mizar is being developed in many directions to meet
these needs of users, similar to the way people work on informal mathematical
proofs.

We can identify three main directions of development to improve legibility.
The �rst one is based on improving the representation of proof scripts in HTML
format [14] by adding selected information that is automatically generated by
Mizar and also by bringing the formal mathematical language to the informal one
by introduction to the formal language idioms that stem from informal math-
ematical practice [7�9]. The second direction is based on the simpli�cation of
deductions in proof scripts by �nding and removing irrelevant parts of reasoning
or by elimination of redundant premises from the justi�cation of steps, preserv-
ing the correctness of the modi�ed proof scripts. The third direction is based
on rebuilding the deduction structure in proof scripts by changing the order of
independent steps in reasoning and also by detecting reasoning passages (called
packets) that are, e.g., technical and repeated many times in a reasoning, and
extracting them as lemmas or encapsulating them on a deeper level of a proof
in the form of a nested lemma.

The last direction is still the least developed. SMT solvers can be used to
choose a better order of independent proof steps [12]. A method of extracting
packets as external or nested lemmas so that the correctness of proof scripts is
preserved has also been developed [11]. However, an additional challenge remains
to formulate packet extraction criteria so that resulting new lemmas can be
accepted as ones that deserve readers' attention and are worth extracting. In
this paper we concentrate on this aspect.

1.2 Proposed approach

The ability to �nd such passages automatically is crucial, since the extraction of
carelessly selected packets can drastically reduce the proof scripts legibility even
if the modi�cation reduces the length of the proof. Additionally, the statements
associated with the reasoning in a packet has usually a more complicated form

1 Actually this is mentioned in Page 3 of an unpublished preliminary version of the
article [4].
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than a plain implication premises =⇒ conclusions preceded by a sequence of
universal quanti�ers. It turns out that a mathematical statement can be per-
ceivably more complex than another one, even if both have the same number of
assumptions and theses; or their prenex normal forms are at the same level of
the same arithmetic hierarchy [1, 11].

In this paper we analyze the selected characteristic of sentence complexity
of theorems and lemmas in the Mizar Mathematical Library (MML) to get the
most typical values. and then apply them in the context of lemma extraction
based upon the notion of proof graph. In Section 2 we introduce the notion of
an abstract model of proofs and packets. In Section 3 we discuss selected indica-
tors of the packet's statement complexity that describe a structure generated by
premises and conclusion in a packet. We discuss also the impact of the positions
of quanti�ers in a formula for the complexity of a deduction that justi�es the for-
mula. Then in Section 4 we report the statistical results obtained on statements
of theorems and lemmas occurring in the MML. Finally, Section 5 concludes the
paper and discusses future work.

2 Packets in Abstract Proof Graph

To formulate the notion of a packet, we have to �x the terminology and notation.
Let G = 〈V,E〉 be a DAG, E1 be a subset of E, V1 be as subset of V . An arc

is called E1�arc if it belongs to E1. A path P = 〈u1, u2, . . . , un〉 of G is called
an E1�path if 〈ui, ui+1〉 is an E1�arc for i = 1, 2, . . . , n − 1. Additionally, we
say that P passes V1 if u2, u3, . . . , un−1 belong to V1. For vertices u, v in V , the
notation u →

E1

v means that 〈u, v〉 is an E1�arc. Moreover, the notation u →∗
E1

v

means that there exists an E1�path that leads from u to v. Additionally, we say
that vertices u, v are connected only by passing V1 and denoted this by u ∗

V1

v,

if there exists a path that leads from u to v and every path that leads from u to
v passes V1.

An abstract model of proofs was considered in detail in an earlier work [11].
For our purposes we recall only the part of its de�nition that is the most relevant
for our purposes. We illustrate it with an example on Fig. 1, where P, Q, R, S,
T represent predicate symbols with two arguments and F represents a functor
with one argument. Note also that the additional packet P is analyzed in the
further part of this article. Generally, we call a DAG P = 〈V,O∪M〉 an abstract

proof graph if O and M are disjointed families of arcs, called ordered arcs and
meta�edges respectively, 〈V,M〉 is a forest, and O contains a distinguished set
of arcs R(P) ⊆ O, the elements of which are called references. Additionally,
the contents of a nested reasoning are closed outside, i.e., introduced variables
and formulated statements in a sub-reasoning cannot be used outside the sub-
reasoning, i.e., from areas of the proof in which the sub-reasoning is nested (for
each u, v, w ∈ V if u →

O
v, u →

M
w then v →∗

M
w and v 6= w). The vertices

of P represent steps of the reasoning, O�arcs represent the �ow of information
between di�erent steps of the reasoning, and M�arcs represent the dependence

160



4 K. P¡k

α : let x be set;

β : A1: P[x];
γ : consider y be set such that

A2:y=F(x) by A1;
δ : A3: Q[y] by A2;
ε : consider z be Subset of y such that

A4: R[z] by A3;
ζ : consider r be Relation of y,z such that

A5: S[r] by A4;
η : A6: T[r] by A5;

α :

β : γ :

ε : δ :

η : ζ :

packet P

x x

A1

y y A2

A3
y

z A4
A5

r

Fig. 1. The example of reasoning sequence written in the Mizar style and the corre-
sponding fragment of the abstract proof graph that represents the reasoning.

between each step from areas of the proof and a proving fact. R(P)�arcs that
correspond to solid arrows represent the information �ow between a premise
(e.g., the fact labeled by A1 in β) and a place of its use (γ). The other O-arcs
that correspond to dashed arrows represent all kinds of additional constraints
that force one step to precede another one, e.g., the dependence between a step
that introduces a variable (the variable v in α) into the reasoning and a step
that uses this variable in its expression (β, γ). Note also that arcs and vertices
of abstract proof graphs are not labeled (arcs and nodes in Fig. 1 are labeled
only to simplify their identi�cation).

Using the notion of meta-edges we can de�ne formally the notion of packet
introduced in an earlier study [11]. Let us �x the notation D = 〈VD, ED〉 for
a subgraph of P induced by a set of vertices. We call D a packet, if D is induced
by the set of all roots in the forest 〈V,M〉 or every vertex of D has a common
successor in 〈V,M〉. Note that in an earlier de�nition (see [12]) the packet was
a subset of steps in a one-level deduction, where we ignored each nested local
lemma that was a justi�cation of a step in the deduction. To consider the set of
a packet steps together with steps of such supplementing lemmas we de�ne an
area of the packet by A(D) := {v ∈ V : ∃u∈VDv →∗M u}. A vertex v of P is called

a D�premise, if v /∈ VD and 〈v, u〉 is a R(P)�arc for some u ∈ A(D). Similarly,
we call a vertex v of P a D�conclusion, if v ∈ VD and 〈v, u〉 is a R(P)�arc for
some u ∈ VD \A(D). Let v be a vertex of V. A D�premise p is called v�necessary
if there exists O ∪M�path that passes A(D) and connects p with v. Note that
to explore every dependency between a premise and a conclusion, we cannot
be limited only to R(P)�paths, even if reference arcs are su�cient to de�ne
premises and conclusions. As an illustration note that the step β presented in
Fig. 1 is ζ�necessary, even if the reference arcs 〈δ, ε〉, 〈ε, ζ〉 do not occur in the
proof graph of the packet, since there exists ordered arc 〈γ, ζ〉. Note that the
packet P has also ζ�necessary premises ε, and β is also δ�necessary.

In our research, we distinguished also a set of vertices V(P) that correspond
to steps that introduce variables into a reasoning in both cases of steps that
introduce an universal or an existential quanti�er and of steps that introduce
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a new constant. A vertex v of V(P) is called a D�universal, if v /∈ VD and 〈v, u〉
is a O \ R(P)�arc for some u ∈ A(D). Similarly, we call a vertex v of V(P)
D�existential, if v ∈ VD and 〈v, u〉 is a O \R(P)�arc for some u ∈ VD \ A(D).
In Fig. 1, the packet P has two universal vertices: α, ε and also two existential
vertices: γ, ζ. Additionally, the order of these steps in graph suggests that the
packet's statement must have the following form ∀x∃y∀z∃r . . . .

3 Properties of the Packet's Statement

A method of extracting an arbitrary packet as an external or a nested lemma
has been described in an earlier work [11]. However, the question of the packet's
property which determines the choice of the extraction method is omitted. In
this Section we describe the characteristic of the packet's statement complexity
that describes a packet considered as a subgraph position in an abstract proof
graph, i.e., the information �ow between the packet and the rest of a reasoning
that contains the packet.

Let us focus on the packet P presented in Fig. 1, the reachability relation
between packet's premises and conclusions, and also the reachability relation
between ones that are connected only by passing the packet's area. Using the
reasoning in a packet we can provide a packet's statement in the form "quan-
ti�ers premises → conclusions" (e.g., . . . (P (x) ∧ R(z)) =⇒ (Q(y) ∧ S(r)).
However, we cannot preserve the correctness of the modi�ed reasoning, since δ
(Q(y)) is ε�necessary (R(z)) or more precisely, there exists an outgoing path
〈γ, ε, ζ〉 that generates a circle if we replace the packet by a single step (for more
detail see the de�nition of lemma extraction procedure [11]). Since, the packet's
statement has to preserve the necessary relation, we have at least two options
for the formulation of the packet's statement:

... (P[x] implies Q[y]) & (R[z] implies S[r])

... P[x] implies (Q[y] & (R[z] implies S[r]))
(1)

Obviously, the �rst proposition is more general than the second one. However we
can extract P preserving the correctness in both cases. Analyzing the structure
of implications we can observe that a deduction justifying the �rst statement
should have a form of two disjoint proofs (corresponding to each implication)
and the skeleton of a deduction justifying the second one has the form �assume
P[x];, thus Q[y];, assume R[z], thus S[r]�, (see Fig. 3).

Analyzing the structure of implications we assume that the formula contains
only negation, conjunction, implication; where negation can precede only a lit-
eral. Additionally, we eliminate every formula of the form α =⇒ (β =⇒ γ)
using the Exportation low (((α ∧ β) =⇒ γ)⇐⇒ (α =⇒ (β =⇒ γ))) and
also we eliminate repetitions of formulas as (α =⇒ β) ∧ (α =⇒ γ). We say
that such formula is implicational. Generally, we can transform a formula to sev-
eral expected forms. However, this nondeterministic does not occur in majority
statements of theorem occuring in the MML. Note that the equivalence in the
Mizar system is a syntactic sugar for two implications, the disjunction is used
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only in 2% of all theorem statements in the MML, and the negation precedes
a non-literal formula only in justi�ed cases where it facilitates the understanding
of a theorem's statement in the Mizar reviewer's opinion.

Note also that when proving an implication, the most natural proof is the one
where we �rst assume the antecedent. Obviously, we can conclude the consequent
directly or using the reductio ad absurdum method. However, in both cases, the
complexity of the antecedent has a negligible impact on the proof graph that
describes the information �ow in a reasoning. The only exception is when the
antecedent is a conjunction of several facts, but even in that case the number of
facts plays an important role than the complexity of each of them. Therefore,
we omit the complexity of antecedents (accordingly, packet's premises) in our
structure that describes implicational formulas (see P[x], R[z] in Fig. 1).

Let us consider an implicational formula φ. Then to each sub-formula of φ
that has the form:

(γ0 =⇒ (α ∧ (β1 =⇒ γ1) ∧ (β2 =⇒ γ2) ∧ (βk =⇒ γk))

we can associate a vertex of a directed rooted tree as follows

α β1; β2; . . . ; βkγ0

γ1

γ2

.

.

.

γk

The height of obtained tree is called the depth of φ and the number of leafs there
the breadth of φ. The �rst formula presented in (1) has depth 1 and breadth
2; and the second one has depth 2 and breadth 1 (see Fig. 2). We show that

Q[x]

P[x];R[z] P[x] Q[y] R[z] S[r]

S[r]

Fig. 2. The structure of implicational formulas presented in (1)

depth and breadth represent the generality level of formula that distinguishes
statements of lemmas and theorems. Note that in the most general packet's state-
ment, the formula is equivalent to the basic packet's statement (for more detail
see [11]), i.e., a conjunction of implications, where the consequent of a given
implication is one of the packet's conclusions c, and the antecedent is a conjunc-
tion of c�necessary the packet's assumptions. In consequence, the breadth of the
packet's statement should be close to the number of packet's assumptions and
the depth of the packet's statement should be close to one or even 0 if the packet
has no assumptions. However, the modi�cation of the reasoning part left after
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Lemma Extraction Criteria Based on Properties of Theorem Statements 7

the extraction of a packet with such statement is more complicated and a gen-
erated proof of the statement based upon the packet's reasoning is extremely
long and has repeated passages that do not occur in existing proof scripts in
the MML. Therefore, we analyze the depth and the breadth of the statement of
a theorem that is collected in the MML in the context of a situation, where the
statement is as general as possible and a generated proof does not have repeated
passages. Obviously, the optimal values of depth and breadth are determined
by properties of packets. Note also that we can indicate the formula that has
breadth 1 (see (3)). However, the generality level of the formula is low. As an
illustration, let us denote by Pre(D) the set of D�premises and similarly denote
by Con(D) the set of D�conclusions. We de�ne two recursive families of vertices
{Pre(D)i}∞i=1, {Con(D)i}∞i=1 as follows:

Pre(D)0 = {p ∈ Pre(D) : ¬ ∃
u∈Con(D)

u →∗
M∪O

p},
Con(D)i = {c ∈ Con(D) : ∃

p∈Pre(D)i
p ∗
A(D)

c},
Pre(D)i+1 = {p ∈ Pre(D) : ∃

c∈Con(D)i
c  ∗
(A(D))′

p}.
(2)

Note that only a �nite number of elements in the families can be non-empty,
since Pre(D)∪ Con(D) is �nite. Additionally, there exists a number d such that
Con(D)0 6= ∅, Pre(D)i 6= ∅, Con(D)i 6= ∅, for i = 1, . . . , d, and Pre(D)i =
Con(D)i = ∅, for i > d, since for each D�premise p there exists at least one
D�conclusion c that p is c�necessary. Then the following formula has breadth 1.

Pre(D)0 implies ( Con(D)0 & (
Pre(D)1 implies ( Con(D)1 & (

. . .
(Pre(D)m implies Con(D)d ) . . . )))),

(3)

Additionally, the formula has the minimal depth among these statements of
packet D that have the breadth equal 1.

So far in this section we ignore information about variables. Generally, the
packet's statement has to be preceded by a sequence of quanti�ers that bind
occurring variables. The packet extraction methods that take into consideration
variables has been described in an earlier paper [11]. Obviously, the number of
universal and existential vertices of a packet suggest two natural characteristics
that correspond to the number of variables, which are bound by universal and
existential quanti�ers in the packet's statement. The arithmetical hierarchy of
a theorem's statements, considered in the work of Alama [1], takes into consid-
eration the complexity of the antecedent that we omit in considerations. It is
important to note that in [11] only packet's statements not in prenex normal
form were considered. Moreover, there is an a priori assumption that the exis-
tential quanti�er corresponding to a D�existential vertex e has to be preceded
by every corresponding statement of e�necessary D�premises. In this section we
present only a simple justi�cation of this assumption, i.e., without this assump-
tion modi�cation of reasoning is extremely complicated and generates unnatural
proof scripts.
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α0 LemmaP: for x be set st P[x] ex y be set st Q[y] &

for z be Subset of y st R[z] holds ex r be Relation of y,z st S[r]

proof

α1 : let x be set;

α2 : assume A1: P[x];

γ′ : consider y be set such that A2:y=F(x) by A1;

α3 : take y;

δ′ : thus Q[y] by A2;

α4 : let z be Subset of y;

α5 : assume A3: R[z];

ζ′ : consider r be Relation of y,z such that A4: S[r] by A3;

α6 : take y;

ζ′′ : thus S[r] by A4;

end;

α : let x be set;

β : A1: P[x];

θ1 : consider y be set such that B1: Q[y] & for z be Subset of y st R[z] holds

ex r be Relation of y,z st S[r] by A1, LemmaP;

δ : A3: Q[y] by B1;

ε : consider z be Subset of y such that A4: R[z] by A3;

θ2 : consider r be Relation of y,z such that B2: S[r] by B1;

η : A6: T[r] by B2;

Fig. 3. The modi�cation of the proof script (presented in Fig. 1) which represents the
extraction of the packet P, where the packet's statement is presented in (4).

According to the a priori assumption, in every statement of the packet P
presented in Fig. 1, the premise P[x] (β) has to precede both existential quan-
ti�ers ex y be set; ex r be Relation of y,z (γ, ζ) and the premise R[z]
(ε) has to precede only the second one. In consequence, we obtain the following
formula:

for x be set st P[x] ex y be set st Q[y] & for z be Subset of y st

R[z] holds ex r be Relation of y,z st S[r]
(4)

that corresponds to the second formula in (1). A generated deduction that
demonstrates the formula and a modi�ed part of reasoning remaining after the
packet's extraction is presented in Fig. 3. Note that the generated deduction has
to contain six skeleton steps that correspond to universal (α1, α4) and existential
(α3, α6) quanti�ers; and correspond to antecedents (α2, α5). Similarly, variables
(y, r) that are introduced to a reasoning in the area of a packet have to be rein-
troduced in the remaining parts of the reasoning after the packet's extraction
(θ1, θ2). It is important to note that the resulting proof script, see Fig. 3, is the
shortest of all proofs where the packet P is extracted as a lemma.

4 Statistical Results and Discussion

In our study we analyze 55160 theorems and 53839 lemmas that are collected in
the MML version 5.32.1234. For us, a �theorem� is only this item in the MML
that is explicitly called theorem in the Mizar syntax. Every other step that
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has a nested deduction as a justi�cation, not only on the top level of its proof
script, is called a preselected lemma. We call a preselected lemma � lemma� if
the statement does not constitute a correctness condition or a property, where
the statement is imposed by the Mizar syntax (for more detail see the current
overview of the Mizar system [2]), e.g., in every de�nition of a functor, we have
to demostrate the existence and the uniqueness conditions, if the functor value
is not de�ned by a term.

4.1 Premises and Conclusions

As we have expected, the analysis of the number of explicitly formulated premises
in theorems and lemmas shows that lemmas have on average 1.8 times less
premises than theorems do. Note that the average number of premises in lemmas
is equal 0.76. Additionally, more than half of lemmas does not have premises
and only 6.25% do not have more then 2, whereas for comparison 19.82% of
theorems have more than 2 (see Fig. 4). The results for the average number of
conclusions are not signi�cantly di�erent for lemmas and theorems (1.15 and
1.38 respectively), and in both cases the percentage of statements dramatically
decreases with the increase of the number of conclusions. Obviously, not all
premises are visible in the statement of a lemma. Indeed, if the statement of
a step (1) is used as a premise in one of the steps of the nested reasoning that
is the justi�cation of a step (2), and both steps (1) and (2) are in the same
level of nesting, then the premise does not occur in the statement of the step
(2). Such hidden premises (1) are called implicit premises, in contrast to these
that are formulated in the statement of the step (2), and these are called explicit

premises. However, a similar situation occurs in the case of theorems if we use
the previously proven facts that are formulated on the top level of proof scripts.
Obviously, these facts can also be used in lemmas. But if we sum up explicit

and implicit premises, then the percent of formulas in the MML with the same
number of such premises does not distinguish statements of lemmas and theorems
(see the ratio of percents (solid line) at the diagram that represent number of
all premises presented at Fig. 4). However, the set of implicit premises can be
de�ned in terms of the notion of packet D and is equal to Pre(D)0 (see (2)).
Therefore, as an appropriate numerical characteristic of a packet we choose the
cardinality of Pre(D) \ Pre(D)0.

We can also analyze the arithmetical hierarchy of explicit and implicit premises.
However, the main part of premises contains identi�ers of local constants (mainly
lemmas) or reserved variables (theorems). In consequence, the main part of im-

plicit lemma's premises is at 0�level on the arithmetic hierarchy. Therefore, in
our study, we preceded by a sequence of necessary universal quanti�ers every
implicit premise that contains such identifers. But then the percent of implicit

premises on the level of the arithmetic hierarchy that occurs in lemmas and
theorems is almost identical.

A bit di�erent is the case of implicit premises, since according to the assump-
tions of Section 3, we should analyze explicit premises as they were originally
formulated by the author of a proof script. In that case the average level of
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arithmetic hierarchy is 0.116 and 0.027 for Π∗; 0.0572 and 0.0196 for Σ∗ in
explicit premises occurring in lemmas and theorems, respectively, where for sim-
plicity of notation a formula φ is Π∗ (Σ∗) if φ is Πi (Σi) formula for some i.
Note also that non-literal premises, if they are Π∗ (Σ∗), then they occur 1.92
(1.32) times more often in theorems then in lemmas. Additionally, the number
of premises drastically decreases with increasing level of arithmetical hierarchy,
on average 10.9 and 18.2 times in lemmas and theorems, respectively. Therefore,
as a characteristic of a packet D we should take into consideration not only the
cardinality of Pre(D) \ Pre(D)0, but also the level of arithmetical hierarchy of
statements formulated in vertices of Pre(D) \Pre(D)0, to reduce the number of
more complex one.

4.2 Variables bounded by universal and existential quanti�ers

As in the previous section, we assume that every formula is preceded by a se-
quence of necessary universal quanti�ers, which �x all local constants (mainly
lemmas) or reserved variables, called together parameters. Note that the average
number of parameters in lemmas and theorems is equal 3.40 and 1.54, respec-
tively (see Fig. 6). Additionally, 54.26% of theorems have less than 2 parameters
and only 4.64% have more than 4 parameters, whereas for comparison 48.36%
of lemmas have 3± 1 parameters and 36.75% have more than 4 parameters.

For simplicity of notation, we called a variable universally quanti�ed if it is
a parameter or it is bounded by a universal quanti�er and we call a variable
existentially quanti�ed if is bounded by an existential quanti�er. Analyzing the
number of variables bounded by universal quanti�ers in formula, we obtain that
percent of lemmas and theorems with the same value is almost identical, for
the most popular values (3, 4, see Fig. 6). However, the ratios of these percents
for theorems to lemmas is less then 1 for popular values (2�5). Note also that
existentially quanti�ed variables occur very rarely in formulas and the rations of
the statement percents with the same number of such variable for theorems to
lemmas is less then 1 if and only if the number is less then 2.

4.3 The Depth and Breadth

As we have expected, the main part of statements have depth less than or equal
to 1. Additionally only 7 theorems in the MML have the depth greater than 3
(3 of them describe di�erentiability in higher dimensions, for more detail see the
relevant Mizar article [3]). Similarly, the main part of statements have breadth
equal 1 and 42% of them are formulated without premises (37.25% theorems and
51.34% lemmas with breadth equal 1). Moreover, only 23.42% of formulas that
have the depth greater than 0 or the breadth greater than 1 are used as lemmas
(see Fig. 7).

We are aware that the described result is only a small step forward. However
this is the �rst promising result concerning this questions. Analysis of human
readers' opinions, especially the Mizar's users, does not make it possible to obtain
more important results, which can be summarized by the statement: a lemma
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Fig. 6. The percent of statements (bars) with the same number of parameters; existen-
tially quanti�ed variables; universally quanti�ed variables that occurs in lemmas and
theorems, and also the ratio of these percents (solid lines) for theorems to lemmas.

corresponds to a separate fragment of reasoning between �two throats� in the
proof that correspond to the premise and the thesis of the lemma (A.Trybulec).
Additionally in [11] an arti�cial property of the package (the closeness of packets
with respect to directed paths) has been described.

It is crucial in the process of packets' extraction, but the determination of
the in�uence of this property on the statement of existing lemmas was extremely
counterintuitive. This impact is our �small step forward� and is described in
Section 3 as a depth and breadth of formula. These two parameters seem to be
also non-intuitive but they can be easily calculated for formulas and they well
improve the result of a method that distinguishes formulas that occur in lemmas
and theorems, and base only on the number of premises, conclusions and bound
variables.

5 Conclusions

In this paper we describe a next stage in the research on methods that improve
proof legibility realized in [11] that base on rebuilding the proof structure, either
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encapsulating sub-deductions (packets) in the form of a nested lemma or ex-
tracting them as lemma. We de�ne characteristics of the packet's statement and
also we indicate the most appropriate values that are helpful in deciding whether
to extract a packet as a lemma or not. Moreover, the proposed characteristics
based on the packet's statement determine a packet position in an abstract proof
graph. This dependence is crucial, since in our approach we analyze the probabil-
ity that in human readers' opinions, a package should be extracted basing on the
lemmas and theorems statement collected in the MML that are not generated
from packets.

This research showed that for every packet we can calculate the probabil-
ity of using in the MML the that the packet' statement is used in the MML
to formulate a theorem or a lemma; and also it indicates which of these two
types is more probable, in respect to each proposed characteristic. The two non-
intuitive characteristics of a statement have proved to be especially important.
The depth and the breadth well improve distinction that based only on the num-
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ber of premises, conclusions and bound variables. However, still an open problem
to investigate is to determine impact of individual characteristics on the �nal
qualitative assessment of a packet.
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Abstract. Different sequences of proof steps may result in different ex-
periences of the overall formal proof clarity. There is a conjecture that
sequence in which more steps refer to the content of the preceding state-
ment (1) is more comprehensible than the one in which references span
longer distances (2). We studied the claim in experimental setting where
subjects indicated their reading preference with two versions of the same
proof. The difference between their reports indicates that contrary to
the conjecture, proofs of the kind (2) can give cognitive advantage in a
statistically significant way.

1 Introduction

The readability of formal proofs, as in the case of computer programs, has signifi-
cant impact on the process of proof formalisation development and maintenance.
This phenomenon has already been observed in the programme of Nicolas Bour-
baki— the resulting proofs written in formalist fashion were perceived as too
obscure and the whole project gained the opinion of unwieldy [12]. Moreover,
there are numerous situations in which proof scripts are indeed read, e.g. when
a proof development is used as a library of facts [4], when users try to learn new
proving techniques [8], or when users want to strengthen theorems [2].

There are many factors that have an impact on readability. In this paper we
focus on the psychological readability factors associated with locality of refer-
ence. They can be summarised in a high-level statement due to Behaghel that
elements that belong close together intellectually should be placed close together
[1] and this statement concerns particularly systems such as Mizar [3] and Is-
abelle/Isar [13], which try to construct proofs close to natural language ones.

Discussions among Mizar Mathematical Library developers [9] led to the
conclusion that proof steps that refer to the preceding step are perceived as
more comprehensible. This led to construction of algorithms that rearranged
? The paper has been supported by the resources of the Polish National Science Centre
granted by decision n◦ DEC-2012/07/N/ST6/02147.
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Mizar proof scripts so that they maximise the number of such references [9] and
further analysis of the complexity of the rearrangement process [10,11].

One important step in understanding the applicability of the techniques is to
assess their impact on real readers. This paper is an attempt in this direction.
We investigate the influence of one of the employed techniques—changing the
sequence of steps so that the number of then steps in continuous sequences is
maximal. In our study we give two versions of the same proof to a substantial
number of subjects and obtain their readability assessment.

The paper is constructed as follows. In Section 2 we present the design of our
experiment. Next, we present the statistical methods we employ and present the
way our experiment was executed. This is done in Section 3. The results of the
experiments are presented in Section 4 and discussed in Section 5. Many people
helped us in organising the experiment so we acknowledge them in Section 6.

2 The Design of the Experiment

2.1 The General Idea of the Experiment

It is not straightforward to devise an experiment in which two text structures
are compared for readability. First of all, the feature of readability is subjective
so a comparing judgement of a single person must be the basic unit of the
measurement. Moreover, one must note that it is not directly valid to ask subjects
to compare texts of different proofs for readability since then there may be many
other structural factors that must be recognised and well understood to make
such a comparison informative. Therefore, our first design choice is that one
subject at one moment compares two proofs of the same mathematical statement
and the result of the judgement is accounted in the study.

This assumption brings one major difficulty in. Comparison of essentially the
same proofs requires reading two texts that convey the same content. The texts
are by the nature of the reading process read in sequence. Clearly, the process
of reading of the second text is strongly influenced by that of the first text. We
can now expect two effects:

1. either the subjects will judge the second text as more readable due to the
fact that it reflects something that is already known,

2. or the subjects will judge the second text as less readable since they already
familiarised themselves with the structure of the first one and perceive the
text of the second one as alien and so less favourable.

It turns out that the second effect is much stronger than the first one (we provide
statistical evidence for this in Section 4.2). Therefore, we decided that meaningful
responses are only those that counter this strong trend and that such responses
indicate visible cognitive advantage to the subjects that behave in this way.

This assumption requires us to create two contrasting situations in which
subjects can counter this trend. We decided here to distribute among subjects
two variants of the test: one that presents a version A of the proof first and then
a version B, and one that presents the version B first and A subsequently.
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One more important issue to deal with here is making sure that the tests are
not neglected by the subjects. That is why we decided that the test should have
a form of an assignment in which the analysis of the proofs is required to give
an answer. In the end we decided that a good way to achieve this is to introduce
a mistake into the proof and instruct subjects to find it. The subjects were to
obtain an award for fulfilling the task.

2.2 The Actual Tests

The assignments given to the students were based upon a faulty proof of the
wrong set-theoretic formula

(X ∪ Y )\(X ∩ Y ) = (X\Y ) ∩ (Y \X).

It has a correct counterpart
(X ∪ Y )\(X ∩ Y ) = (X\Y ) ∪ (Y \X)

the proof of which can be formalised in Mizar as presented in Fig. 1 (version A
of the proof). This proof was taken as the basis for the experiment. We devised
another proof (see Fig. 2) of the same fact (version B) in which certain two steps
were permuted, which is reflected by the changed line numbers (7, 8) on the left
margins of the proofs. The actual internal structure of the two versions is the
same and is presented in Fig. 3 where labels of the nodes correspond directly
to the labels on the left margins of both the proof in version A and B.3 In this
way we can see that the proofs indeed differ only in the sequence of steps and
the necessary Mizar syntax reorganisations. We expected that the version B will
be perceived by subjects in our experiments as less readable than the version A
(and this turned out to be actually false).

Since we wanted to obtain judgements of many subjects and it is difficult
to gather significantly many Mizar experts in one place, we had to rewrite the
proof texts in natural language so that they are digestible by people who are
not familiar with Mizar syntax. Moreover, the subjects in the experiment were
Polish native speakers so the assignments had to be prepared in that language.4
We provide a faithful translation of the tests in Appendix A.

The two versions of the proof were printed on one page of an A4 leaf. Half
of the tests had version A of the proof located on the left-hand side of the page
and version B on the right-hand one and half of the tests had version B located
on the left-hand side and version A on the right-hand one. To make distribution
of tests quick we did not strictly keep the size of two resulting groups even.
However, we made sure that the groups are of substantial size (see Section 4).

3 Graph representation of proofs was defined by Pąk [9]. We invite interested readers
to consult his publication for details.

4 The original tests are available in the package with experiment data at the address
http://www.mimuw.edu.pl/~alx/proof-readability.zip
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theorem
1 : (X ∨ Y) \ (X ∧ Y) = (X \ Y) ∨ (Y \ X)

p r o o f
2 : f o r x ho l d s x in (X ∨ Y) \ (X ∧ Y) i f f x in (X \ Y) ∨ (Y \ X)

p r o o f
3 : l e t x ;
4 : t hu s x in (X ∨ Y) \ (X ∧ Y) i m p l i e s x in (X \ Y) ∨ (Y \ X)

p r o o f
5 : assume A1 : x in (X ∨ Y) \ (X ∧ Y) ;
6 : then not x in (X ∧ Y) by XBOOLE_0: de f 5 ;
7 : then A2 : not x in X or not x in Y by XBOOLE_0: de f 4 ;
8 : x in X or x in Y by A1 ,XBOOLE_0: de f 3 ;
9 : then x in (X \ Y) or x in ( Y \ X) by A2 ,XBOOLE_0: de f 5 ;
10 : hence x in (X \ Y) ∨ (Y \ X) by XBOOLE_0: de f 3 ;

end ;
11 : t hu s x in (X \ Y) ∨ (Y \ X) i m p l i e s x in (X ∨ Y) \ (X ∧ Y)

p r o o f
12 : assume x in (X \ Y) ∨ (Y \ X) ;
13 : then x in (X \ Y) or x in (Y \ X) by XBOOLE_0: de f 3 ;
14 : then A3 : x in X & not x in Y or

x in Y & not x in X by XBOOLE_0: de f 5 ;
15 : then A4 : x in (X ∨ Y) by XBOOLE_0: de f 3 ;
16 : not x in (X ∧ Y) by A3 ,XBOOLE_0: de f 4 ;
17 : hence x in (X ∨ Y) \ (X ∧ Y) by A4 ,XBOOLE_0: de f 5 ;

end ;
end ;
hence t h e s i s by TARSKI : 2 ;

end ;

Fig. 1. The Mizar proof the experiments were based upon, version A.

theorem
1 : (X ∨ Y) \ (X ∧ Y) = (X \ Y) ∨ (Y \ X)

p r o o f
2 : f o r x ho l d s x in (X ∨ Y) \ (X ∧ Y) i f f x in (X \ Y) ∨ (Y \ X)

p r o o f
3 : l e t x ;
4 : t hu s x in (X ∨ Y) \ (X ∧ Y) i m p l i e s x in (X \ Y) ∨ (Y \ X)

p r o o f
5 : assume A1 : x in (X ∨ Y) \ (X ∧ Y) ;
6 : then A2 : not x in (X ∧ Y) by XBOOLE_0: de f 5 ;
8 : A3 : x in X or x in Y by A1 ,XBOOLE_0: de f 3 , de f 4 ;
7 : not x in X or not x in Y by A3 ,A2 ,XBOOLE_0: de f 4 ;
9 : then x in (X \ Y) or x in ( Y \ X) by A3 ,XBOOLE_0: de f 5 ;
10 : hence x in (X \ Y) ∨ (Y \ X) by XBOOLE_0: de f 3 ;

end ;
11 : t hu s x in (X \ Y) ∨ (Y \ X) i m p l i e s x in (X ∨ Y) \ (X ∧ Y)

p r o o f
12 : assume x in (X \ Y) ∨ (Y \ X) ;
13 : then x in (X \ Y) or x in (Y \ X) by XBOOLE_0: de f 3 ;
14 : then A4 : x in X & not x in Y or

x in Y & not x in X by XBOOLE_0: de f 5 ;
15 : then A5 : x in (X ∨ Y) by XBOOLE_0: de f 3 ;
16 : not x in (X ∧ Y) by A4 ,XBOOLE_0: de f 4 ;
17 : hence x in (X ∨ Y) \ (X ∧ Y) by A5 ,XBOOLE_0: de f 5 ;

end ;
end ;

18 : hence t h e s i s by TARSKI : 2 ;
end ;

Fig. 2. A Mizar proof in which steps were permuted, version B.
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1

2 18

4 11

3

6 7 12 15

5 10 14 17

8 9 13 16

Fig. 3. The structures of the two versions of the proof.

3 The Execution of the Experiment

The experiments were conducted on students of informatics at Faculty of Math-
ematics, Informatics and Mechanics, University of Warsaw and Faculty of Math-
ematics and Computer Science, University of Białystok. They were executed in
three rounds of two slightly different settings.

Round I took place in January 2015 and was conducted as a separate assign-
ment in an exam with a slot of 10 minutes dedicated exclusively to the task of
comparing the proofs. The award for students were additional points in the exam
score. The topic of the exam was Logic for Computer Scientists. The subjects of
the experiment were students of first year postgraduate studies. These students
had studied the full curriculum of undergraduate informatics, including Foun-
dations of Mathematics as taught on the first year of undergraduate studies. We
can assume that their experience with formal systems, including programming
languages, was good enough for this test.

The experiment was conducted in parallel in two lecture halls which con-
tained groups of students of approximately 35 people each. The assignments
were given in parallel and in the conditions of the exam, which guarantee the
lack of communication between subjects. Therefore, we can assume that the
results were independent.

The instruction of the assignment was as follows
You are presented two proofs of the same fact. Both have the same flaw.
Choose the version of the reasoning for which you can easier perform
the following task: please show the place where the flaw is located and
describe in one sentence what is the reason of the mistake.
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Therefore, the students were given information that the two texts are essentially
equivalent and they were instructed to indicate which of the texts gave them
cognitive advantage.

Both versions of the proof were formulated using the same natural language
phrases so that one formulation corresponds to the same kind of inference step.

Round II took place in February 2015 and was conducted in Białystok. The
procedure and tests were the same as in the case of Round I. The topic of the
exam was Logic and Set Theory. The subjects of the experiment were students of
first year undergraduate studies of mathematics and informatics. We can assume
that their experience with formal systems was fair and enough for this test, since
they were taught specifically to prove facts using natural deduction format that
was close to the one used in Mizar. Still, we obtained significantly more answers
than in Round I which indicated that subjects did not understand the subject
matter of the proof. The exam was taken in two groups of approximately 20 and
40 people respectively

Round III took place in January 2016 in Warsaw and was conducted as a sep-
arate assignment during blackboard classes with a slot of 10 minutes dedicated
exclusively to the task of comparing the proofs. The award for students were
additional points in their score of the classes. The topic of the classes was Foun-
dations of Mathematics. The subjects of the experiment were students of first
year undergraduate studies. The experience of the students with formal systems
was limited. The experiment was conducted at the end of the course on foun-
dations of mathematics so their understanding of the notion of proof should be
satisfactory for the purpose of our procedure.

The experiment was conducted in 4 different groups of classes at different
times. The size of the groups was approximately 10 people. However, we can
assume that the measurements were independent since the students of the first
year of undergraduate studies rarely communicate between different groups (all
other classes are given in groups of the same composition) and the details of
the assignment necessary to complete it successfully are not very specific and so
very difficult to explain without having the actual test at hand. Therefore, we
can safely assume that despite the assignments were not given in parallel their
results are independent. Of course, the assignments within each of the group
were executed so that subjects did not communicate one with another.

The instruction of the assignment was as follows

You are presented two proofs of the same fact. Find in them as many
flaws as you can. In case a mistake occurs in both proofs, mark with
a star the version in which you found it first. Is the structure of some of
the proofs more readable for you?

Therefore, the students were given information that the two texts are essentially
equivalent and they were instructed to indicate which of the texts gave them
cognitive advantage. Additionally, they were instructed to search for as many
flaws as possible and mark places where the mistake was found first. We intro-
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duced this change to get deeper confidence that the proofs were read thoroughly
and check if this change has impact on the effects (E1) and (E2)

In this case the two versions of the proof were formulated in a different
fashion. Moreover, as the proofs actually demonstrate equivalence, they divide
into two parts: one for (⇒) and one for (⇐). We decided to have a different
sequence of these parts in each version. The rationale behind these changes was
to make line to line comparison more difficult and force subjects to perceive the
structure of the proofs first and then judge their clarity.

We would like to point out that in Round I and II the instruction was less
direct and referred to easiness of the task while in Round III the instruction
appealed directly to the intuitive understanding of the term readability. However,
we would like to stress that each of the formulations actually means that the
subjects were instructed to indicate their cognitive preference for the two versions
of the proof, i.e. which of the texts is easier to digest.

3.1 The Mann-Whitney Test

For our verification, we use the non-parametric Mann-Whitney test (also called
Willcoxon test), as the use of standard parametric tests assumes the distributions
are normal. This test is used to statistically refute a null hypothesis H0 in favour
of its negation, i.e. the alternative hypothesis HA.

This kind of test can be applied when the following prerequisites are met:

Hypotheses The null hypothesis H0 for the study should be formulated in the
fashion such that the probability of an observation from the population G1

exceeding an observation from the second population G2 is less then or equal
the probability of an observation from G2 exceeding an observation from G1,
i.e. P (score(G1) > score(G2)) ≤ P (score(G2) > score(G1)).
Consequently, the alternative hypothesis HA is that the probability of an
observation from the group G1 exceeding an observation from the group G2

is greater than the probability of an observation from G2 exceeding an obser-
vation from G1, i.e. P (score(G1) > score(G2)) > P (score(G2) > score(G1)).

Uniformity of populations We should also be able to assume that in case
the distribution of results from G1 and G2 is the same, the probability of an
observation from G1 exceeding one from G2 is equal to the probability of an
observation from G1 exceeding one from G2. In other words the background
of both groups is the same and their members were chosen randomly from
the point of view of the experiment.

Independence We should be able to assume that the observations in G1 and
G2 are independent.

Comparable responses The scores should be numeric so they can be easily
compared one with another so a single ranking of the subjects can be formed.

The basic idea of the test is that we build a ranking list of the scores from
the lowest to the highest (with possible ties). Then we try to get a numerical
representation on which of the groups has more results close to the top one.
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Consider the following pattern

U = n1n2 +
n2(n2 + 1)

2
−

n2∑

i=1

Ri

where U is the value of the Mann-Whitney U test, n1 is the sample size of G1,
n2 is the sample size of G2 and Ri is the ranking position of the i-th score in
the group G2. We can see that the more scores of G2 are closer to the top the
number U is greater.

Contemporary statistics packages return a normalised value Z of the statis-
tical test that is computed according to the pattern

Z =
U −mU

σU

where mU is the mean of U and σU is the standard deviation of U , which are in
turn computed using the formulas

mU =
n1n2

2
, σU =

√
n1n2(n1 + n2 + 1)

12
.

However, the formula for σU must be corrected in case ties (caused by equal
scores of certain subjects) are present and it is then

σU =

√√√√n1n2
12

((n+ 1)−
k∑

i=1

t3i − ti
n(n− 1)

)

where k is the number of tied positions, ti is the number of subjects that attained
the i-th tied rank, and n = n1 + n2.

3.2 Stouffer-Lipták Method

Since the tests given to the subjects were different and the students were of
different maturity we cannot directly sum the groups that took part in the two
rounds. Therefore we need a method to combine results of three experiments.
For this we use a meta-analysis technique called Stouffer-Lipták method [7]. In
this method we compute a combined Z value based upon Z-values obtained
from the Mann-Whitney test using the pattern (tailored to the case where three
experiments are combined):

Z =
w1Z1 + w2Z2 + w3Z3√

w2
1 + w2

2 + w2
3

where Z1, Z2, Z3 are the cumulative normal distribution values that match the
probabilities 1−p1, 1−p2 and 1−p3 with p1, p2, p3 being p-values obtained in two
sub-experiments while w1, w2, w3 are weights of the sub-experiments that can be
used to accommodate for different sample sizes (note that sub-experiment with
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a bigger number of subjects should weigh more than the sub-experiment with
the smaller one, according to Lipták square roots of sample sizes are optimal
here).

The p-value for Z-value obtained in this way is 1−v where v is the probability
that a normally distributed random number will be less than that this Z-value.

3.3 The Binomial Test

The binomial test is used to check which of two outcomes has greater proba-
bility. We assume here that our process has n outcomes represented by random
variables X1, . . . , Xn. These outcomes are either 0 (failure) or 1 (success) and
now Y =

∑n
i=1Xi represents the number of successes in the process. We observe

now that
P (Y = k) =

(
n

k

)
qk(1− q)n−k for k ∈ {0, . . . , n}

where q is the probability of success (i.e. that Xi = 1). We can now use the value
Qn,q(α) of the quantile of order α for the distribution to reject H0 telling that
q ≥ p0 versus the alternate hypothesisHA that q < p0 if and only if Y ≤ Qn,p0(α)
where α is the desired level of confidence. Typically p0 = 0.5 and we actually
check that the probability of success is greater than the one of failure.

4 Results of the Experiment

Since we use the Mann-Whitney test, we have to make sure that the assumptions
of the test are met. First of all we have to ensure that the scores are numeric.
In our setting we give the score 1 to those assignments that clearly indicate the
right-hand side of the test. The other score, 0, is given when the left-hand side is
indicated as preferred, when there is no preference and also when the assignment
was solved incorrectly by the subject.

We can now compare two populations depending on what was the content of
the left-hand side (i.e. first side) of obtained assignment: (G1) these who obtained
version A there with (G2) those who obtained version B. We understand that
subjects in G1, by choosing the right-hand side in their test, judged that version
B gives them cognitive advantage while subjects in G2, by choosing the same
right-hand side, judged that version A gives them this. Our main statistical
hypotheses can be formulated in the following way

– Ha
0 : the probability that a subject from G2 has the score 1 is greater or equal

to the probability that a subject from G1 does it;
– Ha

A: the probability that a subject from G2 has the score 1 is smaller than
the probability that a subject from G1 does it.

We have two more populations, G′1 with subjects that obtained 0 in the assess-
ment of assignments and G′2 with subjects that obtained 1 there. This time we
assign score 1 to all subjects of the groups. We can now formulate two other
hypotheses
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– Hf
0 : the probability that a subject from G′2 has the new score 1 is greater

than the probability that a subject from G′1 does it;
– Hf

A: the probability that a subject from G′2 has the new score 1 is smaller
or equal to the probability that a subject from G′1 does it.5

Round I
Version size mean sd
V. A first (G1) 33 0 0
V. B first (G2) 43 0.1627907 0.3735437
Total 76 0.09210526 0.2910959

Round II
Version size mean sd
V. A first (G1) 34 0.08823529 0.2879022
V. B first (G2) 31 0.09677419 0.3005372
Total 65 0.09230769 0.2917125

Round III
Version size mean sd
V. A first (G1) 17 0.2941176 0.4696682
V. B first (G2) 17 0.1764706 0.3929526
Total 34 0.2352941 0.4305615

Fig. 4. The basic statistics of the experiment.

Let us take a look at the as-
sumptions of the Mann-Whitney
test. This formulation of the two
pairs of hypotheses directly falls
under the format prescribed in Sec-
tion 3.1. In each case the leaves
with assignments were distributed
in sequence without any taking into
account the subjects’ history (in
particular scores in earlier exams)
so we can assume that the popu-
lations of all the groups had the
same background. The assignments
in each case were worked out by
the subjects in the exam-like con-
ditions, i.e. without any communi-
cation with their colleagues solv-
ing the same assignment. There-
fore, we may assume that the mea-
sures for each of the assignment were taken independently. At last, the final
scores were numeric so they fulfil the assumption of comparability of responses.

4.1 General Overview of Results Round I
Version score 0 score 1
V. A first (G1) 36 7
V. B first (G2) 33 0

Round II
Version score 0 score 1
V. A first (G1) 28 3
V. B first (G2) 31 3

Round III
Version score 0 score 1
V. A first (G1) 14 3
V. B first (G2) 12 5

Fig. 5. The distribution of the as-
signed scores.

The overall number of subjects who took part
in Round I of the experiment was 76. Out of
the number, 33 people got the assignment leaf
with version A of the proof on the left-hand
side and 43 people got the assignment with
version B on the left-hand side. In the case
of Round II the total number of subjects was
65 with 34 assignments where version A of
the proof was on the left-hand side and 31
where version B was there. In Round III the
total number of subjects was 34 and each of
the groups had 17 people. We have to note
here that the uneven number of subjects in
the two groups does not prevent applicability

5 The small difference in the formulation of the hypotheses Ha
0 , H

a
A and Hf

0 , H
f
A is

probabilistically negligible, but it is easier to handle in computations by R.
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of the Mann-Whitney statistical test, it only
impairs its accuracy.

The basic statistics of the groups are presented in Fig. 4. We can see the
sizes of the groups (column size) as well as the mean score (column mean) and
standard deviation of the scores (column sd). We immediately see that the mean
of the score in the group G1 during Round I is 0. This is due to the fact that
none of the subjects returned the assignment with indicated version A on the
right-hand side. We can confirm this by looking in the table displayed in Fig. 5
where the numerical scores of all the six subgroups are presented.

4.2 First Text Is Favoured Round p-value
Round I 3.208984 · 10−14

Round II 2.482325 · 10−12

Round III 0.001467528
Stouffer-Lipták 0

Fig. 6. The p-values for the test on
which side is favoured.

We evaluate first the hypotheses Hf
0 ver-

sus Hf
A as they give the background for

the whole experiment. For this we use
a more direct binomial test based upon the
Bernoulli distribution. The p-values for this
test are 3.208984 · 10−14, 2.482325 · 10−12,
and 0.001467528 for the samples taken in Round I, Round II, and Round III
respectively. The combined p-value obtained with the Stouffer-Lipták method is
so small that it is below the precision range of our tools. Therefore the overall
result is 0.6 All the figures are gathered in the table presented in Fig. 6. Sum-
ming up, we obtained a prevalent evidence that the left hand side is favoured in
such comparison tests.

4.3 Readability Assessment
Round Z-value p-value
Round I 2.41645 0.007836335
Round II 0.117872 0.4530845
Round III −0.7966275 0.7871663
Stouffer-Lipták 1.31315 0.0945662

Fig. 7. The statistics of the readability ex-
periment.

The picture in the readability as-
sessment is more complicated. Al-
ready a look at the table in Fig. 5
reveals that in Round I the prefer-
ence for version B was strong, in
Round II the scores were even and
in Round III turned in the opposite
direction. This is reflected in obtained Z-values, which are 2.41645, 0.117872 and
−0.7966275 respectively. The negative value of the second statistics reflects the
fact that we are closer to rejecting Ha

A. The p-values obtained in the tests are
0.007836335, 0.4530845 and 0.7871663 respectively.7 This shows that the first
test gives a strong statistically significant result, which supports our claim that
the proofs in version A format can give cognitive advantage at the statistically
significant level, actually the significance here is higher than 99%. This evidence
is so strong that even when we combine the three rounds with Stouffer-Lipták
6 The results were obtained with help of the standard R function binom.test.
7 The results were obtained with help of the R package coin [5,6] with its heuristics
mid-ranks to handle ties in input data.
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test we obtain result of reasonable significance at the level over 90%. These
results are summarised in the table presented in Fig. 7.

5 Discussion

The fact that the left-hand side of tests devised in our experiment is strongly
favoured has very strong support in our data. The case of readability is more
curious. We can see that Round I resulted in strong preference for version B of
the proof, which is more convoluted. However slight changes to the conditions in
Rounds II and III gave a picture that tends to support the opposite claim. We can
observe that Round I (during an exam) was likely more stressful than Round III,
and this could make the short-term memory less effective. As a result, the bigger
number of labels present in version B could turn out to be advantageous for the
understanding process. Some of the subjects shared with us this opinion on
their assessments. However, this line of argument is not supported by the result
of Round II, which was also taken under exam conditions.

One more phenomenon that can also play role here is that the proof in
version A indeed more often referred to the previous step. However, each step
depends not only on the directly preceding one, but also on some other ones. In
the case of version A we have a step (line 8. in Fig. 1) which required subjects to
refer 3 steps back, while the proof in version B required subjects to refer at most
2 steps back. Further investigations are necessary to check which of the reasons
actually holds. However, this investigation shows that the tools to improve read-
ability based upon the principle used here should be used cautiously. Readability
is a feature that depends highly on individual abilities of proof readers so the
tools to improve it should not enforce any fixed method of proof improvement,
but rather offer a number possibilities that can be chosen by users.

The subjects in this experiment actually were not trained in extensive reading
of mathematical proofs. We can say that they were accidental proof readers.
This experiments showed that they prefer proofs in version B. Still, experienced
users, as implied by our initial expectations, seem to prefer proofs structured as
in version A. It may be that the experienced users learn this preference as they
gain experience. This conjecture is also worth further investigation.
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A English Translations of the Tests Used in the
Experiment

In each of the two versions of the experiment the assignment text and the for-
mulation of the statement repeat on each side of the page. Only the proof part
is different. We give the repeating parts only once in this translation.

A.1 Version Used in January 2015

Assignment You are presented two proofs of the same fact. Both have the same
flaw. Choose the version of the reasoning for which you can easier perform the
following task: please show the place where the flaw is located and describe in
one sentence what is the reason of the mistake.
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Statement (X ∪ Y )\(X ∩ Y ) = (X\Y ) ∩ (Y \X)

Proof (version A) We show first that for each x the equivalence holds
x ∈ (X ∪ Y )\(X ∩ Y ) if and only if x ∈ (X\Y ) ∩ (Y \X).

For the proof from left to right:
– A1: Let us take any x ∈ (X ∪ Y )\(X ∩ Y ).
– We immediately obtain that x 6∈ (X ∩ Y ) (def. of set difference),
– A2: and further that x 6∈ X or x 6∈ Y (def. of set intersection).
– Additionally x ∈ X or x ∈ Y (see A1, def. of set sum)
– therefore x ∈ (X\Y ) or x ∈ (Y \X) (see A2, def. of set difference),
– which gives the expected x ∈ (X\Y ) ∩ (Y \X) (def. of set intersection).

For the proof from right to left:
– Let us take any x ∈ (X\Y ) ∩ (Y \X).
– We immediately obtain that x ∈ (X\Y ) or x ∈ (Y \X) (def. of set intersec-

tion),
– A4: and further x ∈ X and x 6∈ Y or x ∈ Y and x 6∈ X (def. of set difference),
– and further x ∈ (X ∪ Y ) (def. of set sum).
– Additionally x 6∈ (X ∩ Y ) (see A4, def. of set intersection)
– which gives the expected x ∈ (X ∪ Y )\(X ∩ Y ) (def. of set difference).
From the proved equivalence and definition of set equality we immediately

obtain the goal statement.

Proof (version B) We show first that for each x the equivalence holds
x ∈ (X ∪ Y )\(X ∩ Y ) if and only if x ∈ (X\Y ) ∩ (Y \X).

For the proof from left to right:
– A1: Lat us take any x ∈ (X ∪ Y )\(X ∩ Y ).
– A2: We immediately obtain that x 6∈ (X ∩ Y ) (def. of set difference),
– A3: Additionally x ∈ X or x ∈ Y (see A1, def. of set sum)
– Observe that x 6∈ X or x 6∈ Y (see A2, def. of set intersection)
– Consequently x ∈ (X\Y ) or x ∈ (Y \X) (see A3, def. of set difference),
– which gives the expected x ∈ (X\Y ) ∩ (Y \X) (def. of set intersection).

For the proof from right to left:
– Let us take any x ∈ (X\Y ) ∩ (Y \X).
– We immediately obtain that x ∈ (X\Y ) or x ∈ (Y \X) (def. of set intersec-

tion),
– A3: and further x ∈ X and x 6∈ Y or x ∈ Y and x 6∈ X (def. of set difference),
– and further x ∈ (X ∪ Y ) (def. of set sum).
– Additionally x 6∈ (X ∩ Y ) (see A3, def. of set intersection)
– which gives the expected x ∈ (X ∪ Y )\(X ∩ Y ) (def. of set difference).
From the proved equivalence and definition of set equality we immediately

obtain the goal statement.

A.2 Version Used in January 2016

Assignment You are presented two proofs of the same fact. Find in them as
many flaws as you can. In case a mistake occurs in both proofs, mark with a star
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the version in which you found it first. Is the structure of some of the proofs
more readable for you?

Statement (X ∪ Y )\(X ∩ Y ) = (X\Y ) ∩ (Y \X)

Proof (version A) We show first that for each x the equivalence holds
x ∈ (X ∪ Y )\(X ∩ Y ) if and only if x ∈ (X\Y ) ∩ (Y \X).

For the proof from left to right:
– [1] Let us take any x ∈ (X ∪ Y )\(X ∩ Y ).
– We immediately obtain that x 6∈ (X ∩ Y ) (def. of set difference),
– [2] and further that x 6∈ X or x 6∈ Y (def. of set intersection).
– Additionally x ∈ X or x ∈ Y (see [1], def. of set sum)
– therefore x ∈ (X\Y ) or x ∈ (Y \X) (see [2], def. of set difference),
– summing up, we obtain in the end that x ∈ (X\Y ) ∩ (Y \X) (def. of set

intersection).
For the proof from right to left:
– Let us take any x ∈ (X\Y ) ∩ (Y \X).
– We immediately obtain that x ∈ (X\Y ) or x ∈ (Y \X) (def. of set intersec-

tion),
– [3] and then x ∈ X ∧ x 6∈ Y or x ∈ Y ∧ x 6∈ X (def. of set difference),
– [4] and then x ∈ (X ∪ Y ) (def. of set sum).
– Additionally x 6∈ (X ∩ Y ) (see [3], def. of set intersection)
– summing up, we obtain in the end that x ∈ (X ∪ Y )\(X ∩ Y ) (see [4] and

def. of set difference).
From the proved equivalence and definition of set equality we immediately

obtain the goal statement.

Proof (version B) We show first that for each x the equivalence holds
x ∈ (X ∪ Y )\(X ∩ Y ) if and only if x ∈ (X\Y ) ∩ (Y \X).

For the proof from right to left:
– Let us fix arbitrary x ∈ (X\Y ) ∩ (Y \X).
– From this, we obtain that x ∈ (X\Y ) or x ∈ (Y \X) (def. of set intersection),
– [1] and then x ∈ X ∧ x 6∈ Y or x ∈ Y ∧ x 6∈ X (def. of set difference),
– [2] and then x ∈ (X ∪ Y ) (def. of set sum).
– Except from that x 6∈ (X ∩ Y ) (see [1], def. of set intersection)
– which gives the expected x ∈ (X ∪ Y )\(X ∩ Y ) (see [2] and def. of set

difference).
For the proof from left to right:
– [3] Let us fix arbitrary x ∈ (X ∪ Y )\(X ∩ Y ).
– [4] From this we obtain that x 6∈ (X ∩ Y ) (def. of set difference),
– [5] Additionally x ∈ X or x ∈ Y (see [3], def. of set sum)
– Observe that x 6∈ X or x 6∈ Y (see [4], def. of set intersection).
– therefore x ∈ (X\Y ) or x ∈ (Y \X) (see [5], def. of set difference),
– which gives the expected x ∈ (X\Y ) ∩ (Y \X) (def. of set intersection).
From the proved equivalence and definition of set equality we immediately

obtain the goal statement.

186



Models for Metamath

Mario Carneiro

The Ohio State University, Columbus OH, USA

Abstract. Although some work has been done on the metamathematics
of Metamath, there has not been a clear definition of a model for a Meta-
math formal system. We define the collection of models of an arbitrary
Metamath formal system, both for tree-based and string-based represen-
tations. This definition is demonstrated with examples for propositional
calculus, ZFC set theory with classes, and Hofstadter’s MIU system, with
applications for proving that statements are not provable, showing con-
sistency of the main Metamath database (assuming ZFC has a model),
developing new independence proofs, and proving a form of Gödel’s com-
pleteness theorem.

Keywords: Metamath ·Model theory · formal proof · consistency · ZFC
· Mathematical logic

1 Introduction

Metamath is a proof language, developed in 1992, on the principle of minimizing
the foundational logic to as little as possible [1]. An expression in Metamath is
a string of constants and variables headed by a constant called the expression’s
“typecode”. The variables are typed and can be substituted for expressions with
the same typecode. See § 2.1 for a precise definition of a formal system, which
mirrors the specification of the .mm file format itself.

The logic on which Metamath is based was originally defined by Tarski in [2].
Notably, this involves a notion of “direct” or “non-capturing” substitution, which
means that no α-renaming occurs during a substitution for a variable. Instead,
this is replaced by a “distinct variable” condition saying that certain substitu-
tions are not valid if they contain a certain variable (regardless of whether the
variable is free or not—Metamath doesn’t know what a free variable is). For
instance, the expression ∀xϕ contains a variable ϕ inside a binding expression
“∀x�”. (Metamath also does not have a concept of “binding expression”, but it
is safe to say that under a usual interpretation this would be considered a bind-
ing expression.) If there is a distinct variable condition between x and ϕ, then
the substitution ϕ 7→ x = y is invalid, because x is present in the substitution
to ϕ. This is stricter than the usual first-order logic statement “x is not free in
ϕ”, because ϕ 7→ ∀xx = y is also invalid. If there is no such distinct variable
condition between x and ϕ, these substitutions would be allowed, and applying
them to ∀xϕ would result in ∀xx = y and ∀x∀xx = y, respectively.

In this paper, we will develop a definition for models of Metamath-style
formal systems, which will operate by associating a function to each syntactical
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construct according to its type. For example, the forall symbol is defined by
the axiom “wff ∀xϕ”, which is to say it takes as input a set variable and a
wff variable, and produces a wff expression. This construct is associated to an
interpretation function π∀ : Uset × Uwff → Uwff, where Uset is the universe of set
variables and Uwff is the universe of wff variables, which are each provided as
part of the definition of a model.

Note the difference from the usual signature of the forall, π′∀ : (M → Bool)→
Bool, which maps functions from the model universe M to boolean values, to
a boolean value. In order to make our definition work, we need the set Uwff to
be more complicated than just Bool. Instead, it is effectively (V →M)→ Bool,
that is, a function from assignments of variables to elements of the model, to
a boolean value. In other words, a wff can be thought of as an infinite-place
predicate ϕ(v0, v1, v2, . . . ) (although the value can only depend on finitely many
of the provided variables).

1.1 Grammars and trees

Unfortunately, although it is possible to define what it means to be a model
for any Metamath formal system, we can’t quite reduce it to a collection of
interpretation functions, like it is normally done, without a way to parse the
strings which are used in the proof. This leads to the idea of grammatical parsing,
which we take up in earnest in § 2.3. By separating all axioms into “syntax
axioms” and “logical axioms”, we can find an isomorphism to a representation
of statements as trees, with syntax axioms forming the nodes of the tree. Most
interesting Metamath systems are grammatical, but for example Hofstadter’s
MIU system [3], formalized in Metamath as miu.mm, is a valid formal system
which is not grammatical (see § 3.2).

The main work is presented in § 2. A short recap of Metamath’s formalism
as it will be used in this work is in § 2.1, followed by the definition of a model
in § 2.2. Then we define the subset of “grammatical” formal systems, which
are those for which parsing is possible, in § 2.3, and rebuild the theory for a
tree representation of formal systems in § 2.4. The model theory of tree formal
systems is developed in § 2.5. A selection of examples is provided in § 3, and in
particular we prove that Metamath’s ZFC formalization, set.mm, has a model
in Theorem 4. Some applications of model theory are developed in § 4, finishing
with a proof of Gödel’s completeness theorem in § 4.2.

2 Formal definition

2.1 Metamath recap

We recall the definitions from Appendix C of the Metamath book [1], but with
a slight modification for a global type function.

1. Let CN,VR be disjoint sets, called the set of constants and variables respec-
tively.
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CN constants § 2.1 VR variables § 2.1 Type type of expr § 2.1

EX expressions § 2.1 DV distinct variables § 2.1 V variables in expr § 2.1

σ substitution § 2.1 VH variable hypotheses § 2.1 TC typecodes § 2.1

VT variable typecodes § 2.1 U universe § 2.2 VL, µ valuations § 2.2

# freshness relation § 2.2 η interpretation § 2.2 SA syntax axioms § 2.3

Syn syntax for expr § 2.4 ST syntax trees § 2.4 π interpretation (tree) § 2.5

Table 1. Definition cheat sheet

2. Let Type : VR → CN be a function, understood to map a variable to its
typecode constant.

3. Let VT = {Type(v) | v ∈ VR} be the set of typecodes of variables.
4. EX = {e ∈ ⋃

n∈ω
n(CN ∪ VR) | (|e| > 0 ∧ e0 ∈ CN)} (the set of expressions),

5. DV = {x ⊆ VR | |x| = 2} (the set of distinct variable specifications), and
6. V(e) = VR ∩ {en | 0 ≤ n < |e|} (the set of variables in an expression).
7. We also write Type(e) = e0 for e ∈ EX.
8. A substitution is a function σ : EX → EX such that σ(〈c〉) = 〈c〉 for c ∈ CN

and σ(gh) = σ(g)σ(h), where adjacency denotes concatenation of sequences.
(Such a function is determined by its values on {〈v〉 | v ∈ VR}.)

9. Define VHv = 〈Type(v), v〉, for v ∈ VR (a variable hypothesis).
10. A pre-statement is a tuple 〈D,H,A〉 where D ⊆ DV, H ⊆ EX is finite, and

A ∈ EX.
11. The reduct of 〈D,H,A〉 is 〈DM , H,A〉 where DM = D ∩P(V(H ∪ {A})),

and a statement is defined as the reduct of some pre-statement.
12. A formal system is a tuple 〈CN,VR,Type, Γ 〉 where CN,VR,Type are as

above and Γ is a set of statements.
13. The closure of a set H ⊆ EX relative to D is the smallest set C such that:

– H ∪ {VHv | v ∈ VR} ⊆ C
– For every 〈D′, H ′, A′〉 ∈ Γ and every substitution σ, if
• For all e ∈ H ′ ∪ {VHv | v ∈ VR}, σ(e) ∈ C, and
• For all {α, β} ∈ D′, if γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), then
{γ, δ} ∈ D,

then σ(A′) ∈ C.
14. A pre-statement 〈D,H,A〉 is provable if A is in the closure of H relative to D,

and a theorem is a statement that is the reduct of a provable pre-statement.
15. Let TC be the set of typecodes of theorems. (Explicitly, this is TC = VT ∪
{Type(A) | 〈D,H,A〉 ∈ Γ}.)

16. Two formal systems 〈CN,VR,Type, Γ 〉 and 〈CN,VR,Type, Γ ′〉 are equivalent
if they generate the same set of theorems (or equivalently, if every axiom in
one is a theorem of the other).

Why a global type function? A careful comparison with Appendix C of the
Metamath book [1] shows that in the original definition a variable only has a
type locally (inside a statement), while we require all variables to have a unique
and globally defined type, provided by the Type function. In practice, variables
are never reintroduced with a different type, so this is not a strong requirement.
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Additionally, there is some ongoing work to amend the specification to disallow
such multi-typed variables.

Nevertheless, it is a simple fix to convert a formal system with multi-typed
variables to one with a global type function: Take the set of variables to be
VT × VR, and define Type(c, v) = c. Then whenever a variable v appears in a
statement with type c, use the variable 〈c, v〉 instead. This is equivalent to just
prepending the type of the variable to its name, so that uses of the same variable
with a different type are distinguished.

2.2 Models of formal systems

Fix a collection of sets Uc for c ∈ TC, which will represent the “universe” of
objects of each typecode.

Definition 1. A valuation is a function µ on VR such that µ(v) ∈ UType(v) for
all v ∈ VR. The set of all valuations is denoted by VL.

Definition 2. A freshness relation # is a symmetric relation on the disjoint
union

⊔
U =

⊔
c∈TC Uc such that for any c ∈ VT and any finite set W ⊆ ⊔

U,
there is a v ∈ Uc with v # w for all w ∈W .

Definition 3. A model of the formal system 〈CN,VR,Type, Γ 〉 is a tuple 〈U,#,
η〉 where U is a function on TC and # is a freshness relation, and for each
µ ∈ VL, ηµ is a partial function on EX such that:

– (Type correctness) For all e ∈ EX, if ηµ(e) is defined then ηµ(e) ∈ UType(e).
– (Variable application) For all v ∈ VR, ηµ(VHv) = µ(v).
– (Axiom application) For each 〈D,H,A〉 ∈ Γ , if

• µ(α) # µ(β) for all {α, β} ∈ D, and
• ηµ(h) is defined for all h ∈ H,

then ηµ(A) is defined.
– (Substitution property) For each substitution σ and e ∈ EX, ηµ(σ(e)) =
ησ(µ)(e), where σ(µ) ∈ VL is defined by σ(µ)(v) = ηµ(σ(VHv)).

– (Dependence on present variables) For all ν ∈ VL, e ∈ EX, If µ(v) = ν(v)
for all v ∈ V(e), then ηµ(e) = ην(e).

– (Freshness substitution) For all v ∈ ⊔
U, e ∈ EX, if ηµ(e) is defined and

v # µ(w) for all w ∈ V(e), then v # ηµ(e).

Here equality means that one side is defined iff the other is and they have the
same value. We say that e ∈ EX is true in the model if ηµ(e) is defined for all
µ ∈ VL.

The key property of a model is soundness, the fact that the axiom application
law applies also to theorems.

Theorem 1. For any theorem 〈D,H,A〉, if µ(α) #µ(β) for all {α, β} ∈ D and
ηµ(h) is defined for all h ∈ H, then ηµ(A) is defined.
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Proof. By dependence on present variables, we may replace µ by any other µ′

such that µ(v) = µ′(v) for all v ∈ V(H ∪ {A}) without affecting the truth of the
hypotheses or conclusion. If 〈D,H,A〉 is the reduct of 〈D′, H,A〉 where D′ refers
to finitely many additional variables (i.e. D′ ⊆ P(V ) for some finite set V ⊇
V(H ∪ {A})), order these as V = {v1, . . . , vn} with V(H ∪ {A}) = {v1, . . . , vk}
for some k ≤ n. Then use the freshness constraint to recursively select values
µ′(vi) for each k < i ≤ n such that µ′(vi) # µ′(vj) for all j < i. Then this new
µ′ will satisfy the hypothesis µ′(α) #µ′(β) for all {α, β} ∈ D′, so that it suffices
to prove the theorem for provable pre-statements.

We prove by induction that whenever A is in the closure of H relative to D,
ηµ(A) is defined. If A ∈ H, it is true by assumption, and if A = VHv for some
v ∈ VR, then it is true by the variable application law. Otherwise we are given
〈D′, H ′, A′〉 ∈ Γ and a substitution σ, such that for all e ∈ H ′∪{VHv | v ∈ VR},
ηµ(σ(e)) is defined (by the induction hypothesis), and for all {α, β} ∈ D′, if
γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), then {γ, δ} ∈ D, and we wish to show that
ηµ(A), with A = σ(A′), is defined.

For each γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), {γ, δ} ∈ D implies µ(γ) # µ(δ)
from the theorem hypothesis, hence by freshness substitution on the left and the
right, µ(γ) # ηµ(σ(VHβ)), and then ηµ(σ(VHα)) # ηµ(σ(VHβ)), or equivalently,
σ(µ)(α) # σ(µ)(β) for each {α, β} ∈ D′.

Apply the axiom application law to σ(µ) and 〈D′, H ′, A′〉. The substitu-
tion property reduces ηµ(σ(e)) to ησ(µ)(e) in the hypotheses, and ησ(µ)(A

′) to
ηµ(σ(A′)) in the conclusion, hence ηµ(σ(A′)) is defined, as we wished to show.

ut
In particular, if 〈∅, ∅, A〉 is provable, then ηµ(A) is defined for all µ ∈ VL,

which makes it a useful technique for showing that certain strings are not prov-
able (see § 4.1).

For any formal system, there is a model, where Uc = {∗} for each c, ∗ # ∗
is true, and ηµ(e) = ∗ for all µ, e. Thus statements like “formal system X has
a model” are not as useful here as they are in first-order logic. To marginalize
this kind of model, we will call a model where each ηµ is a total function trivial.
(We will have a slightly wider definition of trivial model given grammatical
information, cf. Definition 6.)

Although this defines the property of being a model under the full generality
of Metamath formal systems, the process simplifies considerably when expres-
sions can be parsed according to a grammar.

2.3 Grammatical parsing

Definition 4. A formal system is said to be weakly grammatical if for every
〈D,H,A〉 ∈ Γ , if Type(A) ∈ VT, then there is some axiom 〈∅, ∅, A′〉 ∈ Γ such
that σ(A′) = A for some substitution σ and no variable occurs more than once
in A′.

For these systems we will define

SA = {A | 〈∅, ∅, A〉 ∈ Γ ∧ Type(A) ∈ VT ∧ ∀mn, (Am = An ∈ VR→ m = n)},
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6 Mario Carneiro

the set of syntax axioms. (We will identify the expression A with its statement
〈∅, ∅, A〉 when discussing syntax axioms.)

For example, any context-free grammar is a weakly grammatical formal sys-
tem, where each production translates to a syntax axiom, and each nonterminal
translates to a variable typecode. Most recursive definitions of a well-formed for-
mula will fit this bill, although we can’t capture the notion of bound variables
with this alone.

Conversely, a weakly grammatical formal system yields a context-free gram-
mar, where the terminals are CN \ VT, the non-terminals are VT, and for each
A ∈ SA there is a production Type(A) → α, where αn = An+1 ∈ CN if
An+1 ∈ CN or αn = Type(An+1) ∈ VT if An+1 ∈ VR. (This assumes that
An+1 ∈ VT is always false, but the two sets can be disjointified if this is not the
case.)

Definition 5. A grammatical formal system is a weakly grammatical formal
system augmented with a function Syn : TC → VT such that Syn(c) = c for
all c ∈ VT and, defining Syn(e) for e ∈ EX such that Syn(e)0 = Syn(e0) and
Syn(e)n = en for n > 0, 〈∅, ∅,Syn(e)〉 is a provable statement for all 〈D,H,A〉 ∈
Γ and e ∈ H ∪ {A}.

Remark 1. Of course, this notion is of interest primarily because it is satisfied
by all major Metamath databases; in particular, set.mm is a grammatical formal
system, with VT = {set, class,wff}, TC = VT ∪ {`}, and Syn(`) = wff.

Definition 6. A model of a grammatical formal system is a model in the sense
of Definition 3 which additionally satisfies Uc ⊆ USyn(c), v # wc ↔ v # wSyn(c)

when w ∈ Uc (and wc, wSyn(c) are its copies in the disjoint union), and
ηµ(e) = ηµ(Syn(e)) if the latter is in Uc, otherwise undefined. Such a model is
trivial if Uc = USyn(c) for all c ∈ TC.

2.4 Tree representation of formal systems

The inductive definition of the closure of a set of statements immediately leads
to a tree representation of proofs. A proof tree is a tree with nodes labeled by
statements and edges labeled by expressions.

Definition 7. We inductively define the statement “T is a proof tree for A”
(relative to D,H) as follows:

– For each e ∈ H ∪ {VHv | v ∈ VR}, the single-node tree labeled by the reduct
of 〈D,H, e〉 is a proof tree for e.

– For every 〈D′, H ′, A′〉 ∈ Γ and every substitution σ satisfying the conditions
for σ(A′) ∈ C in § 2.1.13, the tree labeled by 〈D′, H ′, A′〉 with edges for each
e ∈ H ′∪V(H∪{A}) leading to a proof tree for σ(e), is a proof tree for σ(A′).
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The definition of closure ensures that there is a proof tree for A relative to
D,H iff 〈D,H,A〉 is provable pre-statement. (The branches for variables outside
V(H ∪ {A}) are discarded because they can always be replaced by the trivial
substitution σ(〈v〉) = 〈v〉 without affecting the closure deduction.) Additionally,
we can prove by induction that every proof tree T encodes a unique expression
Expr(T ).

Definition 8. An unambiguous formal system is a grammatical formal system
whose associated context-free grammar is unambiguous.

Remark 2. Note that for this to make sense we need SA to contain only axioms
and not theorems, i.e. this property is not preserved by equivalence of formal
systems. For such systems every Expr is an injection when restricted to the set
ST of syntax trees, trees T relative to ∅, ∅ such that Type(T ) := Type(Expr(T )) ∈
VT (or equivalently, Type(T ) = Type(A) ∈ VT where 〈D,H,A〉 is the root of
T ). The subtrees of a syntax tree are also syntax trees, and the nodes are syntax
axioms, with variables (of the form VHv) at the leaves.

With this, we can “rebuild” the whole theory using trees instead of strings,
because the all valid substitutions have unique proof tree representations. The
expressions in this new language will be trees, whose nodes are syntax axioms
such as wa = “wff (ϕ ∧ ψ)”, representing the “and” function, with variables at
the leaves. However, we no longer need to know that wa has any structure of its
own, besides the fact that it takes two wff variables and produces a wff. Thus
we can discard the set CN entirely. (That is, the constant “(” has no meaning of
its own here.)

Instead, we take as inputs to the construction the set TC′ of typecodes, a
set VR′ of variables, a set SA′ of things we call syntax axioms, although they
have no internal structure, the function Type′ : VR′ ∪ SA′ → VT′, as well as
Syn′ : TC′ → VT′. A tree T ∈ ST′ is either a variable from VR′ or a syntax
axiom a ∈ SA′ connecting to more subtrees; each syntax axiom has a set vai of
variables labeling the edges, and a type Type′(a); Type′(T ) is defined as the
type of the root of T .

We replace EX in the string representation with EX′, which consists of tuples
〈c, T 〉 where c ∈ TC′, T ∈ ST′, and Syn′(c) = Type′(T ). We extend Type′ to EX′

by Type′(〈c, T 〉) = c. V ′(T ) is defined by induction such that V ′(v) = {v} and
V ′(T ) at a syntax axiom is the union of V ′(Ti) over the child subtrees Ti. A substi-
tution σ is a function ST′ → ST′ such that σ(a[T1, . . . , Tn]) = a[σ(T1), . . . , σ(Tn)]
for each syntax axiom a, with the value at variables left undetermined, extended
to EX′ → EX′ by σ(〈c, T 〉) = 〈c, σ(T )〉.

Pre-statements and statements are defined exactly as before: A pre-statement
is a tuple 〈D,H,A〉 where D ⊆ DV′, H ⊆ EX′ is finite, and A ∈ EX′. The reduct
of 〈D,H,A〉 is 〈DM , H,A〉 where DM = D∩P(V ′(H∪{A})). A tree formal sys-
tem (this time unambiguous by definition) is a tuple 〈TC′,VR′,SA′,Type′,Syn′, Γ ′〉
where Γ ′ is a set of statements. The closure of a set H ⊆ EX′ relative to D
is defined as in the string case, but the base case instead takes H ⊆ C and
〈Type′(T ), T 〉 ∈ C for every T ∈ ST′.

193



8 Mario Carneiro

To map an unambiguous formal system 〈CN,VR,Type, Γ, Syn〉 to a tree
formal system 〈TC′,VR′,SA′,Type′,Syn′, Γ ′〉, one takes TC′ = TC, VR′ to be
the set of VHv singleton trees for v ∈ VR, SA′ = SA, Type′(T ) = Type(T ),
Syn′ = Syn, and Γ ′ = {〈D, {t(h) | h ∈ H}, t(A)〉 | 〈D,H,A〉 ∈ Γ \ ST}, where
t(e) = {Type(e),Expr−1(Syn(e))}.

These two formal systems are isomorphic, in the sense that expressions and
statements can be mapped freely, respecting the definitions of theorems and
axioms, variables and typecodes.

2.5 Models of tree formal systems

Given the isomorphism of the previous section, the model theory of unambiguous
formal systems can be mapped to models of tree formal systems, with 〈U,#, η〉
satisfying an exactly equivalent set of properties. But the major advantage of the
tree formulation is that the substitution property implies that η is completely
determined except at syntax axioms, so for trees we will replace η with a new
function π.

Definition 9. Given a function U on TC′ satisfying Uc ⊆ USyn(c), and π a SA-
indexed family of functions, where πa :

∏
i UType(vai ) → UType(a) for each a ∈ SA,

define ηµ for µ ∈ VL recursively such that:

– For all v ∈ VR, ηµ(v) = µ(v).
– For each T ∈ ST with a ∈ SA at the root, ηµ(T ) = πa({ηµ(Ti)}i)
– For e = 〈c, T 〉 ∈ EX′, ηµ(e) = ηµ(T ) if ηµ(T ) ∈ Uc, otherwise undefined.

Definition 10. A model of a tree formal system is a tuple 〈U,#, π〉 where U is
a function on TC′ satisfying Uc ⊆ USyn(c), and # is a freshness relation (which
is extended from

⊔
v∈VT Uc to

⊔
v∈TC Uc by setting v #wc iff v #wSyn(c) for the

copies of w in the disjoint union), and π is a SA-indexed family of functions,
where πa :

∏
i UType(vai ) → UType(a) for each a ∈ SA, such that for each µ ∈ VL,

and defining η as above:

– For each 〈D,H,A〉 ∈ Γ ′, if
• µ(α) # µ(β) for all {α, β} ∈ D, and
• ηµ(h) is defined for all h ∈ H,

then ηµ(A) is defined.
– For all v ∈ ⊔

U, a ∈ SA, and f ∈ ∏
i UType(vai ), if v # fi for all i, then

v # πa(f).

Theorem 2. Let 〈U,#, π〉 be a model for the tree formal system. Then the as-
sociated 〈U,#, η〉 is a model in the sense of Definition 6.

Proof.

– The variable application law is true by definition of η, and the axiom appli-
cation law is true by assumption.
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– For the substitution law, suppose σ and e ∈ EX′ are given. We want to show
that ηµ(σ(e)) = ησ(µ)(e), where σ(µ) ∈ VL is defined by σ(µ)(v) = ηµ(σ(v)).
We show this for Syn(e) = 〈Type(T ), T 〉 by induction on T . In the base case,
T = v for v ∈ VT, so ησ(µ)(v) = σ(µ)(v) = ηµ(σ(v)). Otherwise let a ∈ SA
be the root of T , so

ησ(µ)(T ) = πa({ησ(µ)(Ti)}i) = πa({ηµ(σ(Ti))}i) = ηµ(σ(T )).

Then for e = 〈c, T 〉, if ησ(µ)(T ) = ηµ(σ(T )) is in Uc, then both are defined
and equal, otherwise both are undefined.

– Dependence on present variables is also provable by induction; in the base
case ηµ(v) = µ(v) only depends on V(v) = {v}; and for a tree with a ∈ SA
at the root, ηµ(T ) = πa({ηµ(Ti)}i) only depends on V(T ) =

⋃
i V(Ti). For

e = 〈c, T 〉 this property is maintained since V(e) = V(T ) and ηµ(e) = ηµ(T )
or undefined.

– For the freshness substitution law, in the base case v#µ(v) = ηµ(v); and for
a tree with a ∈ SA at the root, if v # V(T ) then v # V(Ti) so v # ηµ(Ti) for
each i, and then by definition v#πa({ηµ(Ti)}i) = ηµ(T ). For e = 〈c, T 〉 this
property is maintained since V(e) = V(T ) and ηµ(e) = ηµ(T ) or undefined.

ut

By the isomorphism this approach also transfers to models of unambiguous
formal systems. So we are left with the conclusion that a model can be specified
by its functions πa, for each a ∈ SA; this is known in conventional model theory
as the interpretation function.

3 Examples of models

3.1 Propositional logic

We start with a model for classical propositional logic. We define:

CN = {(, ),→,¬,wff,`}

VR = {ϕ,ψ, χ, . . . }

Γ = {wn, wi, ax-1, ax-2, ax-3, ax-mp},

where the axioms are

– wn: wff ¬ϕ
– wi: wff (ϕ→ ψ)
– ax-1: ` (ϕ→ (ψ → ϕ))
– ax-2: ` ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))
– ax-3: ` ((¬ϕ→ ¬ψ)→ (ψ → ϕ))
– ax-mp: {` ϕ,` (ϕ→ ψ)} implies ` ψ
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Additionally, TC = {wff,`} and VT = {wff} are implied by the preceding
definition.

Although the axiom strings appear structured with infix notation, this is not
required; we could just as easily have an axiom with string ` )ϕ(→. That this is
not the case is what makes this a grammatical formal system, with Syn(wff) =
Syn(`) = wff. The syntax axioms are SA = {wn, wi}. In fact this formal system
is unambiguous, but we will not prove this here.

This formal system has a nontrivial model:

Uwff = Bool := {T, F} U` = {T}

x# y is always true

π¬(F) = T, π¬(T) = F

π→(F, F) = T, π→(F, T) = T, π→(T, F) = F, π→(T, T) = T

We will write “α = T” simply as “α is true” or “α”, treating the elements
of Bool as actual truth values in the metalogic. The πa functions generate η
as previously described, so that, for example, if µ(ϕ) = T, µ(ψ) = F, then
ηµ(wff (¬ϕ→ (ϕ→ ψ))) = π→(π¬(T), π→(T, F)) = π→(F, F) = T.

In order to verify that this indeed yields a model, we must check the axiom
application law for each non-syntax axiom (usually called “logical axioms” in this
context). By our definition of η given π, ηµ(〈c, T 〉) is defined iff ηµ(〈Syn(c), T 〉) ∈
USyn(c) (where Syn(c) = Type(T )); in this case this translates to ηµ(T ) = T since
Syn(c) = {`}.

– ax-1: ηµ(` (ϕ→ (ψ → ϕ))) = π→(µϕ, π→(µψ, µϕ)) = T

– ax-2: π→(π→(µϕ, π→(µψ, µχ)), π→(π→(µϕ, µψ), π→(µϕ, µχ))) = T

– ax-3: π→(π→(π¬(µϕ), π¬(µψ)), π→(µψ, µϕ)) = T

– ax-mp: If µϕ and π→(µϕ, µψ) are true, then µψ = T.

In each case, there are a finite number of variables that range over {T, F} (such
as µϕ, µψ, µχ in the case of ax-3), so it suffices to verify that they are true under
all combinations of assignments to the variables, i.e. truth table verification.

3.2 MIU system

Let us solve the MU puzzle by using a model. Hofstadter’s MIU system [3] is
defined in Appendix D of the Metamath book [1], so we will just define the
model itself. We have TC = {wff,`} and VT = {wff}, and let Syn(`) = wff with
x, y variables of type wff. The axioms are:

– we: wff
– wM: wff xM
– wI: wff xI
– wU: wff xU
– ax: ` MI
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– I : ` xI implies ` xIU
– II: ` Mx implies ` Mxx
– III: ` xIIIy implies ` xUy
– IV: ` xUUy implies ` xy

The syntax axioms are {we, wM, wI, wU}. Note that in we, there are no symbols
after the typecode, so this says that the empty string is a valid wff. This formal
system is weakly grammatical, but not grammatical, because wffs are built from
the right, while axiom II contains the string ` Mx, which cannot be parsed as
a wff. If there was a syntax axiom “wff xy”, then it would be grammatical, but
not unambiguous.

In order to solve the MU puzzle, we build the relevant invariant, which is
the number of I’s modulo 3, into the model. Let Uwff = {0, 1, 2}, U` = {1, 2},
let x # y be always true, and define ηµ(wff e) to be

∑
i f(ei) mod 3, where

f(v) = µ(v) if v is a variable, f(I) = 1, and f(c) = 0 for other constants. Let
ηµ(` e) = ηµ(wff e) when ηµ(wff e) ∈ {1, 2}.

Verifying that this yields a model is then equivalent to verifying that the
axioms preserve the invariant, and we can deduce that MU is not provable because
ηµ(` MU) is not defined for any µ.

3.3 Set theory

Of course, the more interesting case is the verification that the full structure of
set.mm has a nontrivial model. As the background, we need a model of ZFC set
theory; let this be 〈M, ε〉.

The typecodes are TC = {set, class,wff,`}, with the only non-variable type-
code being ` and Syn(`) = wff. With these definitions set.mm becomes an
unambiguous formal system. (Again, the proof of unambiguity is complex and
not undertaken here.) Let V =: Uset be any infinite set. This is the set of vari-
ables of the “object language” over which Metamath is understood to sit; they
are customarily labeled V = {v0, v1, v2, . . . }. Note that these are not actually
variables in our sense, they are constants, elements of the set V . Set variables
such as x in Metamath range over elements of V .

We will need a few preliminary sets before properly defining Uwff and Uclass.
Take U′wff = (V → M) → Bool, that is, the set of functions from V → M to
Bool. The subset of Uwff corresponding to true formulas, U`, is the singleton
{λf T} (i.e. the constant function true). Similarly, U′class = (V →M)→P(M).

Definition 11. Given A : (V → M) → B (A is a wff or class variable) and
W ⊆ V , we say A is constant outside W if for all f, g : V →M , if f(v) = g(v)
for all v ∈W , then A(f) = A(g).

We define a relation # on the disjoint union V t U′wff t U′class:

– If x, y ∈ V , then define x# y iff x 6= y.
– If x ∈ V and A ∈ U′class t U′wff , then define x # A if A is constant outside
V \ {x}.
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– The case A# x when x ∈ V and A ∈ Uclass t Uwff is covered by symmetry;
x# y is true for any other combination.

To define the real set Uwff , we take the set of A ∈ U′wff such that A is
“effectively finite-dimensional”, that is, A is constant outside some finite V ′ ⊆ V .
Similarly, Uclass is the set of effectively finite-dimensional A ∈ U′class. There is
a minimal set V ′ outside which A is constant; this set is called Free(A). It
immediately follows from the definition that A # x for x /∈ Free(A). We can
extend the definition slightly to set variables by taking Free(x) = {x} when
x ∈ V .

Theorem 3. # as defined above is a freshness relation.

Proof. Clearly # is a symmetric relation, so we need only verify that for every
c ∈ {set,wff, class} and every finite set W ⊆ VR, there is a v ∈ Uc with v #W .
If c = wff then take v = λf T, and if c = class then take v = λf M ; in each case
v # w for any w ∈ ⊔

U, so the condition is satisfied.
If c = set, then for each w ∈ Uc the set Free(w) is finite, as is the union⋃

w∈W Free(w). Since V is infinite by assumption, choose some v ∈
V \⋃w∈W Free(w); then for w ∈W , v /∈ Free(w) implies v # w. ut

Definition 12. For f : V → M , x ∈ V and m ∈ M , the function f [x → m] :
V →M is defined by f [x→ m](y) = f(y) for y 6= x and f [x→ m](x) = m.

Finally, we define the πa functions. By definitional elimination, we can ignore
definitional syntax axioms without loss of generality.

– Take π¬(f) = f ◦π′¬, where π′¬ is the function called π¬ in § 3.1, and similarly
for π→(f) = f ◦ π′→.

– π∀(x, ϕ) is the wff corresponding to ∀x, ϕ and is defined so that π∀(x, ϕ)(f)
iff ϕ(f [x → m]) for all m ∈ M . (Since it comes up often, the restricted
quantifier ∀m ∈M will be abbreviated ∀Mm.)

– The class abstraction, cab: class {x | ϕ}, is defined so that πcab(x, ϕ)(f) =
{m ∈M | ϕ(f [x→ m])}.

– The set-to-class type conversion is a syntax axiom called cv: class x. The
function for this is defined so that πcv(x)(f) = {m ∈M | m ε f(x)}.

– Equality of classes is defined by wceq: wff A = B, and is defined so that
π=(A,B)(f) is true iff A(f) = B(f).

– We define π∈(A,B)(f) true if ∃Mm(A(f) = {n ∈M | n ε m} ∧m ∈ B(f)).

For the common case where one or both of the arguments to =,∈ are sets,
we note that π∈(πcv(x), A)(f) iff f(x) ∈ A(f), π∈(πcv(x), πcv(y))(f) iff f(x) ε
f(y), and π=(πcv(x), πcv(y))(f) iff f(x) = f(y). We need 〈M, ε〉 to satisfy the
extensionality axiom for this to work.

Lemma 1 (The deduction theorem). π→(ϕ,ψ)(f) if and only if ϕ(f) im-
plies ψ(f).
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Proof. Suppose not. Then π→(ϕ,ψ)(f) = F, which by definition implies ϕ(f) = T

and ψ(f) = F, a contradiction. The converse is just ax-mp (verified by truth
tables). ut

Lemma 2 (The non-free predicate). x # ϕ iff π→(ϕ, π∀(x, ϕ))(f) is true
for all f (which is also equivalent to ηµ(` (ϕ′ → ∀x′ϕ′)) being defined, where
µ(ϕ′) = ϕ and µ(x′) = x).

Proof. By definition, x # ϕ iff for all f, g : V → M , f(v) = g(v) for all v 6= x
implies ϕ(f) = ϕ(g). In this case, given f , and using the deduction theorem, if
ϕ(f), then since f [x→ m] differs from f only at x, ϕ(f [x→ m]) = ϕ(f) is true
for each m, so π∀(x, ϕ)(f). Thus π→(ϕ, π∀(x, ϕ))(f) by Lemma 1. Conversely, if
f, g differ only for v = x, either ϕ(f) = ϕ(g) = F, or one of them (say ϕ(f)) is
true. Then by ax-mp, π∀(x, ϕ)(f), so taking m = g(x), ϕ(f [x → g(x)]) = ϕ(g)
is true. Hence ϕ(f) = ϕ(g), so x# ϕ. ut

Theorem 4. The tuple 〈U,#, η〉 defined via the above construction is a model
for the set.mm formal system.

Proof. As in the baby example for propositional calculus, we must verify that η
honors all the logical axioms. The tricky ones are the predicate calculus axioms:

– ax-1,ax-2,ax-3,ax-mp: Verification by truth tables, as in the propositional
calculus example

– ax-5: ` (∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ))
Assume π∀(x, π→(ϕ,ψ))(f) and π∀(x, ϕ)(f); then ϕ(f [x→ m]) and
π→(ϕ,ψ)(f [x→ m]), so by ax-mp, ψ(f [x→ m]). Conclude by Lemma 1.

– ax-6: ` (¬∀xϕ→ ∀x¬∀xϕ)
By Lemma 2, this is equivalent to x # π¬(π∀(x, ϕ)). If f, g differ only at x,
then π∀(x, ϕ)(f) if ϕ(f [x → m]) for all m; but f [x → m] = g[x → m], so
π∀(x, ϕ)(f) = π∀(x, ϕ)(g) and π¬(π∀(x, ϕ)(f)) = π¬(π∀(x, ϕ)(g)).

– ax-7: ` (∀x∀yϕ→ ∀y∀xϕ)
By Lemma 1, assume π∀(x, π∀(y, ϕ))(f). If x = y then this is the same
as π∀(y, π∀(x, ϕ))(f), otherwise it reduces to ϕ(f [x → m][y → n]) for all
m,n ∈M , and note that f [x→ m][y → n] = f [y → n][x→ m].

– ax-gen: ` ϕ implies ` ∀xϕ
If ϕ(f) for all f , then set f := g[x → m] to deduce ϕ(g[x → m]) for all m,
hence π∀(x, ϕ)(g).

– ax-8: ` (x = y → (x = z → y = z))
By Lemma 1, assume π=(x, y) and π=(y, z). Then f(x) = f(y) = f(z), so
π=(x, z).

– ax-9: ` ¬∀x¬x = y
This is equivalent to ∃m ∈M , π=(x, y)(f [x→ m]), or ∃m ∈M, m = f [x→
m](y). If x = y, then any m ∈M will do (M is assumed nonempty because
it is a model of ZFC), and if x 6= y then take m = f(y).

– ax-11: ` (x = y → (∀yϕ→ ∀x(x = y → ϕ)))
Assume f(x) = f(y) and ∀Mn, ϕ(f [y → n]), take some m ∈M , and assume
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14 Mario Carneiro

f [x → m](x) = f [x → m](y). We want to show ϕ(f [x → m]). If x = y,
then the second hypothesis implies ϕ(f [y → m]) = ϕ(f [x→ m]). Otherwise,
m = f(y) = f(x), so ϕ(f [x→ m]) = ϕ(f) = ϕ(f [y → m]).

– ax-12: ` (¬x = y → (y = z → ∀x y = z))
Assume f(x) 6= f(y) = f(z), and take m ∈ M . We want to show f [x →
m](y) = f [x→ m](z). If x = y or x = z then f(x) = f(y) or f(x) = f(z), a
contradiction, so f [x→ m](y) = f(y) = f(z) = f [x→ m](z).

– ax-13: ` (x = y → (x ∈ z → y ∈ z))
Assume f(x) = f(y) and f(x) ε f(z); then f(y) ε f(z).

– ax-14: ` (x = y → (z ∈ x→ z ∈ y))
Assume f(x) = f(y) and f(z) ε f(x); then f(z) ε f(y).

– ax-17: x, ϕ distinct implies ` (ϕ→ ∀xϕ)
This is just the forward direction of Lemma 2.

We can also verify the class axioms:

– df-clab: The left hand expression x ∈ {y | ϕ} expands to f(x) ∈ {m ∈
M | ϕ(f [y → m])}, that is, ϕ(f [y → f(x)]), while the right side says f(y) =
f(x) → ϕ(f) and ∃Mm, (f [y → m](x) = m ∧ ϕ(f [y → m])). If x = y,
the left conjunct becomes ϕ(f) and the right becomes ∃Mm,ϕ(f [x → m]),
which is provable from the other conjunct by setting m = f(x) so that
f [x→ m] = f . At the same time the left expression also reduces to ϕ(f [x→
f(x)]) = ϕ(f). If x 6= y, then f [y → m](x) = f(x) and the right conjunct
becomes ϕ(f [y → f(x)]), and the left conjunct is provable from this since
f(y) = f(x) implies f [y → f(x)] = f [y → f(y)] = f , so both sides are
equivalent to ϕ(f [y → f(x)]).

– df-clel: We want to show that π∈(A,B)(f) iff there is an m such that
{n | n ε m} = A(f [x → m]) and m ∈ B(f [x → m]), which matches our
definition after replacing A(f [x → m]) = A(f) and B(f [x → m]) = B(f),
since x#A and x#B.

– df-cleq: (This has an extra hypothesis ax-ext which is already built into
our model.) We want to show that π=(A,B)(f) iff for all m, m ∈ A(f [x →
m]) ↔ m ∈ B(f [x → m]). We are also assuming x # A and x # B in this
axiom, so this reduces to m ∈ A(f) ↔ m ∈ B(f), or (using extensionality
in the metalanguage) A(f) = B(f), which is the definition of π=(A,B)(f).

The “true” axioms of set theory are all phrased in terms of only =,∈, and
so factor straight through to axioms in 〈M, ε〉:

– ax-ext (Axiom of Extensionality): The original expression is

π→(π∀(z, πwb(π∈(z, x), π∈(z, y))), π=(x, y))(f),

which simplifies, according to the definitions, to ∀Mm(mεf(x)↔ mεf(y))→
f(x) = f(y), for all f . With a change of variables this is equivalent to

∀Mx∀My∀Mz(z ε x↔ z ε y)→ x = y,
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Models for Metamath 15

exactly the same as the original universally quantified Metamath formula,
but with ε in place of ∈ and ∀M instead of ∀. Since the other axiom expres-
sions are long and the process is similar, I will only quote the final equivalent
form after reduction.

– ax-pow (Axiom of Power sets): Equivalent to:

∀Mx∃My∀Mz(∀Mw(w ε z → w ε x)→ z ε y)

– ax-un (Axiom of Union): Equivalent to:

∀Mx∃My∀Mz(∃Mw(z ε w ∧ w ε x)→ z ε y)

– ax-reg (Axiom of Regularity): Equivalent to:

∀Mx(∃My, y ε x→ ∃My(y ε x ∧ ∀Mz(z ε y → ¬z ε x)))

– ax-inf (Axiom of Infinity): Equivalent to:

∀Mx∃My(x ε y ∧ ∀Mz(z ε y → ∃Mw(z ε w ∧ w ε y)))

– ax-ac (Axiom of Choice): Equivalent to:

∀Mx∃My∀Mz∀Mw((z ε w ∧ w ε x)→
∃Mv∀Mu(∃M t(u ε w ∧ w ε t ∧ u ε t ∧ t ε y)↔ u = v))

– ax-rep: This one is more complicated than the others because it contains a
wff metavariable. It is equivalent to: for all binary relations ϕ ⊆M2:

∀Mw∃My∀Mz(ϕ(w, z)→ z = y)→ ∃My∀Mz(z ε y ↔ ∃Mw(w εx∧ϕ(w, z))).

To show the Metamath form of the axiom from this one, given ϕ′ ∈ Uwff

and f : V → M , define ϕ(w, z) ↔ ∀M t, ϕ′(f [w′ → w][y′ → t][z′ → z]), and
apply the stated form of the axiom.

ut

Thus if ZFC has a model, so does set.mm.

4 Applications of Metamath models

4.1 Independence proofs

We conclude with a few applications of the “model” concept. The primary ap-
plication of a model is for showing that statements are not provable, because
any provable statement must be true in the model. (The converse is not usually
true.) This extends to showing that a system is consistent, because any nontriv-
ial model has unprovable statements (and in a logic containing the principle of
explosion ` (ϕ → (¬ϕ → ψ)), this implies that there is no provable statement
whose negation is also provable). But it can also be applied for independence
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16 Mario Carneiro

proofs, by constructing a (necessarily nonstandard) model of all statements ex-
cept the target statement.

For an easy example, if we change the definition of our model of propositional
calculus so that instead π¬(T) = π¬(F) = T, we would have a new model that
still satisfies ax-1, ax-2, and ax-mp (because they do not involve ¬), but violates
ax-3. If we take µϕ = F and µψ = T, we get

ηµ(wff ((¬ϕ→ ¬ψ)→ (ψ → φ))) = π→(π→(π¬(µϕ), π¬(µψ)), π→(µψ, µϕ))

= π→(π→(T, T), π→(T, F))

= π→(T, F) = F,

so ηµ(` ((¬ϕ → ¬ψ) → (ψ → φ))) is not defined. Thus this shows that ax-3 is
not provable from ax-1, ax-2, ax-mp and the syntax axioms alone (although this
should not come as a surprise since none of the other axioms use the ¬ symbol).

4.2 Gödel’s completeness theorem

One important construction that can be done for any arbitrary (string-based)
model is to use a formal system as a model of itself. This model will have the
property that the theorems (with no hypotheses) are the only statements that
are true in the model, leading to an analogue of Gödel’s completeness theorem for
statements with no hypotheses and all variables distinct. It is also the “original”
model of Metamath, from which the terminology “disjoint variable condition”
and the “meta” in Metamath are derived.

Given a formal system 〈CN,VR,Type, Γ 〉, choose some set VR′, with types for
each variable, such that {v ∈ VR′ | Type(v) = c} is infinite for each c ∈ VT. (It
is possible to use VR′ = VR here, provided that VR satisfies this condition, but
it is also helpful to distinguish the two “levels” of variable in the contruction.)
Using CN′ = CN, define EX′ analogously with the new sets. We will call formulas
in EX′ the “object level” and those in EX the “meta level”.

We also define a substitution σ : EX→ EX′ in the same way as § 2.1.8. Here
variables of the meta level are substituted with expressions in the object level.

We can build another formal system at the object level, where 〈D′, H ′, A′〉 ∈
Γ ′ if there is some 〈D,H,A〉 ∈ Γ and a substitution σ : EX → EX′ such that
∀v ∈ VR, σ(v) ∈ VR′ (σ substitutes variables for variables) and σ(v) 6= σ(w)
for each {v, w} ∈ D, and D′ = DV′ (all variables are distinct), H ′ = σ(H) and
A′ = σ(A). This new formal system differs from the original one only in having
a different set of variables.

Theorem 5. Let A ∈ Uc if there is some theorem 〈D, ∅, A〉 in the object level
formal system with Type(A) = c, define e # e′ when V(e) ∩ V(e′) = ∅, and let
ηµ be the unique substitution EX→ EX′ satisfying ηµ(VHv) = µ(v), restricted to
the e such that ηµ(e) ∈ UType(e). Then 〈U,#, η〉 is a model for the meta level
formal system 〈CN,VR,Type, Γ 〉.

Proof.

202



Models for Metamath 17

– The type correctness and variable application laws are true by definition,
and substitution and dependence on present variables are a consequence of
properties of substitutions.

– The relation # is a freshness relation because the finite set
⋃
e∈W V(e) misses

some variable in each type.
– The freshness substitution rule says that if V(w) ∩ V(µ(w)) = ∅ for all w ∈
V(e), then V(w)∩V(ηµ(e)) = ∅, which follows from V(ηµ(e)) ⊆ ⋃

w∈V(e) V(µ(w))
which is a basic property of variables in a substitution.

– The axiom application law translates directly to the induction step of closure
in § 2.1.13 for the object level formal system.

ut

Corollary 1 (Gödel’s completeness theorem). A statement 〈DV, ∅, A〉 of a
formal system is a theorem iff it is true in every model.

Proof. The forward direction is trivial by the definition of a model. For the
converse, a statement true in the model of Theorem 5, with VR′ ⊇ VR extended
to contain infinitely many variables of each type, is derivable by definition. ut
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Abstract. We present a framework for encoding information about ob-
jects from higher arithmetic geometry. This framework is built around a
new kind of data type called a Tannakian symbol. The arithmetic objects
we have in mind include modular forms (and more general automorphic
representations), elliptic curves (and more general schemes, motives and
algebraic stacks), finite graphs, group representations, and multiplicative
functions (like the Euler totient function). The language of Tannakian
symbols not only allows for representations of individual objects, but also
representations of classes of objects, relations between objects, and vari-
ous important unary and binary operations on objects. The development
of this framework is the first small step in a long-term project aiming to
apply machine-learning algorithms to some problems of current interest
in modern arithmetic geometry.

Keywords: Tannakian categories, arithmetic geometry, zeta functions,
motives, modular forms, lambda-rings, automated conjecture-making

1 Introduction

Arithmetic geometry is one of the most vibrant and abstract areas of modern
pure mathematics. Out of the seven Millennium Problems, four come from pure
mathematics, and of these four, one is solved and the remaining three belong to
arithmetic geometry.

The prospect of artificially intelligent programs making new and deep dis-
coveries in this area of mathematics is a tantalizing one. However, most of the
concepts encountered in modern arithmetic geometry are not easily stored or
manipulated by a computer. In the very long term, one may hope that advances
in mathematical linguistics, as developed in Ganesalingam’s thesis [9], may lead
to new computer-generated discoveries and proofs in arithmetic geometry. In
the short term however, it is natural to look for other, less ambitious routes to
making partial progress on selected problems.

In this project paper, we present a framework for encoding data about ob-
jects from arithmetic geometry, with the aim of laying the foundation for future
applications of machine-learning techniques in the field. We emphasize that this
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is a first brief survey of a long-term project, focussing on examples. A more de-
tailed discussion of potential applications will be provided in future publications
and in discussions at the CICM conference, but as a first application, we pro-
pose experiments with automated conjecture-making on invariants of motives
and schemes, using the language of Tannakian symbols presented here, together
with the SAGE package for domain-independent automated conjecture-making
developed recently by Larson and Van Cleemput [14].

1.1 Arithmetic objects

Somewhat informally, we shall use the term “arithmetic object” to refer to any
kind of object that is of central importance in arithmetic geometry. Some classes
of such objects are: (1) Geometric objects (e.g. a scheme). The reader unfamiliar
with the theory of schemes may think of a scheme simply as a system of polyno-
mial equations. (2) Algebraic objects (a group, a ring, a Hopf algebra, etc.). (3)
Homotopical objects (like an algebraic stack or a ring spectrum). (4) Combina-
torial objects (for example a graph). (5) Analytic objects (e.g. a zeta function).
(6) Objects in a Tannakian category. Examples of the latter include represen-
tations of finite groups, representations of Lie groups, Galois representations,
automorphic representations, motives, Hodge structures, and F-isocrystals.

Technical definitions of all the above terms (schemes, Tannakian categories,
etc) can be found in the online Encyclopedia of Mathematics [7]. Rather than
giving all of these definitions here, we shall present explicit examples from most
of these classes and explain how our proposed encoding framework applies to
each example.

In addition to seeking encodings of single objects, a central goal of our work
is to also encode information about classes of objects (for example the class
of objects in some given Tannakian category), operations on objects (such as
tensor product of group representations, or Tate twist of motives, or Dirichlet
convolution of multiplicative functions), relations between objects (such as a
representation being a direct summand of another), and invariants of objects
(like the Euler characteristic of a scheme).

1.2 What would be required of a good encoding framework?

Let C be some class of arithmetic objects, for examples the class of all elliptic
curves over the rational numbers, or the class of all finite undirected graphs, or
the class of all complex representations of the Monster group.

We seek an encoding framework for objects in C satisfying the following
properties:

1. To every object X in the class C we can assign a finite amount of structured
data E(X). (We think of E(X) as an elementary or electronic ”shadow” of
the object X.)

2. Given a description of X, there should be an explicit algorithm computing
E(X).
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3. Many important invariants of X should be computable from E(X) only.
4. Many important operations on objects in C should correspond to explicit

manipulations of the corresponding structured data.
5. Given two objects X and X ′ from different classes (say one graph and one

elliptic curve), the two associated pieces of data E(X) and E(X ′) should
”be of a similar form” (to facilitate the discovery of connections between
different kinds of structures).

6. Many of the deepest theorems and conjectures about objects X in modern
arithmetic geometry should have a formulation in terms of the associated
data E(X) only.

Any encoding satisfying these requirements will have the property that a com-
puter could in principle discover (or guess) interesting mathematical statements
by searching for patterns in the structured data of many arithmetic objects.

We have found an approach that satisfies all of the above criteria for many
classes of arithmetic objects. The framework is built around the notion of a
Tannakian symbol. In many cases, the information contained in the Tannakian
symbol is the same as the information contained in the “zeta function” of the
arithmetic object, but Tannakian symbols are more flexible than zeta functions,
and there are also cases where it makes sense to speak of Tannakian symbols
even though there are no zeta functions around.

1.3 Previous work

We are not aware of any previous work with the explicit ambition of apply-
ing machine-learning algorithms to geometric, Tannakian and homotopical cat-
egories in higher arithmetic geometry. However, we have drawn inspiration from
many places. Due to algorithmic breakthroughs over the past decade by Ked-
laya [13], Harvey [11], [12], Costa and Tschinkel [5] and others, it is now possible
to compute zeta functions of schemes in much higher dimensions and higher
cohomological complexity than before, and these computations generate huge
amounts of data, that can be interpreted in the language of Tannakian symbols.
A project with the aim of collecting this kind of data has been launched under
the name the L-functions and Modular Forms Database (LMFDB) [15]. From
another direction, we have been inspired by the now classical work of Zeilberger
on holonomic sequences [20], the PhD thesis and articles of Colton [2], [3], [4] on
automated conjecture-making in number theory, and of course the Online Ency-
clopedia of Integer Sequences (OEIS) [17]. For a more comprehensive overview
of previous work on automated conjecture-making, we refer to Larson and Van
Cleemput [14].

2 Summary of algebraic theory

The aim of this section is to define what Tannakian symbols are, and to summa-
rize their most important algebraic properties. Proofs of these statements will
be given elsewhere.
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2.1 Algebraic structures

We begin by recalling some definitions from abstract algebra. A monoid is a set
equipped with a binary operation that is associative and has an identity element.
A group is a monoid in which each element has an inverse. A monoid is called
commutative if its binary operation is commutative. An abelian group is the
same thing as a commutative group.

Example 1. The set of positive integers N is a monoid under addition, and it is
also a monoid under multiplication. The set of all complex roots of unity is a
monoid under multiplication.

A commutative ring is a set R with two binary operations, called addition
(+) and multiplication ( · ), with the requirements that R is an abelian group
under addition, a commutative monoid under multiplication, and multiplication
distributes over addition. The identity element for addition is denoted by 0, and
the identity element for multiplication is denoted by 1.

Example 2. The set of integers Z is a commutative ring. The set Z/m, identified
with {0, 1, . . . ,m − 1} is a commutative ring for any integer m ≥ 2, in which
addition and multiplication are carried out modulo m. Whenever R is a com-
mutative ring, the set R[x] of polynomials in x with coefficients in R is also a
commutative ring.

A field is a commutative ring in which the nonzero elements under multipli-
cation form a group (and not just a monoid).

Example 3. The set Q of rational numbers is a field, and so is the set R of real
numbers, and the set C of complex numbers.

A monoid homomorphism from one monoid to another monoid is a function
which commutes with the binary operation and sends the identity element to
the identity element. A ring homomorphism from a ring to another ring is a
function which is a monoid homomorphism both with respect to addition and
with respect to multiplication. An isomorphism (of rings or of monoids) is a
homomorphism which admits a two-sided inverse.

Example 4. Let q be a positive integer. It is known that there exists a field with
exactly q elements if an only if q is a power of a prime number (i.e. q = pe for
some prime p and some positive integer e). Two such finite fields with the same
number of elements are always isomorphic (i.e. there exists an ring isomorphism
between them), and we write Fq for any finite field with exactly q elements.

It is possible to describe all finite fields in a very concrete way. First of all,
when q is a prime number, the ring Z/q is a field with q elements. A more
interesting example is the field with four elements F4, which can be described as
the set {0, 1, α, α+1} where addition is carried out modulo 2, and multiplication
is carried out modulo 2 and modulo the relation α2 = α+ 1. Similar models of
finite fields exist (but are not in general unique) for any prime power q.
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A lambda-ring is, informally, a commutative ring R “equipped with all pos-
sible symmetric operations”. The precise definition of “all possible symmetric
operations” is expressed in the notion of a lambda-structure on a commutative
ring. The general definition of “lambda-structure” is given in terms of an infi-
nite sequence λ0, λ1, λ2, . . . of functions (not ring homomorphisms!) from R
to R, satisfying axioms that are a bit complicated. However, when the ring R
is torsion-free (meaning that finite sums x + x + . . . + x are never zero unless
x itself is zero), there is a simpler equivalent definition which we give here. All
lambda-rings in this paper will be torsion-free, so this definition is enough for
our purposes.

Definition 1. Let R be a torsion-free commutative ring. A lambda-structure
on R is an infinite sequence of ring homomorphisms ψ1, ψ2, . . . from R to R
satisfying the following axioms:

1. ψ1(x) = x for all x ∈ R.
2. ψm(ψn(x)) = ψmn(x) for all m,n and all x ∈ R.
3. ψp(x) ≡ xp (mod pR) for all prime numbers p and all x ∈ R.

The last condition means that the difference ψp(x)−xp can be written as a mul-
tiple of p, in the ring R. The homomorphisms ψm are called Adams operations.

2.2 Tannakian symbols

The kind of “structured data” we shall construct (denoted by E(X) in the in-
troduction) will be called a U -indexed M -valued Tannakian symbol, and we now
turn to the explanation of what this means.

Recall that a multiset is a unordered collection of elements, in which elements
are allowed to be equal. For example, {2, 2, 2, 5} is a multiset with four elements
taken from the set of integers.

Definition 2. Let M be a monoid. An M-valued Tannakian symbol is an or-
dered pair (A,B) of disjoint finite multisets with elements taken from M . We
write TS(M) for the set of all M -valued Tannakian symbols.

Conventions: We shall use the notation A/B or A
B for the ordered pair (A,B),

and will refer to A as the upstairs multiset and to B as the downstairs multiset.
Also, if M happens to be a ring and we write TS(M), we always think of M as
a multiplicative monoid (in other words, we forget the additive structure).

Example 5. The symbol {1, 1, i,−1,−i}/∅ is an example of a C-valued Tan-
nakian symbol. Here i is a complex square root of -1 and ∅ is the empty multiset.

Definition 3. Let U be a set. A U -indexed M -valued Tannakian symbol is a
function from U to TS(M). The set of U -indexed M -valued Tannakian symbols
will be denoted by TSU (M).

Example 6. Let P be the set of prime numbers, and let p denote a variable
element of P. Then {p2, 1}/{p, p} is a P-indexed N-valued Tannakian symbol.
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Consider multisets A = {a1, a2, . . .}, B = {b1, b2, . . .}, C = {c1, c2, . . .} and
D = {d1, d2, . . .} where all the elements are taken from the same monoid M . We
define operations on Tannakian symbols by the following formulas:

Addition:
A

B
⊕ C

D
=
A ] C
B ]D

(Here ] denotes disjoint union of multisets.)

Multiplication:
A

B
⊗ C

D
=
A · C ]B ·D
A ·D ]B · C

(Here A · C denotes the monoid product of A and C, i.e. the multiset of all
possible products a · c with a ∈ A and c ∈ C, listed with repetition.)

Adams operations: ψn
(A
B

)
=
{an | a ∈ A}
{bn | b ∈ B}

(Here, if the element a is repeated several times in A, the element an is also
repeated the same number of times on the right hand side.) In each of these
operations, it is understood that if the operation results in a symbol in which the
upstairs and the downstairs multisets are not disjoint, then we remove pairs of
identical elements until the multisets are disjoint. A few examples will illustrate
what this means.

Example 7. Computations in TS(Z):

{5}
{1,−1} ⊕

{1, 1, 1}
{−1} =

{5, �1, 1, 1}
{�1,−1,−1} =

{5, 1, 1}
{−1,−1}

{5}
{1,−1} ⊗

{10}
{3, 7} =

{50, 3, 7,−3,−7}
{15, 35, 10,−10}

ψ2
({−1,−1, 2, 5}
{1,−2, 7}

)
=
{���(−1)2 , (−1)2,��22 , 52}
{��12 ,���(−2)2 , 72}

=
{1, 25}
{49}

The main theorem about Tannakian symbols is the following:

Theorem 1. For any monoid M , the set TS(M) is a lambda-ring under the
operations ⊕, ⊗ and ψn. The same is true for TSU (M) for any set U . Further-
more, TSU (M) is functorial in M as well as in U .

One can go on and give explicit definitions of other structural features and
invariants of Tannakian symbols, such as exterior powers, symmetric powers,
virtual dimension, super-dimension, supertrace and superdeterminant. All this
terminology comes from the setting of lambda-rings obtained by decategorify-
ing Tannakian categories, but is retained also in situations where there is no
Tannakian category involved. The point of all this structure is that whenever
elements of the monoid M can be stored and manipulated by a computer, the
same is true for elements of TSU (M), and the latter capture huge amounts of
structure relevant for higher arithmetic geometry.
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2.3 Assignments and fibers

Now we can be a bit more precise about the picture we would like to paint of
structured data assigned to arithmetic objects. Return to the situation where
C is some class of arithmetic objects. Given such a class, we can in many cases
choose a monoid M and a set U and construct a map

E : C → TSU (M)

which satisfies most of the requirements in the introduction.
In such a setup, we are interested in the following general goals.

1. Understand how much information is lost when we pass from X to E(X). A
way of making this more precise is to define the fiber of a Tannakian symbol
S as the set of all arithmetic objects X in C with E(X) = S. In many cases
one can either prove that each fiber consists of at most one element, or give
a bound on the size of the fiber.

2. Describe the image of E.
3. Set up a correspondence between operations on arithmetic objects in C and

operations on Tannakian symbols.

2.4 An elementary example: Linearly recursive sequences

Let a0, a1, a2, . . . be a linearly recursive sequence in C, with a0 = 1. It is well-
known that it is then possible to rewrite the power series a0+a1t+a2t

2+ . . . as a
rational expression of the form

∏n
j=1(1− βjt)/

∏m
i=1(1−αit), and we define the

Tannakian symbol attached to the linearly recursive sequence to be A/B, with
the multisets A = {αi} and B = {βj}. With this definition, taking the product
of power series corresponds to adding Tannakian symbols.

3 Schemes

3.1 General theory

For the purposes of this article, we define an affine scheme to be a finite set of
variables x1, x2, . . . , xd together with a finite list of polynomial equations (with
integer coefficients) in these variables. Given an affine scheme X and a field K,
we write X(K) for the set of solutions to the equations of X with values in the
field K; elements of this set are called K-valued points of X.

We also define a projective scheme to be a finite set of variables x0, x1, . . . , xd
together with a finite list of homogeneous polynomial equations (with integer
coefficients) in these variables. The equations are not required to be of the same
degree. In this setting, we let X(K) denote the set of equivalence classes of
solutions with values in K, where two solutions are called equivalent if one is a
scalar multiple of the other. For projective schemes, we never count the trivial
solution in which all variables take the value zero.
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As a special case we may take K to be the finite field Fq, and the set X(Fq)
is then automatically a finite set. We write #X(Fq) for the cardinality of this
set.

There is a general construction which associates a projective scheme to any
affine scheme. If the affine scheme X is defined by equations

fi(x1, x2, . . . , xd) = 0 i = 1, 2, . . .m

then the associated projective scheme is defined by corresponding equations

Fi(x0, x1, x2, . . . , xd) = 0 i = 1, 2, . . .m

where Fi is obtained from fi by multiplying each term by a suitable power of x0
so that Fi becomes homogenous of degree deg(fi).

Example 8. The equation x2+1 = 0 defines an affine scheme X (in one variable).
It is easy to see that in this case, we have X(Q) = X(R) = ∅ (the empty set),
but X(C) = {i,−i}. Using modular arithmetic, we compute X(F2) = X(F3) = ∅
and X(F5) = {2, 3}. In general, for an odd prime p, the cardinality of X(Fp) is 2
or 0 depending on whether p is congruent to 1 or 3 modulo 4. This pattern is a
special case of Gauss’ famous quadratic reciprocity law, and quadratic reciprocity
is an example of a pattern that can be expressed purely in terms of Tannakian
symbols.

Theorem 2 (Dwork). Let X be a scheme (affine or projective) and let p be a
prime. There exists unique multisets A = {α1, α2, . . . , αm} and B = {β1, . . . , βn}
of complex numbers such that for all k ≥ 1, we have

#X(Fpk) = βk1 + βk2 + . . .+ βkn − αk1 − αk2 − . . .− αkm
Definition 4. Let X be a scheme and let p be a prime. We define the Tannakian
symbol of X at p to be A/B, where A and B are the multisets in Dwork’s theorem.

Example 9. Since Wiles proved Fermat’s Last Theorem using the Modularity
theorem for elliptic curves, the class of elliptic curves has probably become the
most famous class of schemes. As a simple example of an elliptic curve, take the
scheme X defined by the equation y2 + y = x3 − x2. At the prime p = 2, the
symbol becomes:

Affine case:
{−1 + i,−1− i}

{2} Projective case:
{−1 + i,−1− i}

{1, 2}

The projective case is often the most interesting. In this example, deleting all
numbers in the symbol except those with absolute value

√
2 corresponds to

cutting out the “motive” h1(X) from X. One can also associate Tannakian
symbols to modular forms, and the Modularity theorem can be formulated as
saying that for every elliptic curve X, there exists a modular form which at all
primes has the same Tannakian symbol as the motive h1(X).
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Combining Tannakian symbols from all primes gives rise to a map from the class
of elliptic curves to TSP(C). The fibers of this assignment are called isogeny
classes of elliptic curves; it is known that these fibers are finite. Furthermore,
elliptic curves come with a natural complexity measure N called the conductor
(the above example has conductor 11), and by restricting attention to elliptic
curves of, say, conductor less than 100000, we may restrict the set of indexing
primes to a finite set without losing any information.

In general, the symbol attached to a projective scheme without singularities
yields easy recipes for computing the Betti numbers and Euler characteristic of
a scheme. In the above example the Betti numbers are 1, 2 and 1; these numbers
are obtained by counting symbol elements with absolute value 1,

√
2, and 2,

respectively. The Euler characteristic is computed by subtracting the number of
elements upstairs from the number of elements downstairs; for this elliptic curve
we get 2 − 2 = 0. Plotting the numbers appearing in the symbol as points in
the complex plane reveals symmetries related to Poincaré duality and patterns
related to the Riemann hypothesis over finite fields (proved by Deligne, Fields
medal 1978). All of this was originally formulated as the famous Weil conjectures
in the 1950s.

After computing the Tannakian symbols for several primes (up to size
√
N ap-

proximately) one can easily compute what’s called values of L-functions - these
are the values appearing in the two Millennium Problems called the (global)
Riemann hypothesis and the Birch and Swinnerton-Dyer conjecture. These Tan-
nakian symbols also allows for explicit formulations of many other deep questions
of current interest to arithmetic geometers, such as the Sato-Tate conjecture,
and various conjectures on Galois representations. The operations on Tannakian
symbols correspond to operations in the so-called Grothendieck ring of motives,
which is of interest not only in arithmetic geometry, but also in physics, where
they are directly related to Feynman integral calculations in perturbative quan-
tum field theory [16].

3.2 Case study: Arithmetic mirror symmetry

Let Xκ be the ”quartic Dwork family”, i.e. the projective scheme defined by the
equation

x4 + y4 + z4 + w4 = 4κxyzw

where κ is a integer-valued parameter (so that by varying κ we get a family of
schemes). The scheme Xκ comes with a natural action of the group Z/4× Z/4.
Taking the quotient scheme by this group action and resolving singularities yields
a new scheme Yκ, called the mirror of Xκ.

For concreteness, let’s look at the prime p = 41. For κ = 2, we get1 the
following symbols:

E(X2) = {1, 41, 41, 41, 41,−41,−41, . . . ,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

1 The examples here are adapted from the presentation of Ursula Whitcher [19], and
were computed using computer code by Edgar Costa [5].
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Here there are 4 copies of the number 41 and 16 copies of the number -41. For the
mirror variety, which a priori might be expected to have a completely different
symbol, we get

E(Y2) = {1, 41, 41, . . . , 41,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

with 19 copies of the number 41, a single copy of the number -41, and an other-
wise identical symbol!

Still working with p = 41, for the case κ = 3 we get:

E(X3) = {1, 41, 41, . . . , 41,−39 + 4
√

10i,−39− 4
√

10i, 1681}/∅
with 20 copies of the number 41. And this time, the Tannakian symbol for the
mirror variety Y3 is

E(Y3) = {1, 41, 41, . . . , 41,−39 + 4
√

10i,−39− 4
√

10i, 1681}/∅
with 20 copies of 41, which means. . . that the symbols are absolutely identical!!

Patterns of this kind is the subject of arithmetic mirror symmetry, a relatively
recent field inspired by the physics of string theory. It is conceivable that a
computer searching for patterns in Tannakian symbols could have identified the
schemes Xκ and Yκ as ”similar”, even if no human had ever thought of mirror
symmetry.

4 More examples

4.1 Multiplicative functions

Much of elementary number theory (questions about primes, divisibility, etc.),
can be formulated in terms of multiplicative functions from N to C. In this con-
text a function f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever
m and n are coprime.

Let p be a prime. For all multiplicative functions appearing naturally in
number theory, it turns out that the sequence of function values

f(1), f(p), f(p2), f(p3), . . .

is linearly recursive, and hence we can associate a Tannakian symbol to the
pair (f, p). Letting p vary over the set P of all prime numbers, we get a P-
indexed C-valued Tannakian symbol attached to the multiplicative function f .
For example, the Euler totient function has symbol {p}/{1}, the characteristic
function of the square numbers has symbol {1,−1}/∅, and the sum-of-divisors
function has symbol {1, p}/∅.

This assignment is injective on multiplicative functions, and for many clas-
sical classes of functions it stays injective even when U is reduced to a finite set
of primes. Furthermore, Dirichlet convolution of functions correspond to addi-
tion of symbols, product of function corresponds to product of symbols (under a
certain hypothesis), and norm operators on multiplicative functions correspond
to certain Adams operations.
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4.2 Graphs

There are at least three interesting ways of associating a Tannakian symbol to a
(finite) graph. Firstly, given a graph X, we could define the Tannakian symbol of
X to be A/∅, where A is the spectrum of X, i.e. the multiset of eigenvalues of the
adjacency matrix of X. With this definition, taking the disjoint union of graphs
would correspond to addition of Tannakian symbols, and taking tensor product
of graphs would correspond to multiplication of Tannakian symbols. Graphs with
the same spectrum are called isospectral, so the fibers of this assignment would
be classes of isospectral graphs.

Example 10. With this definition, the Tannakian symbol of the complete graph
on 4 vertices would be {−1,−1,−1, 3}/∅
It is conjectured that almost all graphs are determined by their spectra. How-
ever, there are many cases of non-isomorphic graphs with identical spectrum.
For example, the number of simple graphs on 9 vertices is 274668 (see OEIS:
Sequence A000088), while the number of such graphs isospectral to at least one
other graph is 51039 (OEIS: Sequence A099883).

A second approach would be to define the Tannakian symbol of a graph X to
be A/∅, where A = {α1, α2, . . . , αm} is the finite multiset of complex numbers
appearing in the expression

ζX(T ) =
1

(1− α1T )(1− α2T ) · · · (1− αmT )

where ζX(T ) is the Ihara zeta function of the graph X.

Example 11. With this alternative definition, the Tannakian symbol of the com-
plete graph on 4 vertices would be

{−1,−1, 1, 1, 1, 2, −1+
√
7i

2 , −1+
√
7i

2 , −1+
√
7i

2 , −1−
√
7i

2 , −1−
√
7i

2 , −1−
√
7i

2 }/∅
In a recent paper [6], Durfee and Martin conjecture that almost all graphs which
are not determined by their spectrum are determined by their zeta function.

As a third possibility, one can associate a certain polynomial (the “graph
polynomial”) to any graph X. This polynomial defines a scheme, called the graph
hypersurface of X, and we could associate Tannakian symbols to the graph X by
counting points of its graph hypersurface, like we did in the previous section for
an elliptic curve and the quartic Dwork family. We refer to Brown and Schnetz [1]
for background, definitions, and extensive calculations motivated by applications
to quantum field theory. One of their conclusions can be reformulated by saying
that for many graphs, the Tannakian symbols constructed by this method seem
to also come from modular forms.

4.3 Representations of finite groups

Let G be a finite group. Associated to G is its representation ring R(G), a
lambda-ring generated by irreducible complex representations under the oper-
ations of direct sum, tensor product, and exterior powers. Any element g ∈ G
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gives rise to a lambda-ring homomorphism from R(G) to TS(M), where M is
the monoid of complex roots of unity. Combining several such maps, one obtains
a lambda-ring homomorphism E from R(G) into TSU (M), where U is a subset
of G. The most interesting choice of U , which we will use in the remainder of
this section, is to pick one representative of each conjugacy class of G; this choice
guarantees the injectivity of E.

Many interesting patterns and unsolved problems about representations can
be reformulated in terms of the map E : R(G) → TSU (M). This is due to the
fact that both the character table of G and the lambda-ring structure of R(G)
can be recovered from the values of E.

Example 12. Taking G to be the Monster group, the character table is a 194
by 194 matrix, whose rank is 163. The number 163 also appears in the study
of imaginary quadratic number fields; it is in fact the largest possible integer D
such that the number field Q(

√
−D) has class number 1 (meaning that its ring

of integers is a unique factorization domain). The study of such number fields
goes back to Gauss and is the simplest instance of Gauss’ famous class number
problem. As explained for example in the popular book of Mark Ronan [18], the
appearance of the number 163 in both places might well be a coincidence, but
it could also be a hint that there is some mysterious connection between the
Monster group and algebraic number theory that is yet to be understood.

An even more spectacular pattern connected with the Monster group is
the Monstrous Moonshine Conjecture, formulated by Conway and Norton and
proved by Richard Borcherds (Fields medal 1998). The starting point of this
wonderful story was the observation that a certain number obtained from the
character table (the dimension of the smallest nontrivial irreducible represen-
tation) is (almost) equal to the coefficient of the linear term in the Fourier
expansion of Klein’s j-function.

Let’s now turn to a much simpler group, for which everything can be worked
out by hand.

Example 13. One of the simplest non-trivial examples of a finite group is the
symmetric group S3 of permutations on three objects. This group has 6 elements
in total, partitioned into 3 conjugacy classes. Let e be the identity element, let
t be any transposition (an element of order 2), and let r be one of the two
“rotations” (an element of order 3). These three elements represent the three
conjugacy classes of S3. The number of irreducible representations of a finite
group is the same as the number of conjugacy classes, and in our example, the
irreducible representations are:

C+: The trivial representation, sending every permutation to 1.

C−: The sign representation, sending a permutation to its sign.

C2: A two-dimensional representation, visualized as a matrix action of S3 on a
triangle with vertices at the three cube roots of unity in the complex plane.
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In this simple case, it is easy to compute the function E by hand. We get,
for the three different choices of group element g:

Case g = e : E(C+) = {1}/∅ E(C−) = {1}/∅ E(C2) = {1, 1}/∅
Case g = t : E(C+) = {1}/∅ E(C−) = {−1}/∅ E(C2) = {1,−1}/∅
Case g = r : E(C+) = {1}/∅ E(C−) = {1}/∅ E(C2) = {ω, ω2}/∅

Here ω is a primitive 3rd root of unity. Any element of R(G) can be written as a
formal difference V −W , where V and W are representations built as direct sums
of irreducible ones, and we may compute in R(G) by identifying such a formal
difference with an ordered triple of symbols (using the injective map E and
applying the rules for computing with Tannakian symbols). For example, we get
(suppressing E from the notation): C2 =

(
{1, 1}/∅ , {1,−1}/∅ , {ω, ω2}/∅

)

and C+ ⊕ C− − C2 =
(
∅/∅ , ∅/∅ , {1, 1}/{ω, ω2}

)
. A similar computation

shows that C2⊗C2 equals C+⊕C−⊕C2, and in general any tensor product
of representations can be expressed as a direct sum of irreducibles, using only
Tannakian symbols.

4.4 Algebraic stacks

The arithmetic objects discussed so far in this paper were key players in many of
the greatest arithmetic discoveries of the 20th century. However, in 21st century
research, new classes of objects are becoming increasingly important, and these
objects come from homotopy theory and higher category theory. The most beau-
tiful application so far is probably the recent proof of the Tamagawa number
conjecture by Gaitsgory and Lurie [8], in which homotopical objects called stacks
play a prominent role. Stacks are a generalization of schemes, for which X(Fq)
is no longer a set, but a groupoid or a simplicial set. There are several different
ways of assigning Tannakian symbols to (certain classes of) stacks. The method
used for schemes will work provided we accept infinite multisets. For example,
the stack BGm (the classifying stack of the multiplicative group) would then at
the prime p have the Tannakian symbol {p−1, p−2, p−3, . . .}/∅.

5 Final remarks on arithmetic pattern-detection

What constitutes an important discovery or a deep conjecture in arithmetic
geometry? Looking at many examples in the literature, a few of which we have
seen in the present survey, it is reasonable to say that deep arithmetic statements
are often observations of patterns that can be expressed in terms of Tannakian
symbols.

But is it conceivable that automated algorithms really could have detected
some of these patterns? And is it reasonable to expect machines to discover new
patterns, maybe even of comparable interest to the Weil conjectures, Monstrous
Moonshine, or arithmetic mirror symmetry? Although we do not claim to know
the answer to these questions, we would like to end by suggesting two necessary
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features that such algorithms would have to incorporate in order to have any
chance of making such discoveries.

5.1 Exotic metrics

In traditional data analysis, data points are given by vectors of real numbers
(or rather floating point approximations), visualized as points in n-dimensional
Euclidean space Rn. Two data points are then considered to have similar features
if they are close with respect to some metric on Rn derived from the standard
metric (x, y) 7→ |x− y| on the set of real numbers.

Similarly, in a traditional neural network based on perceptrons or sigmoid
neurons, the output of an individual neuron is a function of the size of an in-
coming real number, and “size” here refers to a measurement made using the
standard metric on the real numbers.

In arithmetic geometry, many patterns and relations can be expressed in
terms of a metric, but it is not enough to work with the standard metric on
real numbers. Instead, the standard metric needs to be complemented by others,
most importantly the p-adic metrics. For any prime number p, the p-adic metric
on the set of rational numbers is defined as follows. For two distinct rational
numbers x and y, there is a unique integer k such that x− y can be written on
the form ±pk · a/b, where a and b are positive integers coprime to p. The p-adic
distance |x − y|p between x and y is defined to be p−k. This definition can be
extended to irrational algebraic numbers, but unlike the standard metric, it is
not defined for transcendental numbers.

Unravelling the definition, it is easy to see that as a special case, two integers
x and y are congruent modulo p if and only if they are close in the sense that their
p-adic distance is less than or equal to 1/2. Combining different primes and using
the Chinese remainder theorem, any arithmetic pattern involving congruences
can be expressed (and hence potentially discovered) using p-adic metrics2.

5.2 Symmetry detection

Another class of arithmetic patterns can be collected under the umbrella of sym-
metry. While the lambda-ring structure on Tannakian symbols in itself captures
certain kinds of symmetry, there are also many other kinds, including Poincaré
duality (seen in the symbol of a projective scheme without singularities), various
symmetries in Hodge diamonds, symmetries of modular forms, and the fact that
the number of rows in a character table equals the number of columns.

A mathematical treatment of symmetry invariably involves group theory,
and in situations where the symmetry group is both finite and known, it is easy
to implement algorithms for detecting symmetry. However, in cases where the
symmetry group is infinite and/or unknown, the symmetry detection problem

2 It might also be interesting to build algorithms based on other kinds of metrics, like
the I-adic metric on a polynomial ring or a Grothendieck ring (where I is an ideal
of the ring), or the Granville-Soundararajan metric on multiplicative functions [10].
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is more challenging. It would be interesting to explore the image recognition
and computer vision literature on symmetry detection and think about whether
known algorithms can be applied to arithmetic settings, for example to plots of
complex numbers taken from a Tannakian symbol.
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Abstract. A critical part of mathematicians’ work is the process of
conjecture-making. This involves observing patterns in and between math-
ematical objects, and transforming such patterns into conjectures that
describe or better explain the behavior of the objects. Computer scien-
tists have since long tried to reproduce this process automatically, but
most of the methods were typically restricted to specific domains or based
on brute-force enumeration methods. In this work we propose and imple-
ment methods for generating conjectures by using statistical analogies
extracted from large formal libraries, and provide their initial evaluation.

1 Introduction

In the past decade, there has been considerable progress in proving conjectures
over large formal corpora such as Flyspeck [7], Isabelle/HOL [12], the Mizar
Mathematical Library (MML) [1] and others. This has been achieved by combin-
ing high-level learning or heuristic fact-selection mechanisms with a number of
methods and strategies for guiding the strongest (typically superposition-based)
automated theorem provers (ATPs). While this approach has not reached its
limits [2], and its results are already very useful, it still seems quite far from the
way humans do mathematics. In particular, even with very precise premise (fact)
selection, today’s ATPs have trouble finding many longer Mizar and Flyspeck
proofs of the toplevel lemmas in their libraries. In fact, only a few of such lemmas
would be called a “theorem” by a mathematician. Often the “theorem” would be
just the final proposition in a formal article, and the toplevel lemmas preceding
the theorem would be classified as simple technical steps that sometimes are not
even mentioned in informal proofs.

An important inductive method that mathematicians use for proving hard
problems is conjecturing, i.e., proposing plausible lemmas that could be useful
for proving a hard problem.3 There are likely a number of complicated inductive-
deductive feedback loops involved in this process that will need to be explored,
however it seems that a major inductive method is analogy. In a very high-level

3 A famous example is the Taniyama-Shimura conjecture whose proof by Wiles finished
the proof of Fermat’s Last Theorem.
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way this could be stated as: “Problems and theories with similar properties are
likely to have similar proof ideas and lemmas.”

Again, analogies can likely be very abstract and advanced. Two analogue
objects may be related through a morphism. They can also be two instances of
the same algebraic structure. The organization of such structures was recently
addressed by the MMT framework [13] in order to represent different logics in a
single consistent library. In this work we start experimenting with the analogies
provided by statistical concept matching [4]. This method has been recently
developed in order to align formal libraries of different systems and to transfer
lemmas between them [5]. Here we use statistical concept matching to find the
most similar sets of concepts inside one large library. The discovered sets of
matching concepts can then be used to translate a hard conjecture C into a
“related” conjecture C ′, whose (possible) proof might provide a further guidance
for proving C. The remaining components that we use for this first experiment
are standard large-theory reasoning components, such as fast machine-learners
that learn from the thousands of proofs and propose the most plausible lemmas
for proving the related conjectures, and first-order ATPs – in this case we use
Vampire 4.0 [10].

2 Matching concepts

In order to apply some analogies, we first need to discover what they are by
finding similar concepts. For our initial evaluation, our similarity matching will
be limited to concepts represented by constants and ground sub-terms. Later this
can be extended to more complex term structures. We describe here a general
concept matching algorithm inspired and improved upon [4] and discuss how
this algorithm can be adapted to find analogies within one library.

2.1 Matching concepts between two libraries

Given two theorem libraries, the first step is to normalize all statements, as this
increases the likelihood of finding similar theorem shapes. If two theorems have
the same shape (that we will call such abstract shapes a property), then the
concrete constants appearing in this two theorems at the same positions are
more likely to be similar. We will say that such pairs of constants are derived
from the theorem pair.

Example 1. Given the theorems T1 and T2 with the statements, their respective
normalizations, and the properties extracted from their statements:

T1 : ∀x : num. x = x+ 0 T2 : ∀x : real. x = x× 1

P1 : λnum,+, 0. ∀x : num x = x+ 0 P2 : λreal,×, 1. ∀x : real. x = x× 1

The properties P1 and P2 are α-equivalent, therefore the theorems T1 and T2
form a matching pair of theorems, and the following three matching pairs of
constants are derived:

num↔ real, +↔ ×, 0↔ 1
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We further observe that the matchings (+,×) and (0, 1) are in relation
through the theorem pair (T1, T2). The strength of this relation – correlation
– is given by the number and accuracy of the theorem pairs these matchings
are jointly derived from. We will call the graph representing the correlations
between different matchings the dependency graph. The similarity score of each
matching (i.e., pair of concepts) is then initialized with a fixed starting value
and computed by a dynamical process that iterates over the dependency graph
until a fixpoint is reached.

The principal advantage of this method is that the algorithm is not greedy,
allowing a concept to match multiple other concepts in the other libraries. This
is a desirable property, since we want to be able to create multiple analogues for
one theorem. Matchings are then combined into substitutions, which are in turn
applied to the existing theorem statements yielding plausible conjectures.

Very few adjustments are needed to adapt this method to a single library.
We create a duplicate of the library and match it with its copy. Since we are
not interested in identity substitutions, we prevent theorems from matching with
their copies. However, we keep self matches between constants in the dependency
graph since good analogies can be often found by using partial substitutions.

3 Context-dependent substitutions

Constant matchings by themselves create special one-element substitutions that
transport the properties of one constant to another. In general, substitutions are
created from translating more than one constant. Suppose, that we know that
addition is similar to union and multiplication to intersection. We can hope to
transport the distributivity of multiplication over addition to the distributivity
of intersection over union. Therefore, the correlations between the matchings are
crucial for building the substitutions.

We now present two methods for creating substitutions from a theorem.
These methods are based on the correlations between the concept pairs and the
similarity score of each concept pair.

We want to construct substitutions that are most relevant in the local con-
text, i.e., for the symbols that are present in the theorem we want to translate
(target theorem).

The first method starts by reducing the dependency graph to the subgraph of
all concept pairs whose first element is contained in the target theorem. We first
select a starting node in this subgraph which is not an identity matching, and
recursively find nodes (possibly identities) that are connected by the strongest
edges of the subgraph, under the constraint that no two selected nodes have the
same first element. The algorithm stops when no new node can be added. The
final set of nodes obtained in this way forms a partial substitution. We run this
algorithm either for all starting nodes, or for those with similarity scores above
a certain threshold. This produces a set of substitutions, which are effectively
the most relevant substitutions for the target theorem. This process seems to
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produce many substitutions, however in practice, many of them are identical,
which limits their total number.

The second method is a brute-force approach where we first find the set of
concepts (Matched(T )) that match at least one concept in the set of concepts
(Concepts(T )) present in the target theorem T . We would like to create all
possible substitutions between Concepts(T ) and Matched(T ) and rank them,
however this would often blow up the generation phase. To limit the number
of possible substitutions, we remove possible matches by iterating the following
process until the number of substitutions is below a chosen threshold (1000):
We select the constant C in T with most remaining matchings, remove its worst
match, recompute the number of remaining matches for all constants in T , and
check if the number of substitutions is already below the threshold. If so, the
process terminates, otherwise we continue the iteration.

Next, we select the 200 substitutions with the highest combined score. The
combined score of a substitution S is computed by multiplying the average cor-
relation and similarity in S, i.e. formally as follows:

CombinedScore(S) = AverageCorrelation(S)×AverageSimilarity(S)

AverageCorrelation(S) =
1

|S|2 ×
∑

M∈S,M ′∈S
Correlation(M,M ′)

AverageSimilarity(S) =
1

|S| ×
∑

M∈S
SimilarityScore(M)

On top of these combined scores, the diversity of substitutions can be max-
imized by the following shuffling. The process iteratively chooses a (not yet se-
lected) substitution with the best diversity score and increases the set of selected
substitutions T. These scores are then updated to penalize the substitutions that
have more matchings in common with the already selected ones.

CommonMatchings(S, T ) = |S ∩ T |

DiversityScore(S) =
CombinedScore(S)

(1 +
∑
T∈T CommonMatchings(S, T ))3

These substitutions will eventually be applied to the initial theorem to create
new conjectures. We hope that if such conjectures can be proved, they will
improve the AI/ATP methods by enriching the theory. We consider in Section 4
two possible scenarios where the combination of conjecturing by analogies and
premise selection could be useful.

4 Scenarios

We will consider two scenarios for the use of conjecturing: without and with a
user given goal.
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In the first scenario no goal set by the user, and our system should decide
what is the next step in the development of the whole library. In this context, our
algorithm produces the most likely conjectures by applying the first substitution
generation method on all theorems. We then evaluate the conjectures by trying
to prove them. We estimate the difficulty of a proved conjecture by the number
of lemmas that were used in its proof. We estimate the relevance of a conjecture
by how much adding this conjecture as a new theorem in the library helps to
automatically prove formalized statements appearing after it in the library.

In the second scenario, a goal is given and the system should figure a way
how to prove it. The typical AI-ATP method is to search through all lemmas
(in an evaluation this means the lemmas which occur before the goal), and
select the most relevant ones using machine learning techniques. If however an
important lemma was not proven or proven after the goal, the premise selection
fails to produce it. Therefore, we propose a way to produce some of such relevant
missing lemmas. This method is depicted in Fig 1. We first select the 20 best
scoring substitutions for this goal, which creates 20 new goals. We then try to
prove them using the AI-ATP system. If some of them are successfully proved,
we obtain small sets of lemmas which were sufficient to prove the translated
goals. These lemmas are then translated back to the original concepts. We run
our AI-ATP system again and remove those it cannot prove. The final step is to
try to prove the user goal from those additional lemmas. This strategy simulates
the following thought process a human could have: “Can I prove this conjecture
for a similar concept”?, “If so, what where the necessary lemmas?” “If some
of this lemmas holds for my original concept, they would likely help me in my
original proof”.

original conjecture conjectures

theorems

lemmasconjectures

interesting lemmas

analogies

proof

reflected analogies

proof

Fig. 1. Creating additional relevant lemmas for a conjecture through analogies.
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5 Experiments

5.1 Untargeted Conjecture Generation

In the first scenario, we apply4 the 20 “most plausible” substitutions to all MML
theorems, and attempt to prove a small part (73535) of those, each time using the
whole MML. We want to see how complicated and interesting the conjectures can
be. After premise selection Vampire can prove 10% (7346) of them in 10 s, which
is reduced to 4464 after pseudo-minimization [8] and removing tautologies and
simple consequences of single lemmas. An example of a reasonably interesting
conjecture (and analogy) with a new nontrivial proof is the convexity of empty
subsets of real linear spaces, induced from a similar claim about them being
“circled”:5

registration

let X be non empty RLSStruct;

cluster empty -> circled for Element of bool the carrier of X;

Here “circled” is defined as6

definition

let X be non empty RLSStruct; let A be Subset of X;

attr A is circled means :Def6: :: RLTOPSP1:def 6

for r being Real st abs r <= 1 holds r * A c= A;

and “convex” as7

definition

let V be non empty RLSStruct; let M be Subset of V;

attr M is convex means :Def2: :: CONVEX1:def 2

for u, v being VECTOR of V

for r being Real st 0 < r & r < 1 & u in M & v in M holds

(r * u) + ((1 - r) * v) in M;

For example the following properties of circled8 and convex9 subsets are quite
similar, leading the conjecturer into conjecturing further properties like the one
stated above.

registration

let X be RealLinearSpace;

let A, B be circled Subset of X;

cluster A + B -> circled ;

4 The experimental version of our conjecturer used here is available at:
http://147.32.69.25/~mptp/conj/conjecturing_standalone.tar.gz .

5
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/rltopsp1.html#CC1

6
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/rltopsp1.html#V3

7
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/convex1.html#V1

8
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/rltopsp1.html#FC3

9
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/convex1.html#T2
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theorem :: CONVEX1:2

for V being non empty Abelian add-associative vector-distributive

scalar-distributive scalar-associative scalar-unital RLSStruct

for M, N being Subset of V st M is convex & N is convex holds

M + N is convex

5.2 Targeted Conjecture Generation

In the second experiment, we have used as our target the set of 22069 ATP-
hard Mizar toplevel lemmas (theorems). These are the theorems that could
not be proved in any way (neither with human-advised premises, nor with
learned premise selection) in our recent extensive experiments with state-of-
the-art AI/ATP methods over the MML [9]. For the current experiment, those
experiments are very thorough. They used high ATP time limits, many ATPs,
their targeted strategies, a number of learning methods and their combinations,
and a number of iterations of the learning/proving loop, approaching in total
a month of a server time. Proving these problems with a low time limit and a
single AI/ATP method is thus quite unlikely.

To each such hard theorem T we apply the 20 best (according to the diversity
score) substitutions. Such substitutions are additionally constrained to target
only the part of the MML that existed before T was stated. This gives rise to
441242 conjectures, which we attempt to prove – again only with the use of
the MML that precedes T . Because of resource limits, we use only one AI/ATP
method: k-NN with 128 best premises, followed by Vampire using 8 s. This takes
about 14 hours on a 64-CPU server, proving 9747 (i.e. 2.2%) of the conjectures.
We do two rounds of pseudo-minimization and remove tautologies and simple
consequences of single lemmas. This leaves 3414 proved conjectures, originating
from 1650 hard theorems, i.e., each such conjecture C is a translation of some
hard theorem T under some plausible substitution σ (C = σ(T )). We translate
the MML lemmas LiC needed for the proof of C “back” into the “terminology of
T” by applying to them the reverse substitution σ−1.

This results in 26770 back-translated conjectures. For each of them we hope
that (i) it will be provable from the MML preceding T , and (ii) it will be useful
for proving its T , since its image under σ was useful for proving σ(T ). We use
again only 8 s to select those that satisfy (i), yielding after the minimization and
removal of trivial ones 2170 proved back-translated lemmas, originating from
500 hard theorems. For each of these 500 theorems T we do standard premise
selection (using slices of size 128 and 64) over the preceding MML, and add
these lemmas (obviously only those that “belong” to T ) to the premises of T .
Then we run Vampire for 30 s on the standard and lemma-augmented problems.
While there is no difference when using 128 lemmas, for 64 lemmas we obtain (in
addition to the 6 proofs that both the standard and augmented methods find)
an interesting new proof of the theorem MATHMORP:2510, which cannot be found
by Vampire using the standard method even with a time limit of 3600 s.

10
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/mathmorp.html#T25
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theorem :: MATHMORP:25

for T being non empty right_complementable Abelian

add-associative right_zeroed RLSStruct

for X, Y, Z being Subset of T

holds X (+) (Y (-) Z) c= (X (+) Y) (-) Z

To find this proof, our concept matcher first used the statistical analogy between
addition11 and subtraction12 in additive structures (addMagma). By doing that,
it inadvertently constructed as a conjecture the theorem MATHMORP:2613, that
actually immediately succeeds MATHMORP:25 in MML. This alone is remarkable,
because this theorem was not known at the point when MATHMORP:25 was being
proved. Using premise selection and Vampire, MATHMORP:26 was proved in 4 s,
and a particular back-translated lemma from its proof turned out to be prov-
able and crucial for proving MATHMORP:25 automatically. This lemma is actually
“trivial” for Mizar, since it follows by climbing Mizar’s extensive type hierar-
chy [6] from an existing typing of the ‘‘(-)’’ function. However, as mentioned
above, we were not able to get this proof without this lemma even with much
higher time limits.

6 Conclusion and Future Work

We have investigated the application of a concept matching algorithm to for-
mulate conjectures through analogies. We have described a way to combine it
with premise selection methods and ATPs. This was designed to create potential
intermediate lemmas that help an ATP to find complex proofs.

While these are just first experiments, it seems that statistical concept match-
ing can occasionally already come up with plausible conjectures without resorting
to the (in large libraries rather impossible) brute-force term enumeration meth-
ods. So far we do not even use any of the manually invented heuristic methods
such as those pioneered by Lenat [11] and Fajtlowicz [3], and rather rely on
a data-driven approach. Such heuristics and other methods could be combined
with the statistical ones.

We can likely improve the matching algorithm by allowing the concepts to be
represented by more complex term structures [14]. This may help us to connect
concepts from more different domains. In the same direction, we could also relax
our concept of properties to allow matching with errors. A more generic solution
would be to try different shapes of theorems using substitutions trees or genetic
programming, but this might need efficient implementation.

We can also modify how the matching algorithm and the AI-ATP system
are combined. A simple approach is to enhance the premise selection algorithm
of the AI-ATP system with the discovered similarities between concepts. In our
experiments we also observe an increasing number of conjectures given by the

11
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/rusub_4.html#K6

12
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/mathmorp.html#K3

13
http://mizar.cs.ualberta.ca/~mptp/7.13.01_4.181.1147/html/mathmorp.html#T26
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number of possible substitutions. A heuristic semantic evaluation could comple-
ment the substitutions scores to estimate the likely of a conjecture to be true.
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A Standard for Aligning Mathematical Concepts
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Abstract. Mathematical knowledge is publicly available in dozens of
different formats and languages, ranging from informal (e.g. Wikipedia)
to formal corpora (e.g., Mizar). Despite an enormous amount of over-
lap between these corpora, few machine-actionable connections exist.
We speak of alignment if the same concept occurs in different libraries,
possibly with slightly different names, notations, or formal definitions.
Leveraging these alignments would create a huge potential for knowledge
sharing and transfer, e.g., integrating theorem provers or reusing services
across systems.

Formally describing and verifying alignments is extremely expen-
sive, as it typically requires not only aligning two concepts but whole
libraries together with their foundations, or may even be impossible in
case of alignments between semi-formal or informal concepts. Therefore,
we introduce a lightweight approach that focuses on identifying the align-
ments while abstracting from formal definitions. Notably, this is already
sufficient for many practically valuable applications.

We present a classification of alignments and design a simple format
for describing alignments as well as an infrastructure for sharing them.
We propose these as a centralized standard for the community to collect
and curate alignments from the different kinds of mathematical corpora,
including proof assistant libraries, computer algebra and programming
language algorithms, and semi-formal libraries.

1 Introduction

Motivation and Related Work The sciences are increasingly collecting and curat-
ing their knowledge systematically in machine-processable corpora. For example,
in biology many important corpora take the form of ontologies, e.g., as collected
on BioPortal. These corpora typically overlap substantially, and much recent
work has focused on integrating them. A central problem here is to find align-
ments: pairs (a1, a2) of identifiers from different corpora that describe the same
concept.

For ontologies, this problem has been relatively well-studied under the head-
ing ontology matching [ESC07]. The situation in mathematics is somewhat spe-
cial because mathematical knowledge involves rigorous notations, definitions,
and properties, and attempts to capture it fully lead to very diverse corpora.
Logical corpora have been developed in proof assistants and feature machine-
understandable theorems and proofs. Computational corpora have been devel-
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oped in computer algebra systems and feature executable definitions and con-
structions. And narrative corpora have been developed in wikis and related tools
featuring human-oriented semi-formal descriptions. For each kind, there are mul-
tiple large corpora, often the result of dozens of person-years of investment.

Alignments between computational corpora occur in bridges between the
run time systems of programming languages. Alignments between logical and
computational corpora are used in proof assistants with code generation such
as Isabelle [WPN08] and Coq [Coq15]. Here functions defined in the logic are
aligned with their implementations in the programming language in order to
generate fast executable code from formalizations.

Wiedijk [Wie06] explored a single theorem (and its proof) across 17 proof as-
sistants implicitly providing alignments between the concepts present in the the-
orem’s statement and proof. However, finding alignments has proved extremely
difficult in general. There are three reasons for this: the conceptual differences
between the three kinds of corpora; the differences between the underlying for-
mal languages and tools; and the differences between the organization of the
knowledge in the corpora.

The dominant methods for integrating logical corpora so far have focused on
truth-preserving translations between the underlying knowledge representation
languages. For example, [KS10] translates from Isabelle/HOL to Isabelle/ZF.
[KW10] translates from HOL Light to Coq, [OS06] to Isabelle/HOL, and [NSM01]
to Nuprl. Older versions of Matita [ACTZ06] were able to read Coq compiled
theory files. [CHK+11] build a library of translations between different logics.

However, most translations are not alignment-aware, i.e., it is not guaranteed
that a1 will be translated to a2 even if the alignment is known. This is because
a1 and a2 may be subtly incompatible so that a direct translation may even lead
to inconsistency or ill-typed results. [OS06] was — to the authors knowledge —
the first that could be parametrized by a set of alignments. The OpenTheory
framework [Hur09] provides a number of higher-order logic concept alignments.
In [KR16], the second and fourth author discuss the corpus integration problem
and conclude that alignments are of utmost practical importance. Indeed, corpus
integration can succeed with only alignment data even if no logic translation is
possible. Conversely, logic translations contribute little to corpus integration
without alignment data.

An alignment does not need to be perfect to be useful. In some HOL proof as-
sistants real numbers are defined using Cauchy sequences, while in some Dedekind
cuts are used. The two structures undoubtedly share all the real number prop-
erties. However, if we look at the implications of the definitions themselves,
the former implies that there is a canonical Cauchy sequence for each number.
Despite this minor difference, we can use such an alignment in a logical transla-
tion [KK13]. In fact there is a whole spectrum of perfectness of alignments. An
alignment can indeed be perfect when the definitions of two concepts are the
same in a logical corpus. Aligning functions that have the same specifications,
but difffer only in the complexity is particularily useful in computational cor-
pora, for example interfacing languages. Finally, concepts may be just similar.

2
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In set theory zero is defined as the empty set, while in many other foundations
is it a constructor of an inductive type. Only a quarter of the properties of the
empty set are the same as those of explicitly defined zero.

Many practical services are enabled even by such imperfect alignments. Sta-
tistical analogies extracted from large formal libraries combined with imper-
fect alignments can be used to create new conjectures to automatically explore
a logical corpus [GKU16]. Automated reasoning services can use the libraries
of alignments to provide more precise proof recommendations [GK15]. Fur-
ther ideas include searching for a single query expression in multiple corpora
at once [AGC+04,KR14].

Due to the size of the involved corpora, it is desirable to find alignments
automatically. Recently, the first author has developed heuristic methods for
automatically finding alignments [GK14] targeted at integrating logical corpora
[KK13] including HOL Light, HOL4, and Isabelle/HOL discovering 398 pairs of
isomorphic concepts. Consistent name hashing combined with statement normal-
ization was used to discover 39 symbols with equivalent definitions [KU15] in the
Flyspeck development [H+15]. Ginev built a library of about 50,000 alignments
between narrative corpora including Wikipedia, Wolfram Mathworld, Planet-
Math and SMGloM [GC14].

Contribution and Overview Our contribution is two-fold. First, we present a
phenomenological study of alignments between mathematical corpora in Section
2. Most importantly, we collect the various subtle reasons why an alignment may
be imperfect because not all properties of the aligned symbols transfer exactly.

Our standardization includes a standardization of forming MMT URIs [RK13]
for a number of a major logical corpora in Section 3. These assign a canonical
URI to every symbol in a way that is unique across corpora and across logics.
We use these URIs to give several examples from logical corpora in Section 4.
The examples focus on logical corpora, but our results carry over to other kinds
of corpora as well.

Second, we propose a standard for storing and sharing alignments. Most
corpora are developed and maintained by separate, often disjoint communities.
That makes it difficult for researchers to utilize alignments because no central
repository exists for jointly building a large collection of alignments. We have
started such a central repository — it is public, and we invite all researchers
to contribute their alignments. We seeded our repository with the alignment
sets mentioned above. Moreover, we are hosting a web-server that allows for
conveniently querying for all symbols aligned with a given symbol. We describe
this standard and infrastructure in Section 5.

2 Types of Alignments

Let us assume two corpora C1, C2 with underlying foundational logics F1, F2.
We examine examples for how two concepts ai from Ci can be aligned.

3
231



Perfect Alignment If a1 and a2 are logically equivalent modulo a translation ϕ
that is fixed in the context, we speak of a perfect alignment. More precisely, all
formal properties (type, definition, axioms) of a1 carry over to a2 and vice versa.
Typical examples are primitive types and their associated operations. Consider:

Nat1 : Type Nat2 : Type

then translations between C1 and C2 can simply interchange a1 and a2.
The above example is deceptively simple for two reasons. Firstly, it hides the

problem that F1 and F2 do not necessarily share the symbol Type. Therefore, we
need to assume that there are symbols Type1 and Type2, which have been already
aligned (perfectly). Such alignments are crucial for all fundamental constructors
that occur in the types and characteristic theorems of the symbols we want to
align such as Type, →, bool, ∧, etc. These alignments can be handled with the
same methodology as discussed here. Therefore, here and below, we assume we
have such alignments and simply use the same fundamental constructors for F1

and F2.
Secondly, it ignores that we usually only want certain formal properties to

carry over, namely those in the interface theory in the sense of [KR16]. For
example, in Section 4 we give many perfect alignments between symbols that
use different but interface-equivalent definitions.

Alignment up to Argument Order Two function symbols can be perfectly aligned
except that their arguments must be reordered when translating.

The most common example is function composition, whose arguments may
be given in application order (f ◦g) or in diagram order (f ; g). Another example
is given

contains1 : (T : Type)→ SubSetT → T → bool

in2 : (T : Type)→ T→ SubSetT → bool

Here the expressions contains1(T,A, x) and in2(T, x,A) are aligned.

Alignment up to Determined Arguments The perfect alignment of two function
symbols may be broken because they have different types even though they agree
in most of their properties. This often occurs when F1 uses a more fine-granular
type system than F2, which requires additional arguments.

Examples are untyped and typed (polymorphic, homogeneous) equality: The
former is binary, while the latter is ternary

eq1 : Set→ Set→ bool eq2 : (T : Type)→ T → T → bool.

The types can be aligned, if we apply ϕ(Set) to eq2. Similar examples arise
between simply- and dependently-typed foundations, where symbols in the latter
take additional arguments.

These additional arguments are uniquely determined by the values of the
other arguments, and a translation from C1 to C2 can drop them, whereas the
reverse translations must infer them – but F1 usually has functionality for that.
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The additional arguments can also be proofs, used for example to represent
partial functions as total functions, such as a binary and a ternary division
operator

div1 : Real→ Real→ Real div2 : Real→ (d : Real)→` d 6= 0→ Real

Here inferring the third argument is undecidable, and it is unique only in the
presence of proof irrelevance.

Alignment up to Totality of Functions The functions a1 and a2 can be aligned
everywhere where both are defined. This often happens since it is often con-
venient to represent partial functions as total ones by assigning values to all
arguments. The most common example is division. div1 might both have the
type Real→ Real→ Real with x div1 0 undefined and x div2 0 = 0.

Here a translation from C1 to C2 can always replace div1 with div2. The re-
verse translation can usually replace div2 with div1 but not always. In translation-
worthy data-expressions, it is typically sound; in formulas, it can easily be un-
sound because theorems about div2 might not require the restriction to non-zero
denominators.

Alignment for Certain Arguments Two function symbols may be aligned only
for certain arguments. This occurs if a1 has a smaller domain than a2.

The most fundamental case is the function type constructor → itself. For
example,→1 may be first-order in F1 and→2 higher-order in F2. Thus, a trans-
lation from C1 to C2 can replace →1 with →2, whereas the reverse translation
must be partial.

Another important class of examples is given by subtyping (or the lack
thereof). For example, we could have

plus1 : Nat→ Nat→ Nat plus2 : Real→ Real→ Real.

Another way for a1 to have a smaller domain is to take less arguments. For
example, we might have

ln1 : Real→ Real log2 : Real→ Real→ Real

where ln2(x) can be translated to log2(e, x).

Alignment up to Associativity An associative binary function (either logically
associative or notationally right- or left-associative) can be defined as a flexary
function, i.e., a function taking an arbitrarily long sequence of arguments. In
this case, translations must fold or unfold the argument sequence. For example

plus1 : Nat→ Nat→ Nat plus2 : List Nat→ Nat.

Contextual alignments Two symbols may be aligned only in certain contexts.
For example, the complex numbers are represented as pairs of real numbers in
some proof assistant libraries and as an inductive data type in others. Then only
selected occurrences of pairs of real numbers can be aligned with the complex
numbers.
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Alignment with a Set of Declarations Here a single declaration in C1 is aligned
with a set of declarations in C2. An example is a conjunction a1 in C1 of axioms
aligned with a set of single axioms in C2. More generally, the conjunction of a set
of C1-statements may be equivalent to the conjunction of a set of C2-statements.

Here translations are much more involved and may require aggregation or
projection operators.

Alignment between the Internal and External Perspective on Theories Logical
theories can be represented in two ways. We define them only by example. We
speak of the internal perspective if we use a theory like

theory Magma1 = {u1 : Type, ◦1 : u1 → u1 → u1}

and of the external perspective if we use operations like

Magma2 : Type, u2 : Magma2 → Type, ◦2 : (G : Magma)→ u2G→ u2G→ u2G

Here we have non-trivial, systematical translation from C1 to C2; a reverse may
also be possible, depending on the details of F1.

Corpus-Foundation Alignment Orthogonal to all of the above, we have to con-
sider alignments, where a symbol is primitive in one system but defined in an-
other. More concretely, a1 can be built-into F1 whereas a2 is defined in F2. This
is common for corpora based on significantly different foundations, as each foun-
dation is likely to select different primitives. Therefore, it mostly occurs for the
most basic concepts. For example, the boolean connectives, integers and strings
are defined in some systems but primitive in others, as in some foundations they
may not be easy to define.

The corpus-foundation alignments can be reduced to previously considered
cases if we follow the “foundations-as-theories” approach [KR16], where the foun-
dations themselves are represented in an appropriate logical framework. Then
a1 is simply an identifier in the corpus of foundations of the framework F1.

Opaque Alignments The above alignments focused on logical corpora, partially
because logical corpora allow for precise and mechanizable treatment of logical
equivalence. Indeed, alignments from a logical into a computational or narrative
corpus tend to be opaque: Whether and in what way the aligned symbols corre-
spond to each other is not (or not easily) machine-understandable. For example,
if a2 refers to a function in a programming language library, that functions spec-
ification may be implicit or given only informally. Even worse, if a2 is a wiki
article, it may be subject to constant revision.

Nonetheless, such alignments are immensely useful in practice and should not
be discarded. Therefore, we speak of opaque alignments if a2 refers to a symbol
whose semantics is unclear to machines.
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3 Global Identifiers

An essential requirement for relating logical corpora is standardizing the iden-
tifiers so that each identifier in the corpus can be uniquely referenced. It is
desirable to use a uniform naming schema so that the syntax and semantics of
identifiers can be understood and implemented as generically as possible. There-
fore, we use MMT URIs [RK13], which have been specifically designed for that
purpose.

3.1 General Structure

Syntax MMT URIs are triples of the form

NAMESPACE ? MODULE ? SYMBOL

The namespace part is a URI that serve as globally unique root identifiers of
corpora (e.g., http://mathhub.info/MyLogic/MyLibray). It is not necessary
(although often useful) for namespaces to also be URLs, i.e., a reference to a
physical location. But even if they are URLs, we do not specify what resource
dereferencing should return. Note that because MMT URIs use ? as a separator,
MODULE ? SYMBOL is the query part of the URI, which makes it easy to implement
dereferencing in practice.

The module and symbol parts of an MMT URI are logically meaningful
names defined in the corpus: The module is the container (e.g., a signature,
functor, theory, class, etc.) and the symbol is a name inside the module (of a type,
constant, axiom, theorem etc.). Both module and symbol name may consist of
multiple /-separated segments to allow for nested modules and qualified symbol
names.

MMT URIs allow arbitrary Unicode characters. However, ? and /, which
MMT URIs use as delimiters, as well as any character not legal in URIs must
be escaped using the %-encoding. We refer to RFC 3986/7 for details.

Both the corpus itself and the system with which it was processed may be
subject to change. Therefore, it may be useful to record a version in an MMT
URI. However, most developers take care to avoid semantically critical changes
at least to the widely used parts of their corpora. Since those parts are also
the most interesting ones for integration, we omit issues of versioning here and
simply remark that the version can be recorded as a part of the root namespace.

Formation Principles The precise formation of MMT URIs may depend subtly
on the foundational logic underlying the corpus. In the sequel, we identify some
general principles that allow stating the formation rules concisely.

The most important physical structure of a corpus is usually a directory tree,
whose leaves are files containing modules. In this case, the following principles
are typical options to define namespaces:
– flat structure: All modules use the same namespace as the root namespace

of the corpus regardless of their physical location in the corpus. This naming
schema is most well-known from SML.
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– directory-based structure: The namespace of a module is formed by con-
catenating the root namespace with the path to the directory containing it.
There are two subcases regarding the treatment of the file name:
• files-as-modules: The file contains exactly one module. The name of

the module may be given explicit ly in the file or may be implicit. Either
way, the name of the module must be the same as the file name without
the file name extension. Files as explicitly named modules is most well-
known as the convention of Java.

• irrelevant file names: The file name is irrelevant, i.e., the grouping of
modules into files within the same directory is arbitrary. In particular, a
file can contain multiple modules.

– file-based structure: The namespace of a module is formed by concatenating
the root namespace of the corpus with the path to the file containing it.

3.2 URIs for Selected Proof Assistants

Using the principles defined above, we describe the MMT URI formation princi-
ples for some important proof assistants. In all cases, we also assign MMT URIs
for the underlying foundations in order to refer to built-in concepts.

PVS [ORS92] uses directory-based namespaces with irrelevant file names.
We propose the following root URIs for some important PVS-related corpora:
– the PVS foundation: http://pvs.csl.sri.com/foundation
– the standard library that is shipped with PVS: http://pvs.csl.sri.com/Prelude
– the NASA corpus: http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

Within a PVS corpus, the top-level modules are theories and (co)datatype
declarations. The only possible nesting between them is that theories may con-
tain (co)datatype declarations. Consequently, the module names have at most
two segments. If a module is a (co)datatype, its symbols are the constructors,
testers, etc. These are not hierarchical. If a module is a theory, its symbols are
all declarations declared in it. These are not hierarchical. However, if a symbol
name N is declared multiple times in the same module (due to overloading), we
use two-level names of the form N/i where i numbers all declarations of N in
that module (starting from 1).

Coq [Coq15] uses directory-based namespaces with files as implicitly named
modules. We propose the following root URIs:

– the Coq foundation: https://coq.inria.fr/foundation
– the standard library shipped with Coq: https://coq.inria.fr/theories
– the Coq contributions: https://coq.inria.fr/contribs
– the Mathematical Components corpus (including SSReflect):

http://ssr.msr-inria.inria.fr/math-comp

Coq modules can be nested. Besides the module name given implicitly by the
file, Coq files can contain modules and module types. Symbols are all declara-
tions inside a module. Their names can be hierarchic due to generative functor
instantiation.

8
236



Matita uses the same URIs as Coq except for not allowing nested modules.
We suggest the following root URIs:

– the Matita foundation: http://matita.cs.unibo.it/foundation
– the Matita standard library: http://matita.cs.unibo.it/library

Mizar uses a flat namespace. We propose the following root URIs:

– the Mizar foundation: http://mizar.org/foundation
– the Mizar Mathematical Library (MML): http://mizar.org/library

The Mizar modules are the articles. The name of a module is the name of
the article without the file name extension. There is no nesting of modules. The
Mizar symbols are all the declarations inside an article. Their names are obtained
through a heavily idiosyncratic naming schema that includes generating unique
names by numbering the declarations of the same kind in each article. For exam-
ple, the MMT URI of conjunction is http://mizar.org/corpus?XBOOLEAN0?K4

HOL Light does not have an obvious MMT URI formation principle because
it does not maintain all its identifiers itself — instead it relies on the OCaml
toplevel to store the assigned values. There are three kinds of HOL Light symbols:
types, constants, and theorems; only the former two are visible to the HOL Light
kernel. For each type or constant, we use the name visible to the HOL Light
kernel. For each theorem, we use the OCaml binding name. OCaml toplevel
symbols may be grouped into OCaml modules. This feature is seldom used, as
it only affects theorem names: the kernel is also not aware of the OCaml module
in which the definitions of constants or types are introduced.

This has the effect that different HOL Light files can be incompatible with
each other. There are two reasons for this incompatibility: First, toplevel symbols
may be overwritten by others, which means that the original ones are no longer
accessible and a formalization might fail. This happens for example in case of the
OCaml basic output function open in which gets overwritten by a theorem with
the same name. Second, the loading of a file may change the state of HOL Light
kernel or packages to one that is no longer compatible with another file [Wie09].
For example the theories complexnumbers.ml and complexes.ml both introduce
the type complex but with different definitions.

Thus, HOL Light’s names do not uniquely identify symbols. Therefore, we
use directory-based namespaces with files-as-modules. For constants and types
introduced by a module we add the prefixes const/ and type/ respectively. If a
file contains OCaml modules, we use their names to form multi-segment module
names. Accordingly, if symbols result from OCaml structures, we form multi-
segment symbol names. This has the effect that HOL Light URIs are formed in
exactly the same way as for Coq.

We propose the following root URIs:

– the HOL Light foundation and the library shipped with it:
http://github.com/jrh13/hol-light

– the Formal Proof of Kepler formalization [H+15]:
http://github.com/flyspeck/flyspeck
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For example, the Flyspeck theorem well defined unordered pair is as-
signed the URI: http://github.com/flyspeck/flyspeck?text_formalization/
packing/marchal3?Marchal_cells_3.well_defined_unordered_pair.

HOL4 internal module names correspond to names of files, however the
names of types and constants are not associated with the modules. Furthermore,
the names of constants and types are separate. To avoid ambiguity we use the
same module names as for HOL Light. We propose the following root URIs:
– the HOL4 foundation and the library shipped with it:

https://hol-theorem-prover.org

Isabelle is a logical framework: Its distribution includes a number of object
logics, and each Isabelle theory uses an object logic (or declares a new one).
Isabelle uses files as explicitly named modules. However, it disregards the direc-
tory structure: The system makes sure that two modules with same name cannot
be loaded in the same session even if they are stored in different directories. But
as different object logics and different developments often declare incompatible
notions, we still use directory-based namespaces to make sure all theories have
unique namespaces.

Isabelle allows several module mechanisms including locales and type classes
[HW06]. Therefore, we form nested module names by concatenating theory and
locale/type class names. We propose the following root URIs:
– Isabelle foundation and distributed libraries: http://isabelle.in.tum.de/
– the Archive of Formal Proofs: http://afp.sf.net/
– the TLA+ logic: http://tla.msr-inria.inria.fr/

For example the type of streams is represented by the URI:
http://isabelle.in.tum.de/?HOL/corpus/Stream?stream

4 Examples of Alignments

Using the MMT URIs defined in Sect. 3, we give a detailed presentation of
alignments across proof assistants for three representative concepts. We also
include some alignments to programming languages, which are relevant for code
generation. In all cases, we will see how big the differences between the details
are across the logical corpora even though most of the alignments are in fact
perfect.

Cartesian Product In constructive type theory, there are two common ways of
expressing the non-dependent Cartesian product. First, if the foundation has
inductive types such as the Calculus of Inductive Constructions, it can be an
inductive type with one binary constructor. Second, if the foundation has a
dependent sum type, Cartesian products can be the non-dependent special case.
The first two symbols below use the former, the last one the latter approach:
– http://coq.inria.fr/theories?Init/Datatypes?prod.ind

– http://matita.cs.unibo.it/?datatypes/constructors?Prod.ind

– http://isabelle.in.tum.de/?CTT/CTT?times
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In higher-order logic, the only way to introduce types is by using the typedef
construction, which constructs a new type that is isomorphic to a certain subtype
of an existing type. In particular, most HOL systems introduce the Cartesian
product A×B by using an appropriate unary predicate on A→ B → bool:
– http://github.com/jrh13/hol-light?pair/type?prod

– http://hol-theorem-prover.org/?pair/type?prod

– http://isabelle.in.tum.de/?HOL/Product?prod

In PVS, the product type constructor is part of the system itself:
– http://pvs.csl.sri.com/foundation?PVS?tuple_tp

In set theory, it is also possible to restrict dependent sum types to obtain the
Cartesian product. This is used in Isabelle/ZF. In Mizar the Cartesian product
is defined implicitly as a first order functor, which involves discharging the well-
definedness condition. Therefore, we give the URIs of both the definition and
the generated functor.
– http://isabelle.in.tum.de/?ZF/ZF?cart_prod

– http://mizar.org/library/?ZFMISC_1?K2

(defined by http://mizar.org/library/?ZFMISC_1?def_2)
Finally, Cartesian products appear in most programming languages and we

list here a number of constructions that can be aligned:
– http://caml.inria.fr/?core?*

– http://haskell.org/?core?,

– http://scala-lang.org/?core?,

– http://cppreference.com/?std?pair

Informal sources that can be aligned are e.g.:
– https://en.wikipedia.org/wiki/Cartesian_product

– https://en.wikipedia.org/wiki/Product_type

– http://mathworld.wolfram.com/CartesianProduct.html

Addition In constructive type theory, addition of natural numbers is typically
defined as a fixed points of certain equations.
– http://coq.inria.fr/theories?Init/Nat?add

– http://matita.cs.unibo.it/?nat/plus?plus

Higher-order logic proof assistants usually use high-level constructions for
primitive recursion. Interestingly, here the alignment is very obvious at this
high-level even though the elaboration into core language features may result in
very different-looking, but logically equivalent definitions. This is how addition is
implemented in HOL Light and HOL4. Isabelle/HOL uses a similar construction
but inside a type class for commutative monoids with difference.
– http://github.com/jrh13/hol-light?arith/const?+

– http://hol-theorem-prover.org/?arithmetic/const?+

– http://isabelle.in.tum.de/?HOL/Nat?plus_nat_inst.plus_nat

In set theory, defining addition is surprisingly the least straightforward: In
Isabelle/ZF, addition uses the primrec construction together with a coercion
from non naturals to naturals. PVS defines a general addition on number fields,
which all the concrete number spaces (reals, integers, etc.) inherit. In Mizar,
it is the restriction of complex addition to natural numbers. Mizar’s complex
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addition itself is built from the real number addition, which in turn is built from
positive real addition, rational addition, and ordinal addition. So in principle it
would be possible to align with Mizar’s ordinal addition.
– http://pvs.csl.sri.com/Prelude?number_fields?+

– http://isabelle.in.tum.de/?ZF/Arith?add

– http://mizar.org/library/?NAT_1?K2

Most programming languages do not implement arbitrary precision natural
numbers. However, it is possible to find partial mappings, which are in fact
already used by efficient code generation [HN10] for Isabelle/HOL natural num-
bers and the representation of Coq natural numbers by its extended bytecode
machine [AGST10].
– http://caml.inria.fr/?Big_Int?add_big_int

– http://haskell.org/?core?+

– http://www.smlnj.org/?IntInf?+

Concatenation of Lists In constructive type theory (e.g. for Matita, Coq), the
append operation on lists can again be defined as a fixed point. In higher-order
logic, append for polymorphic lists can be defined by primitive recursion, as done
by HOL Light and HOL4. Isabelle/HOL slightly differs from these two because
it uses lists that were built with the co-datatype package [B+14].
– http://coq.inria.fr/theories?Init/Datatypes?app

– http://github.com/jrh13/hol-light?lists/const?APPEND

– http://hol-theorem-prover.org/?list/const?APPEND

– http://isabelle.in.tum.de/?HOL/List?append

In set theory, PVS and Isabelle/ZF also use primitive recursion for monomor-
phic lists. In Mizar, lists are represented by finite sequences, which are func-
tions from a finite subset of natural numbers (one-based FINSEQ and zero-based
XFINSEQ) with append provided.
– http://pvs.csl.sri.com/Prelude?list_props?append

– http://isabelle.in.tum.de/?ZF/List_ZF?app

– http://mizar.org/library/?ORDINAL4/K1

Concatenation of lists is also common in programming languages.
– http://caml.inria.fr/?core?@ http://haskell.org/?core?++

– http://scala-lang.org/?core?++

5 A Standard and Database for Alignments

Based on the observations of the previous sections, we now define a standard for
alignments that covers the practically relevant examples. We use the following
formal grammar for collections of alignments:

Collection ::= (NSDef | Alignment | Comment)∗

NSDef ::= namespace String URI
Alignment ::= URI URI (String = ”String”)∗

Comment ::= // String
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Here NSDef defines abbreviations for CURIEs (as defined by the W3C), which
allows shortening URIs with the same long namespaces. An alignment is just a
pair of URIs with a list of key-value pairs, which allows adding author/source,
certainty scores, translation instructions, etc.

We also standardize some special keys and possible values that are important
for practical applications. As a guiding criterion for defining these keys, we use
how and in which directions expressions with head symbols s1 or s2 can be
translated.

The simplest case is the following:

Definition 1. A simple alignment between symbols s1 and s2 uses the key
direction with the possible values forward, backward, and both. It induces
the translation that replaces every occurrence of s1 with s2, or of s2 with s1
according to the value of the key.

This subsumes perfect alignments (where the direction is both) and several uni-
directional cases: alignment up to totality of functions or up to associativity, and
alignment for certain arguments. The absence of this key indicates alignments
where no translation is possible, in particular opaque alignments.

The following case covers alignments up to argument order or determined
arguments:

Definition 2. An argument alignment uses the key arguments whose value
A is of the form (i, j)∗ where i and j are natural numbers.

It induces the translation of s1(x1, . . . , xm) to s2(y1, . . . , yn) where yj is the
recursive translation of xi if (i, j) is among the pairs in A and inferred from the
context if there is no i for which (i, j) is in A.

Example 1. We obtain the following argument alignments for some of the exam-
ples from Section 2:

Nat1 Nat2 direction = ”both”
eq1 eq2 arguments = ”(1, 2)(2, 3)”

contains1 in2 arguments = ”(1, 1)(2, 3)(3, 2)”

We have implemented alignments in the MMT system [Rab13]. Moreover,
we have created a public repository3 and seeded it with a number of alignments
including the ones mentioned in this paper. The MMT system can be used to
read and serve all these alignments, implement the transitive closure, and (if
possible) translate expressions according to alignments.

As an example service, we have added alignment support to the MMT web
browser: Figure 1 shows a screenshot from browsing the HOL Light library, in
particular a snapshot of the pairs module. The symbol prod is aligned with sev-
eral formal and informal sources, which can be shown and navigated to by right-
clicking the symbol in an expression (here in the type of the symbol ABS prod).

3 https://gl.mathhub.info/alignments/Public
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Fig. 1. The MMT Server Showing Formal and Informal Alignments

6 Conclusion

We have motivated and proposed a standard for aligning mathematical corpora.
We presented examples of alignments between logical, computational, and semi-
formal corpora and classified the different examples. The presented MMT-based
system for sharing such alignments has been preloaded with thousands of align-
ments between the various kinds of concepts, including proof assistant types and
constants, programming language (including computer algebra) algorithms, and
semi-formal descriptions.

Future work includes extending the automated discovery of alignments [GK14]
to foundations other than HOL. Our main focus was on the logical corpora, but
we expect to be able to find much more opaque alignments. We invite the com-
munity to use the service. Finally we plan to integrate the use of the alignments
database in the various mathematical knowledge management systems.
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FrameIT Reloaded: Serious Math Games from
Modular Math Ontologies
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Abstract. Serious games are an attempt to leverage the inherent moti-
vation in game-like scenarios for an educational application and to trans-
pose the learning goals into real-world applications. Unfortunately, seri-
ous games are also very costly to develop and deploy. For very abstract
domains like mathematics, already the representation of the knowledge
involved becomes a problem.
We propose the FrameIT method that uses OMDoc/MMT theory graphs
to represent and track the underlying knowledge in serious games. In
this paper we report on an implementation and experiment that tests
the method. We obtain a simple serious game by representing a “word
problem” in OMDoc/MMT and connect the MMT API with a state-
of-the-art game engine that “plays” the problem/knowledge exploration
process.

1 Introduction

Serious games could be a potential solution to the often-diagnosed problem that
traditional education via personal instruction and educational documents has
serious scalability, subject specificity, and motivation limitations. A serious game
is ”a mental contest, played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate training, education,
health, public policy, and strategic communication objectives” [Zyd05]. Serious
games have the power to effectively supplement technical documents and online
courses and thereby allow students to learn how to apply their knowledge to real
world scenarios. Moreover, serious games very elegantly solve the motivation
problem many people experience when studying technical subjects. Through
gamification [Det+11] a serious game can be very entertaining while at the same
time providing educational value to the user. Unfortunately, serious games are
currently either very complex, domain specific, and expensive applications or lack
the necessary complexity to effectively facilitate learning of complex subjects like
mathematics.

To alleviate this, we propose the FrameIT method [KK12] which uses math-
ematical knowledge management techniques (MKM) to map a real world sce-
nario to its theoretical basis. In this paper we report on an implementation and
experiment that tests the method. We obtain a very simple serious game by
representing a “word problem” in OMDoc/MMT and connect the MMT API
with a state-of-the-art game engine. This paper is a short version of [Roc16], to
which we refer for details.
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2 Preliminaries

Before we can explain the FrameIT method in detail we need to establish a
clear and common understanding of the OMDoc/MMT format and Learning
Object Graphs as they form the basis of the method.

3 Learning Object Graphs as OMDoc/MMT Theories

To realize our implementation we are going to use the OMDoc/MMT lan-
guage [RK13], which is implemented MMT system (Meta-Meta-Tool) [Rab13],
as a foundation independent logic framework that allows us to create logic pow-
ered applications. OMDoc/MMT consists of theories, symbols, and objects which
are related to each other by typing and equality. A theory in OMDoc/MMT is
defined as a list of symbol declarations, where each symbol declaration is of the
form c[: t][= d][#N ], where c is the symbol identifier, the objects t and d are its
type and definiens, and N its notation. MMT objects over a theory are formed
from the symbols available to the theory. Moreover, theories can represent, via
the Curry-Howard correspondence, judgments, inference rules, axioms, and the-
orems. A theory morphism for two theories A and B is a morphism m : A→ B
that relates both theories to each other by mapping every symbol from the theory
A to a symbol in the theory B.

Theories and theory morphisms together form multigraphs, which we call
theory graphs, that relate different theories to each other. In such a theory
graph we have two different kinds of edges: views and inclusions. Inclusions
allow us to combine and reuse multiple theories by including them in an in-
heritance style fashion while views allow us ”to link two pre-existing theories”
given that ”all the source axioms are theorems of the target theory” [Koh14].
Furthermore, inclusions cannot form a cycle in a theory graph, while views can.

We will use theory graphs as learning object graphs in the FrameIT con-
text. They form the fundamental basis for the FrameIT method as they allow us
to relate different learning objects with each other in a machine understandable
and logical way [KK12].

i1 i2

f g

P

A B

C

Fig. 1. Pushout

As theories and theory morphisms form a category with
certain colimits, MMT is able to derive a pushout from two
theories A and B it exists. A pushout takes two theory
morphisms f : C → A and g : C → B and produces a
theory P and two morphisms i1 : A→ P and i2 : B → P
such that the square commutes (Figure 1). Intuitively, the
pushout P is formed as the union of A and B so that they
share exactly C. [Rab15]

In the current version of MMT the result of a pushout
is a new MMT theory that contains a set of simplified
declarations. Lastly, MMT provides us with several ways of developing services
and applications on top of it, we can either use the RESTful interface, develop
MMT plugins in Java/Scala [Rab13] or directly execute a Scala script via the
MMT shell.
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3.1 Unreal Engine

The Unreal Engine is a game engine that provides game developers with the nec-
essary tools to design and build games, simulations, and visualizations [Inc16].
The provided tools include a rich game editor that lets the developer to manage
game assets, create the game user interface and build up the game environment.

The functionality of a game can be developed in C++ and/or by blueprint
visual scripting. Another important feature of the Unreal Engine 4 is its platform
independence, which allows us to deploy our project to nearly all platforms. This
is crucial for future development as it enables us to target a larger audience. The
engine supports plugins and the complete source code of the engine is available
on GitHub, which could allow us in the future to include support for MMT
natively.

4 The FrameIT Method

The central idea of this new approach to serious games is to use the FrameIT
method to frame real world problems in our serious game environment as ab-
stract problems [KK12]. We have extended and refined this method to address
the shortcomings revealed during its implementation.

Word Problem Game Problem

How can you mea-
sure the height of a
tree you cannot climb,
when you only have a
laser angle finder and a
tape measure at hand?

Fig. 2. Example Problem

The primary ob-
jective of this method
is to provide stu-
dents with a new way
of applying their do-
main knowledge to
real problems. It is
not intended as the
primary way of ob-
taining new knowl-
edge. Students are still
expected to acquire
new knowledge through personal instruction, by reading technical documents
or by taking online courses. Nevertheless, our method helps the user to retain
and understand the learned material. To exemplify the FrameIT method we want
to illustrate its application on a concrete example problem – finding the height
of a tree (see Figure 2).

In this example, we assume that the user has recently learned about trigonom-
etry. Thus, the user might realize, after thinking about the problem, that they
can map the real world problem to a simple trigonometry problem. This process
of discovering a mapping between real world problems and abstract problems is
exactly what the user should learn/train by playing our serious game.

This problem is similar to what many students might find in their math-
ematics textbook when they first learn about trigonometry. In addition, many
textbooks might even provide small diagrams to visualize the problem. While this
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method of presenting problems to students is acceptable for elementary prob-
lems, it is an inadequate approach for more complicated compound problems
which are harder for students to understand and solve. Additionally, traditional
mathematics textbook problems often focus on the computational aspects of
solving problems, rather than on the more conceptual aspects that are underly-
ing these computational solutions.

Our method allows students to explore a problem in its entirety in the game
world. We will see below that being able to explore the game world and our
method itself allows students to understand and solve even more complex prob-
lems in a step by step fashion. Furthermore, the focus of our method is not to
train the ability of students to evaluate mathematical expressions, but instead
their ability to apply their knowledge to real world problems. Thus, in our game
any computational results are provided by MMT or the game itself.

Figure 3 shows the complete learning object graph1 associated with the prob-
lem from Figure 2. It is partitioned into a game world side and MMT side. The
game world side shows the different parts of the serious game the user is able to
interact with, while the MMT side contains the learning object graph that pow-
ers the serious game and allows our approach to work. Additionally, the MMT
side is subdivided into two separate sections, where the first section represents
the current user knowledge and the second section represents the new knowledge
that should be obtained by the learner. Actually, this separation is made for ex-
planatory purposes only. In practice these sections are part of the same theory
graph.

4.1 Game World Side (User Perspective)

On the game world side, the user is prompted to solve a given problem, here to
find the height of a tree. Before trying to solve the problem at hand the user
is able to explore his or her surroundings to accustom himself or herself with
the problem and to think about possible approaches. In particular the user has
to register facts about the world they are in. In the beginning, a user knows
nothing about the world and so their list of registered facts is empty. However,
the user can obtain new facts about the world by using scrolls or the a set of
gadgets provided.

In our method scrolls are a mechanism to obtain new facts about the world
from existing ones. A scroll is a game object that contains mathematical expla-
nations and conditions that need to be satisfied in order for the given scroll to
produce a new fact about the world. The name “scroll” is meant to evoke the
fact that the knowledge contained in it is a valuable commodity in the game.
Eventually scrolls are objects that can be found, traded, and earned. From a
logical perspective a scroll acts like a complex inference rule that encapsulates
a theorem or definition. To apply a given scroll, the user has to map a subset of
the facts they obtained about the world to the contents of the specific scroll.

1 We have glossed the contents of the theories and partially visualized them by dia-
grams, for the actual content see Figure 4.
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point : type
line : point → point → line

|ab| : line → R
⊥ : line → line → bool

...

Fig. 3. Learning Object Graph Example

As scrolls require facts as their input, the user has to first use some of the
provided gadgets to determine properties of the world and the objects within it.
A gadget is a game object that can either produce new facts solely by interacting
with the world itself or by relating existing facts to each other and thereby
providing additional information. For instance, the pointer gadget marks a
point in the game world and produces a new fact, which simply declares the
existence of a point with the specified name. Based on this the user can relate
two different point facts to each other by measuring the distance between them
with a measuring tape gadget. The laser angle finder gadget to measure
angles between three different marked points. The result of the exploration is
visualized on the left hand side of Figure 3.

Didactically, the game world situation is rigged so that the user cannot solely
rely on the provided gadgets to solve the given problem. Instead they need to
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use scrolls to discover new facts about the world. In our example, the user
cannot climb the tree and therefore not measure its height directly with the
provided measuring tape gadget. In the problem at hand, the user could chose
the trigonometry scroll at the bottom Figure 3 which provides the length of
the opposite side of a right angle triangle given the angle and the length of the
adjacent side.

In this situation, the FrameIT methods works as follow: The user uses the
marking gadget to mark multiple points in the game world, such as a point A
at his or her current location, a point B at the base of the tree and a point C
at the top of the tree. The user proceeds by using the laser angle finder gadget
to measure the angle between the points C, A and B and the measuring tape
is used to determine the distance between the point A and the B. Lastly, the
user maps the obtained facts to the contents of the scroll by assigning points
A, B, C to the required point a, b, and c in the scroll. If the perpendicularity
condition is met, the scroll is applicable and will produce a new fact, otherwise
it will provide the user with an explanation of why the scroll was not applicable2

Finally
Lastly, the user has to assign a given fact as the solution of the problem. In

our case they have to declare that the newly obtained fact about the distance
between the points B and C represent the height of the tree. The game is then
going to check this answer and if the user solved the problem correctly it is going
to congratulate the user on the correct solution. Otherwise, the game will show
them the flaws in their approach in order to facilitate learning.

4.2 OMDoc/MMT: Framing Situations and Pushing Out Solutions

The concrete knowledge registered by the user and abstract mathematical knowl-
edge are jointly represented in a modular theory graph in OMDoc/MMT – see
the right side of Figure 3.

We formalize the current list of registered facts into the Situation Theory,
which is extended after any exploratory action of the user: Each discovered
fact is translated from its representation in the game to a symbol declaration
in MMT. For instance, the marked point A in the game world has underlying
data structures associated with it and through this generation step we distill the
elaborate game data structures into one symbol declaration, that declares a new
constant symbol A of type point.

To fix the meaning of declarations in the situation theory, it includes several
other theories by using inclusion theory morphisms. These imported theo-
ries are either theories that contain additional user knowledge about the world
or base theories that provide us with the essential declarations to build up more
sophisticated theories. In our example one of the included user knowledge theo-
ries could be a forestry theory which specifies properties of forests and trees,
known to the user, such as that a tree is vertical and the ground is normally

2 Generating helpful explanations in case of failure was left to future work. It is clear
that scrolls can be extended suitably, e.g. via the techniques put forward in [GM08].

250



horizontal. A common base theory could be a planar geometry theory that
provides us with declarations for points and lines.

Thus a situation theory and its included theories only represent the cur-
rent user knowledge about the world. To discover new facts about the world we
need to frame the current user knowledge to a problem/solution pair [KK12]
that produces new facts about the world. A problem/solution pair consists of
two theories, the problem theory and the solution theory and an inclusion
morphism between them. A problem theory contains a formal definition of an
abstract (mathematical) problem, while the solution theory contains the corre-
sponding solution to the problem. In other words, the problem theory specifies
the required facts that are needed as an input for a scroll and the solution theory
specifies the new facts that will be obtained as an output. Therefore, a prob-
lem/solution pair acts similarly to a mathematical function. In Figure 3 one can
see an example for a problem/solution pair in the red box on the right hand side.
Similar to the situation theory, the problem theory is supported by the inclusion
of several other theories such as the planar geometry theory. In fact these are
important for the application of the mathematics to the situation.

In order to compute a new fact from a given problem/solution pair, we need
to create an assignment (ϕ) that maps the given information from the situa-
tion theory to the correct problem theory. Moreover, this assignment can be
understood as specifying the input parameters to a mathematical function. As
described in subsection 4.1 the user specifies this assignment with his or her in-
teraction between the chosen scroll and the explored world. On the MMT side,
this interaction is used to generate a view between the situation theory and the
problem theory. In our example, this view needs to assign a symbol declara-
tion from the situation theory to the corresponding symbol declaration in the
problem theory. For instance, the points (A, B, C) in the situation theory are
assigned to the respective points (a, b, c) in the problem theory. Obviously, the
view between a problem theory and a situation theory is going to depend purely
on which scroll a user chooses, as the assignment will be generated from this
interaction.

From the generated situation theory, the appropriate problem/solution pair
and a view between the situation theory and the problem theory, MMT is able
to produce a corresponding solution pushout. A pushout is only successfully
produced if the view between the situation theory and the problem theory is total
and appropriate. For instance, if we generate the same view but the lines AB and
BC are not perpendicular in our situation theory, then the problem/solution pair
is not applicable, because the assignment fails to be a total view. Fortunately, the
solution pushout is successful in our example and the resulting theory contains
a new symbol declaration that defines the length of the line segment BC. Lastly,
the solution pushout theory is used to add the newly obtained facts to the list
of facts in the game itself. These newly obtained facts can then be used by
the user to either solve the problem at hand or as the inputs for further scroll
applications.
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4.3 Scrolls

Scrolls allow the user to discover new facts about the world. Thus, they form
the primary link between the Game World and the logic engine. Given the need
for scrolls, we would like to generate them from the predefined problem/solution
pairs.

Solution Theory

|bc| = |ab| · tan(∠CAB)

Problem Theory

a,b,c : point
|ab| : R
∠cab : R
p : ` ab ⊥ bc

Solution Theory Visualization

a b

c

α

Problem Theory Visualization

a b

c

Fig. 4. Problem Solution Pair Extension

While the current form of
problem/solution pairs works
perfectly for our present im-
plementation, for future imple-
mentations and for the genera-
tion of scrolls they need to be
extended and refined. The goal
behind this extension would be
to include visualization theories
that allow us to display the ab-
stract problem and its solution
effectively in the game as well
as on the scroll itself. Such an
extension of problem/solution
pairs could look similar to Figure 4.

A scroll consists of two major parts. The first part of a scroll is a docu-
ment that contains mathematical explanations in natural language in addition
to diagrams that illustrate the concepts. This document could be generated non-
dynamically by an extension of STEX [Koh08] we tentatively call ScrollTEX. In
the game itself this document should be displayed each time the user inspects the
scroll. The second part of a scroll is a set of machine readable information that
specifies exactly what kind of facts a scroll requires for its application and what
kind of facts it is going to produce as an output. The OMDoc format [Koh06]
might be the ideal format here as it allows us to store formal and informal
information in a highly interrelated form and generate active mathematical doc-
uments [Koh+11].

The FrameIT method supports compound problems directly. Each subprob-
lem of a compound problem can be solved by discovering the required facts for
the solution of the subproblems through successive scroll application and tool
usage. The facts representing the solution of the subproblems can then be related
to each other in exactly the same way, which in turn allows the user to solve the
problem in its entirety. In this section we presented a simplified example, but it
is not difficult to think of more advanced examples that require multiple scroll
applications.

5 Design and Implementation

To evaluate the refined FrameIT method, we designed and implemented a proof
of concept serious math game that demonstrates our method. Moreover, this

252



first implementation allows us to critically assess the method and to discover
any shortcomings.

5.1 MMT

User

Game (Unreal Engine)

MMT

interact

generate theories pushout

Fig. 5. System Architecture

On the MMT side we created the respective
theories for the theory graph seen in Figure 3.
The basis (meta-theory) of all of our theories
is formed by a higher-order logic theory, which
allows us to declare multiple different types and
provides us with the basic logical quantifiers
and semantics.

Fundamental Theories For the FrameIT
method we require a set of fundamental theories
on which we can base the higher level theories
such as the situation theory or the problem/so-
lution pairs. Thus, we implemented a real num-
ber theory and an Euclidean geometry theory
for our proof of concept implementation.

The geometry theory makes use of the real number theory to implement other
types such as vectors and lines in similar fashion. Given these two theories we
are able to form precise propositions about the world and the problems within
it. Obviously, these fundamental theories are incomplete and in order for them
to handle more complicated scenarios they need to be extended in the future.

Problem Solution Pairs The problem theory simply (see Figure 3) contains
a list of propositions that are needed by the solution theory to solve the prob-
lem. The solution theory includes the problem theory and contains additional
declarations that specify the solution to the abstract problem. In other words
the problem theory specifies the ”input” of a function while the solution theory
specifies the ”output”. The problem and solution theory implementations can
be seen in Figure 6. Although our implementation is based on the example pre-
sented in section 4, we deviate slightly from it as we are actually requiring the
user to proof explicitly that the scroll is applicable. Hence, our problem/solu-
tion pair contains an additional declaration (an axiom), the angle between the
ground and the tree, which needs to be provided by the user.

Situation Theories and Framing In order to determine the requirements for
the situation theory and the view between the problem theory and the situation
theory we implemented an example situation theory and view. The situation
theory contains the observed facts and their values and the example view assigns
every declaration in the problem theory a declaration from the situation theory.
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namespace http://cds.omdoc.org/FrameIT M

theory problem theory : ?geometry =

Pa : Vec3D D

Pb : Vec3D D

Pc : Vec3D D

anglePaPbPc value : R D

anglePaPbPc : ` (∠ Pa Pb Pc)
.
= anglePaPbPc value D

anglePcPaPb value : R D

anglePcPaPb : ` (∠ Pc Pa Pb)
.
= anglePcPaPb value D

lineSegPaPb value : R D

lineSegPaPb : ` (lineSegmentLength Pa Pb)
.
= lineSegPaPb value D

proof : ` ((<Pa, Pb>) ⊥ (<Pb, Pc>)) D M

theory solution theory : ?geometry

include = ?problem theory D

lineSegPbPc value : R O = (tan anglePcPaPb value) ∗ lineSegPaPb value D

lineSegPbPc : ` (lineSegmentLength Pb Pc)
.
= lineSegPbPc value D M

Fig. 6. MMT Problem and Solutions Theories

5.2 Game (Unreal Engine)

We only focus on the parts of the implementation relevant to the FrameIT method
and not on the auxiliary parts such as the creation of the landscape.

The problem exploration gadgets are implemented classes in the grame en-
gines based on as C++ classes for the different kinds of facts a user can discover.
Each of these classes contains methods that can serialize that fact into the OM-
Doc format. Moreover, the game stores each of these facts in a list which we call
the fact list. Whenever the game needs to produce a situation theory it iterates
through this list to serialize each fact to the OMDoc format.

The most important of those tools is the point marking tool as the player
can use it to create a point fact by simply marking a location. This has two
different marking modes. The first mode allows the user to simply mark any
location he or she points to, while the second mode can be used to mark specific
spots on what we call semantic actors. Figure 7 shows the point marking tool in
action: Semantic Actors are game objects that contain additional information
and methods that allow them to interact in a more specific way with the user
and his or her available tools. To illustrate, the tree in our example problem is
a semantic actor, which allows the user to mark exactly the bottom and top of
the tree with his or her point marking tool. If the tree would not be a semantic
actor then marking exactly the top and bottom of the tree would be incredible
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difficult. Fortunately, it is a semantic actor which allows the user to select the
points by simply marking a point close to the actual top or bottom of the tree.

Fig. 7. Point Marking Tool

The measurements obtained with the distance measuring tool are in Unreal
Units, which is the basic unit of length in the Unreal Engine. One Unreal Unit
is equivalent to one centimeter. All of the facts the user discovers by using all of
his or her tools are displayed as a list in the top left hand corner of the game.

As one can see in Figure 8 by measuring facts about the world the user’s fact
list grows gradually.

Fig. 8. Measuring Facts about the World
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After measuring all facts the user can enter the View Mode in which they
assign for each fact required by the scroll a fact from the fact list. During this
assignment process a mapping between scroll facts and facts from the user’s
fact list is created. After the assignment is completed the mapping is serialized
into OMDoc. At the same time the user’s fact list is serialized into an OMDoc
situation theory. Next, the generated OMDoc is passed on to MMT, which takes
these theories and uses them to compute a solution pushout. If the pushout
was successful then MMT produces a new theory that is subsequently parsed
by the game. Through parsing this theory the necessary information needed to
create the resulting facts is extracted and used to populate the fact list with the
newly obtained facts. In case the pushout was unsuccessful an error message is
displayed. The result of a successful pushout can be seen in Figure 9. In this
specific case the user has now determined that the height of this tree is 875
centimeters and thus the user has successfully solved the problem.

Fig. 9. Scroll Result

6 Conclusion and Future Work

The proof of concept implementation and our experiment the method shows
that it is indeed possible to use mathematical knowledge management techniques
(MKM) to map a real world scenario to its theoretical basis. This suggests that
the FrameIT method can be used as a framework for creating full-fledged serious
math games.

Separation of Necessary Skills Crucially, the framework keeps many parts of a
serious game generic. As a consequence, the development of new games (and
extensions to existing ones) naturally separates into three independent tasks:
the development of i) didactic game situations, ii) learning objects (real-world
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problems, problem-solutions pairs and base theories) as mathematical theories
in OMDoc/MMT, and finally iii) semantic actors and exploration gadgets. The
first is a high-level, transdisciplinary design task that results in the storyboard
for a serious game. For the implementation ii) only requires the skills of math
educators trained in OMDoc/MMT formalization, while iii only needs regular
game realization skills. In particular, the mathematics didactics and games re-
alisation tasks are well-separated by the FrameIT framework, which promises
to greatly simplify the realization phase. Based on our experience, realizing an-
other “word problem-type” game problem is the work of one or two days for an
individual trained in OMDoc/MMT formalization and we estimate the develop-
ment of a new, non-trivial semantic actor or gadget to be in the same range.
Of course this greatly depends on the availability of foundational theories and
game components; fortunately, these are developments that can be shared and
accumulated by an open community.

Limitations While we can already demonstrate the FrameIT method, we are
still missing some integral parts such as the automatic generation of scrolls as
discussed in section 4.3. Furthermore, we are currently not generating detailed
explanatory texts in case MMT is unable to produce a pushout or the user was
unsuccessful in solving the problem. Future implementations should address this
by providing the user with helpful hints and error messages that allow the user
to learn from his or her mistakes. Lastly, we would like to allow the user to be
able to use his or her knowledge directly. For instance, a user should be able to
create his or her own scrolls in the game by providing a proof that his or her
envisioned scroll is mathematically sound.

Finally, the current lack of content does not yet allow us to demonstrate the
ability of the FrameIT method to support compound problems. But the fact that
scroll-based fact extension is essentially the same as theorem proving – which is
one of the activities the MMT tool was designed for suggests that this should
be very easy to achieve.

Availability & Future work Future work should also focus on the gamification
aspects and the user interface of the game itself, as the current interaction be-
tween the user and the game is not ideal. For instance, the interface for assigning
views is not optimal as we are selecting facts from a list of facts instead of se-
lecting them directly in the game world. Hence, we would like to improve the
user interface to make the game more intuitive and attractive for the user. Fur-
thermore, we are currently not visualizing facts about angles or distances in the
game world. Utilizing the results of human computer interaction research could
allow us to resolve these issues effectively and thereby increase the usability of
our serious math game.

While our implementation successfully connects MMT and the Unreal En-
gine, there still exists a plethora of software engineering challenges to make trans-
ferring knowledge between the system smoother and more efficient. Integrating
MMT directly into the Unreal Engine could solve many of these challenges and
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improve the performance of the system. Additionally, it would allow other se-
rious game developers to use the services provided by MMT directly. Such an
integration could use the Semantic Alliance framework [Dav+12] as its basis and
adapt it for the Unreal Engine.

The current implementation is released under the MIT License and is avail-
able at https://github.com/KWARC/FrameIT, while the OMDoc/MMT content
can be found at https://gl.mathhub.info/groups/FrameIT. As a first step we
want to stabilize the system and extend the content (game situations and OM-
Doc/MMT formalizations) to a point, where we can start designing coherent
serious games from the collection of problems.

No Evaluation Yet The work reported on in this paper only constitutes of proof-
of-concept for the FrameIT method. In particular, the system is not currently in
a shape that we could qualitatively and quantitatively analyze the usefulness
and usability of the developed serious math game, which was the motivation of
the FrameIT method in the first place.
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