
CICM 2015 – Work in Progress Preface

The Conference on Intelligent Computer Mathematics has been held annually

since 2008 at various locations in Europe and North America. The conference is

made up of tracks on aspects of handling mathematical knowledge embodied in

documents, proofs, algorithms and software systems. The 2015 conference was

held 13–17 July in Washington D.C., USA. For several years now, CICM has

had a track devoted to works in progress. This informal venue provides a forum

to present original work that is not yet in a suitable form for presentation as

a full paper or system description. Authors have found this useful to communi-

cate that they are working on particular topics, and allows early feedback from

the research community. For CICM 2015 we have continued this tradition. In

response to a call for participation, several submissions were received, covering

a broad span of CICM topics. These were reviewed by a committee consisting

of the General PC Chair and all the track PC Chairs. Upon deliberation, it was

decided that, bearing in mind the informal intent of the track, the quality of the

submissions supported acceptance of six submissions. These are presented here

in these proceedings alphabetically according to the surname of the first author.

July 2015

Manfred Kerber: General CICM PC Chair

Jacques Carette: Calculemus Track Chair

Cezary Kaliszyk: Mathematical Knowledge Management Track Chair

Florian Rabe: Systems & Data Track Chair

Volker Sorge: Digital Mathematical Libraries Track Chair

i

Content

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 3

Mario Carneiro

Auto-hyperlinking the Stacks Project . 19

Johan Commelin, Josef Urban

The SMGloM Project and System . 25

Deyan Ginev, Mihnea Iancu, Constantin Jucovshi, Andrea Kohlhase,

Michael Kohlhase, Jürgen Schefter, Wolfram Sperber

Parsing Texts and Checking Proofs in LATEX . 29

Bob Neveln, Bob Alps

A Web Environment for Geometry . 44

Pedro Quaresma, Vanda Santos, Milena Marić

Automatic and Transparent Transfer of Theorems along Isomorphisms

in the Coq Proof Assistant . 50

Theo Zimmermann, Hugo Herbelin

c© of the articles is with the authors.

ii

Arithmetic in Metamath, Case Study:

Bertrand’s Postulate

Mario Carneiro

The Ohio State University, Columbus OH, USA

Abstract. Unlike some other formal systems, the proof system Meta-
math has no built-in concept of “decimal number” in the sense that arbi-
trary digit strings are not recognized by the system without prior defini-
tion. We present a system of theorems and definitions and an algorithm
to apply these as basic operations to perform arithmetic calculations
with a number of steps proportional to an arbitrary-precision arithmetic
calculation. We consider as case study the formal proof of Bertrand’s
postulate, which required the calculation of many small primes. Using a
Mathematica implementation, we were able to complete the first formal
proof in Metamath using numbers larger than 10. Applications to the
mechanization of Metamath proofs are discussed, and a heuristic argu-
ment for the feasability of large proofs such as Tom Hales’ proof of the
Kepler conjecture is presented.

Keywords: Arithmetic · Metamath · Bertrand’s postulate · decimal
number · natural numbers · large proofs · ATP · Mathematica · formal
proof

1 Introduction

The Metamath system, consisting of a formal proof language and computer
verification software, was developed for the purpose of formalizing mathematics
in a foundational theory which is as minimal as possible while still being able
to express proofs “efficiently” (in a sense we will make more precise later) [1].
Although Metamath supports arbitrary axiom systems, we are mainly concerned
in this paper with the set.mm database, which formalizes much of the traditional
mathematics curriculum into a ZFC-based axiomatization [2].

In this context, one can define a model of the real numbers and show that it
satisfies the usual properties, and within this set we have the natural numbers
IN and can give a name to the numbers 1, 2, 3, . . . ∈ IN. One important point of
comparison to other proof languages such as Mizar [3] is that not every sequence
of decimal digits is interpreted as a natural number. In particular, the goal is to
show rigorous derivations directly from ZFC axioms with complete transparency
and not to depend on indirect proofs of correctness of, say, a computer arith-
metic algorithm. A sequence of digits is treated as any other identifier and only
represents a natural number if it has been defined to do so. The list of sequences

2 Mario Carneiro

so defined is quite short – we have the definitions

2 := 1 + 1, 3 := 2 + 1, 4 := 3 + 1, 5 := 4 + 1, 6 := 5 + 1,

7 := 6 + 1, 8 := 7 + 1, 9 := 8 + 1, 10 := 9 + 1,

and this constitutes a complete listing of the defined integers in set.mm (not
including 0 and 1, which are defined as part of the field operations).

The primary application of the set.mm has been for abstract math, and
such small numbers were sufficient for prior theorems, but initial attempts at
Bertrand’s postulate showed that a new method was needed in order to system-
atize arithmetic on large numbers.

1.1 Bertrand’s Postulate

Theorem 1 (Chebyshev, Erdős). For every n ∈ N there is a prime p satis-
fying n < p ≤ 2n.

This statement was conjectured by Joseph Bertrand in 1845, from which the
problem gets its name, and it was proven in 1852 by Chebyshev. Our version of
the theorem looks like this:

⊢ n ∈ IN → ∃p ∈ IP(n < p ∧ p ≤ 2n)
bpos1

Although the complete proof of this theorem is not the purpose of this paper,
this was the motivating problem that led to the developments described here.
For our formalization we targeted not Chebyshev’s proof but rather a simpler
proof due to Paul Erdős. The proof is based on a detailed asymptotic analysis
of the central binomial coefficients

(

2n
n

)

, and by keeping track of the bounds
involved this shows Theorem 1 for n > 4000. A usual exposition of the proof will
observe that the other 4000 cases can be shown by means of the sequence

2, 3, 5, 7, 13, 23, 43, 83, 139, 163, 317, 631, 1259, 2503, 4001, (1)

which can be seen to consist of primes pk such that pk+1 < 2pk.

It is this last statement which is the most problematic for a formal system
which cannot handle large numbers, because verifying that large numbers are
prime requires even larger calculations, and doing such calculations by hand on
numbers of the form 1+1+ · · ·+1 (as in our definition of the numbers up to 10)
is quite impractical, requiring O(n2) operations to multiply numbers of order n.

1 The sans-serif labels mentioned in this paper refer to theorem statements in set.mm;
they can be viewed at e.g. http://us.metamath.org/mpegif/bpos.html for bpos.

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 3

1.2 Decimal Arithmetic

To solve the problem of the space requirements of unary numbers, the standard
approach is to use base-10 arithmetic, or more generally base-b arithmetic for
b ≥ 2, in which a nonnegative integer n ∈ IN0 is represented by an expression of
the form

n =

k
∑

i=0

aib
i = b · (b · (b · ak) + · · ·+ a1) + a0. (2)

Here 0 ≤ ai < b, and arithmetic is performed relative to this representation, with
“addition with carry” and long multiplication, using Horner’s method in order
to efficiently recurse through the structure of the expression. (We postpone the
precise description of these (grade school) algorithms to Section 2.)

All Calculation is Addition, Multiplication and Ordering of IN0. One
important observation which is helpful to identify is that

Observation 1. All calculations of a numerical nature can be reduced to the three
operations x+ y, x · y, x < y applied to nonnegative integers.

For instance:

√
2 > 1.414 because 1414 · 1414 < 2 · 1000 · 1000, (3)

11 is prime because 11 = 2 · 5 + 1 = 3 · 3 + 2, (4)

44

4
<

(

2 · 4
4

)

because 4 · 4 · 4 · 2 · 3 · 4 < 5 · 6 · 7 · 8. (5)

Note that as this is a formal proof the goal is not in calculating the result
itself, which we already know or can verify externally, but rather in efficiently
verifying the numerical claim, which comes with its own challenges. For primality
testing, this process is known as a primality certificate, and for larger primes we
use so-called “Pratt certificates” for prime verification [4]. In general, there may
be many non-numerical steps involved to set up a problem into an appropriate
form, such as the squaring and multiplication by 1000 in equation 3, or we may
want to add such steps as an additional reduction on the equation so that we
avoid an unnecessarily complicated calculation, such as canceling the common
factor 6 · 4 in equation 5. However, these “framing” steps are comparatively few
so that it is worthwhile to coerce these calculations into the framework described
here for even moderately large numbers, say n > 30.

It is not really possible to prove Observation 1 as it is not a strictly math-
ematical statement without additional explanation of what exactly is meant by
“calculation” or “numerical nature”. Its primary purpose is in justifying the
scope of the arithmetic system to be built, and it is justified by the observation
that computers can compute the various constants and special functions using
only a small fixed instruction set and an arithmetic logic unit (ALU) that sup-
ports only these basic operations on bit strings. This observation can also be

4 Mario Carneiro

viewed as a combination of the Church-Turing thesis and the observation that
arithmetic on Q can be expressed in the language of Peano Arithmetic.

Section 2 describes the metatheory of “decimal numbers” as they appear
in set.mm, and the theorems which form the basic operations upon which the
algorithm is built. Section 3 describes the Mathematica implementation of a
limited-domain automated theorem prover (ATP) for arithmetic using the deci-
mal theorems as a base, and Section 4 surveys the outcome of the project.

2 Setting Up “Decimal” Arithmetic Theorems in set.mm

The State of the Database Before this Project.

Definition 1. When describing terms, we will use the notation 〈x〉 to refer to
the defined number term with value x, assuming 0 ≤ x ≤ 10, e.g. 3 · 3 is a literal
expression “3 · 3” while 〈3 · 3〉 is the term 9.

We take for granted the following facts, already derived in the database:

– We have general theorems for the field operations, so that a + b = b + a,
a · b = b · a, a + 0 = a, and a · 1 = a. We also have theorems of the form
x = x; x = y ⊢ y = x; x = y, y = z ⊢ x = z available.

– As we have already mentioned in Section 1, the numbers 0-10 have been
defined, yielding definitional theorems of the form 〈n + 1〉 = n + 1 for each
n ∈ {1, . . . , 9}, and for each such number n we have the theorems n ∈ IN0

and n ∈ IN (except n = 0 which only has 0 ∈ IN0).
– We have addition and multiplication facts for these numbers. That is, if

1 ≤ n ≤ m ≤ 10 and m+n ≤ 10 we have the theorem m+n = 〈m+n〉, and
similarly if 1 < n ≤ m ≤ 10 and mn ≤ 10 then m·n = 〈mn〉 is a theorem. By
combining these facts with the general theorems on field operations we can
construct the complete subsection of “addition table” and “multiplication
table” expressible using numbers less than 10. (Recall that 6+ 5 = 11 is not
a theorem because even though 6 + 5 is well-defined, “11” does not name a
number and so the statement itself makes no sense unless 11 is first given a
definition.)

– We have general inequality theorems like transitivity, and theorems of the
form m < n for each 0 ≤ m < n ≤ 10.

This listing motivates the following definition:

Definition 2. A basic fact is a theorem of the form x ∈ IN, x ∈ IN0, x = y+ z,
x = y · z, or x < y where x, y, z are each number terms selected from 0, . . . , 10,
which asserts a true statement about integers x, y, z.

Theorem 2. There is an integer N such that every basic fact is provable in less
than N steps.

Proof. Immediate since there are only finitely many basic facts. ⊓⊔

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 5

It is not relevant for the analysis how largeN is, but by explicitly enumerating
such facts one can show that N ≤ 10, or N ≤ 3 if closure steps x ∈ IN0, IR,C
are ignored.

We begin by defining the concept of “numeral”.

Definition 3. A numeral is a term of the language of set.mm defined recur-
sively by the following rules:

– The terms 0, 1, 2, 3 are numerals.
– If n is a nonzero numeral and a ∈ {0, 1, 2, 3}, then the term (4 · n) + a is a

numeral.

Why Quaternary? It is easily seen that this definition enumerates not base-10
integer representations but rather base-4 representation. It is of course necessary
to commit to a base to work in for practical purposes, and the most logical de-
cision for a system such as set.mm which prioritizes abstract reasoning over
numerical calculation is base 10. The reason this choice was rejected is because
the “multiplication table” for base 10 would require many more basic facts like
7 ·8 = 10 ·5+6, while the multiplication table of base 4 requires only numbers as
large as 9, which fits inside our available collection of basic facts. Furthermore,
within this constraint a large base allows for shorter representations, which di-
rectly translates to shorter proofs of closure properties and other algorithms
(in addition to increasing readability). The specific choice of 4 = 22 also works
well with algorithms like exponentiation by squaring, used in the calculation of
xk mod n in primality tests (see Section 4).

Remark 1. It is important to recognize that “n is a numeral” is not a statement
of the object language, but rather of the metalanguage describing the actual
structure of terms. Furthermore, these are terms for “concrete” integers, not
variables over them, and there are even valid terms for nonnegative integers that
are not equal to any numeral, such as if(CH, 1, 0) (where CH is the Continuum
Hypothesis or any other independent statement), which is provably a member of
IN0 even though neither ⊢ if(CH, 1, 0) = 0 nor ⊢ if(CH, 1, 0) = 1 are theorems.
However, we will show that these pathologies do not occur in the evaluation of
multiplication, addition, and ordering on other numerals.

There are three additional methods that are employed to shorten decimal
representations, by adding clauses to Definition 3. We will call these “extended
numerals”.

– We can include the numbers 4, 5, 6, 7, 8, 9, 10 as numerals. Although it is
disruptive to some of the algorithms to allow these in the lower digits (e.g.
considering 4·3+7 to be a numeral), it is easy to convert such “non-standard”
digits in the most significant place, via the (object language) theorems

⊢ (4 · 1) + 0 = 4
dec4, . . . ⊢ (4 · 2) + 2 = 10

dec10.

6 Mario Carneiro

– We can drop 0 when it occurs in a numeral; this amounts to adding the rule
“if n is a numeral then 4 ·n is a numeral” to the definition of a numeral. The
conversion from this form to the usual form is provided by the theorem

⊢ n ∈ IN0

⊢ 4n+ 0 = 4n
dec0u.

– We can define a function (x : y) = 4x + y and add the rule “if x is a
numeral and y ∈ {0, 1, 2, 3} then (x : y) is a numeral”. Since multiplication
and addition have explicit grouping in set.mm, this halves the number of
parentheses and improves readability, from ((4·((4·3)+2))+1) to ((3 : 2) : 1).
The conversion for this form is provided by the theorem

⊢ x ∈ IN0 ⊢ y ∈ IN0

⊢ 4x+ y = (x : y)
decfv.

In remark 1 we observed that not all nonnegative integers are numerals, but
we can show that the converse is true, so that in the above theorems, we can use
the antecedent n ∈ IN0 instead of “n is a numeral” which is not possible since
this is not a statement of the object language. This weaker notion is sufficient
to assure that n has all the general properties we can expect of numerals, like
n+0 = n or n ≥ 0, which is what we need for most of the theorems on numerals.

Theorem 3. If n is a numeral, then ⊢ n ∈ IN0.

Proof. By induction. If n ∈ {0, 1, 2, 3}, then n ∈ IN0 is a basic fact. Otherwise,
n = 4m + a for some numeral m and a ∈ {0, 1, 2, 3}, and by induction we
can prove m ∈ IN0 and a ∈ IN0 is a basic fact. Then the result follows from
application of the theorem

⊢ m ∈ IN0 ⊢ a ∈ IN0

⊢ 4m+ a ∈ IN0
decclc.

⊓⊔

Theorem 4. If n is a nonzero numeral, then ⊢ n ∈ IN.

Proof. By induction; the theorems involved are

⊢ m ∈ IN

⊢ 4m+ 0 ∈ IN
decnncl2

⊢ m ∈ IN0 ⊢ a ∈ IN

⊢ 4m+ a ∈ IN
decnnclc.

If n ∈ {1, 2, 3}, then n ∈ IN is a basic fact. Otherwise, n = 4m + a for some
nonzero numeral m and a ∈ {0, 1, 2, 3}, and by induction m ∈ IN. If a = 0, then
by decnncl2 n ∈ IN; otherwise a ∈ IN is a basic fact and n ∈ IN follows from
decnnclc. ⊓⊔

Theorem 5. The numeral representation is unique, in the sense that if m = n
as integers, then m and n are identical terms.

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 7

Proof. Follows from the uniqueness of base-4 representation of integers. ⊓⊔

Remark 2. Note that each of the extended representations of numerals invalidate
this theorem, e.g. (4 ·2)+0 = 8 = 4 · 2 = (2 : 0) would all be distinct representa-
tions of the same integer value whose standard form is (4 · 2) + 0. Nevertheless,
there is still a weaker form of uniqueness which is preserved. If m,n are extended
numerals and m = n as integers, then ⊢ m = n is provable; this follows from the
respective “conversion” theorems for each extension together with the equality
theorems for addition and multiplication (a = b, c = d ⊢ a+b = c+d, a·b = c·d).

The converse of this, ⊢ m = n =⇒ m = n, follows from soundness of ZFC
from our interpretation of terms in the object logic as integers with the usual
operations in the metalogic. This is why we will often not distinguish between
equality in the metalogic and the object logic, because they coincide with each
other and with identity as terms from Theorem 5.

Theorem 6. If n is a numeral then ⊢ 4a + b = n for some numeral a (not
necessarily nonzero) and some b ∈ {0, 1, 2, 3}.

Proof. If n ∈ {0, 1, 2, 3}, then we can use the theorem

⊢ a ∈ IN0

⊢ 4 · 0 + a = a
dec0h,

since n ∈ IN0 is a basic fact. Otherwise, n = 4a+ b for some nonzero decimal a
and b ∈ {0, 1, 2, 3}, and the goal statement is just ⊢ 4a+ b = 4a+ b. ⊓⊔

Theorem 7. If m < n are numerals, then ⊢ m < n.

Proof. By induction on m; the relevant theorems are

⊢ a ∈ IN ⊢ b, c ∈ IN0 ⊢ c < 4

⊢ c < 4a+ b
declti,

⊢ a, b ∈ IN0 ⊢ c ∈ IN ⊢ b < c

⊢ 4a+ b < 4a+ c
declt,

⊢ a, b, c, d ∈ IN0 ⊢ b < 4 ⊢ a < c

⊢ 4a+ b < 4c+ d
decltc.

If m,n ∈ {0, 1, 2, 3}, then m < n is a basic fact. Otherwise if m ∈ {0, 1, 2, 3}
and n = 4a + b, then since a is nonzero a ∈ IN by Theorem 4, and m < 4 is
a basic fact, so declti applies to give ⊢ m < n. If m = 4a + b, then m ≥ 4 so
n = 4c+d (because m < n implies n /∈ {0, 1, 2, 3}) for nonzero numerals a, c and
b, d ∈ {0, 1, 2, 3}. If a = c, then by Theorem 5, a and c are identical, so (working
in the metalogic) 4a + b < 4a + d → b < d, and since b, d ∈ {0, 1, 2, 3} this is a
basic fact; thus declt applies and ⊢ m < n. Again working in the metalogic, if
a > c then 4a + b ≥ 4a ≥ 4c + 4 > 4c + d in contradiction to the assumption
m < n, so in the other case a < c and by the induction hypothesis ⊢ a < c; and
b < 4 is a basic fact, hence decltc applies. ⊓⊔

8 Mario Carneiro

As an example of Theorem 7, we know that ⊢ 3 < 4·3+1 and ⊢ 4·2+0 < 4·2+1
are theorems of set.mm because 3 < 13 and 8 < 9, respectively (and the numeral
representations of these numbers are [3] = 3, [13] = 4 · 3 + 1 and so on).

Next we show how to do successors, addition, and multiplication.

Definition 4. As a variant of Definition 1, we use the notation [x] to denote
the unique numeral corresponding to the expression x. Thus for example [6+5] =
(4 · 2) + 3.

Remark 3. Note that for 0 ≤ x ≤ 10, the statement [x] = 〈x〉 is either an identity
or one of dec4, dec5, . . . , dec10, and so is provable in one step.

Theorem 8. If n is a numeral and ⊢ n = n′, then ⊢ [n+ 1] = n′ + 1.

Proof. By induction on n; the relevant theorems are

⊢ a, b ∈ IN0 ⊢ c = (b+ 1) ⊢ 4a+ b = n

⊢ 4a+ c = n+ 1
decsuc,

⊢ a ∈ IN0 ⊢ b = (a+ 1) ⊢ 4a+ 3 = n

⊢ 4b+ 0 = n+ 1
decsucc2.

If n ∈ {0, 1, 2}, then [n + 1] ∈ {1, 2, 3} and [n + 1] = n + 1 is a basic fact, and
⊢ n+ 1 = n′ + 1. Otherwise, by Theorem 6 n = 4a+ b for some (not necessarily
nonzero) numeral a and b ∈ {0, 1, 2, 3}. If b ∈ {0, 1, 2}, then [n+1] = 4a+[b+1],
and so the assumptions [b + 1] = b + 1, 4a + b = n′ for decsuc are satisfied.
Otherwise b = 3 and [n + 1] = 4[a + 1] + 0, and by the induction hypothesis
⊢ [a+ 1] = a+ 1 (using n, n′ 7→ a). Then [a+ 1] = a+ 1 and 4a+ 3 = n′ satisfy
the assumptions of decsucc2. ⊓⊔

Remark 4. The extra assumption ⊢ n = n′ is not necessary (i.e. we could just
have proven ⊢ [n+1] = n+1) but makes it a little easier to work with extended
numerals, because that way n can be the standard numeral while n′ is the
extended numeral, and the assumption is satisfied by remark 2.

To give an example, if we were able to prove (using other theorems than
discussed here) that ⊢ 4 · 1 + 1 = 6− 1, then Theorem 8 says, taking n = [5] =
4 · 1 + 1 and n′ = 6− 1, that ⊢ 4 · 1 + 2 = (6− 1) + 1 is also provable.

Theorem 9. If m,n are numerals such that ⊢ m = m′ and ⊢ n = n′, then
⊢ [m+ n] = m′ + n′.

Proof. By induction on m+ n; the relevant theorems are

⊢ a, b, c, d ∈ IN0 ⊢ 4a+ b = m ⊢ 4c+ d = n
⊢ e = a+ c ⊢ f = b+ d

⊢ 4e+ f = m+ n
decadd,

⊢ a, b, c, d, f ∈ IN0 ⊢ 4a+ b = m ⊢ 4c+ d = n
⊢ e = (a+ c) + 1 ⊢ 4 + f = b+ d

⊢ 4e+ f = m+ n
decaddc.

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 9

If m+n ∈ {0, 1, 2, 3}, then [m+n] = m+n is a basic fact so ⊢ [m+n] = m′+n′

follows from properties of equality. By Theorem 6 we can promotem and n to the
formm = 4a+b, n = 4c+d where b, d < 4 and a, c are numerals. Now if b+ d < 4,
then ⊢ b + d < 4 follows from the basic facts [b+ d] = b+ d and [b+ d] < 4, and
so filling the assumptions with 4a+ b = m′, 4c+ d = n′, and [b+ d] = b+ d and
using the induction hypothesis to prove [a + c] = a + c, we can apply decadd.
Otherwise, b + d ≥ 4, so [b + d − 4] ∈ {0, 1, 2, 3} and we can use 4a + b = m′,
4c+d = n′, prove 4+[b+d−4] = b+d using the basic facts 〈b+d〉 = 4+[b+d−4]
and 〈b+ d〉 = b+ d, and prove [a+ c+ 1] = [a+ c] + 1 = (a+ c) + 1 using first
Theorem 8 and then the induction hypothesis; this completes the assumptions
of decaddc. ⊓⊔

The next theorem works by double induction, so it is easier to split it into
two parts.

Theorem 10. If m,n are numerals, p ∈ {0, 1, 2, 3}, and ⊢ m = m′, n = n′,
then [mp+ n] = m′p+ n′.

Proof. By induction on m, using the theorem

⊢ a, b, c, d, p, f, g ∈ IN0 ⊢ 4a+ b = m ⊢ 4c+ d = n
⊢ e = ap+ (c+ g) ⊢ 4g + f = bp+ d

⊢ 4e+ f = mp+ n
decmac.

If m ∈ {0, 1, 2, 3}, then [mp] = 〈mp〉 is provable by remark 3 and 〈mp〉 = mp
is a basic fact, so ⊢ [mp + n] = [mp] + n = m′p + n′ by Theorem 9. Otherwise
let m = 4a + b, and write n = 4c + d and [bp + d] = 4g + f for some c, d, f, g
by Theorem 6. Then the assumptions to decmac are satisfied by 4a + b = m′,
4c+ d = n′, [ap+ c+ g] = ap+[c+ g] = ap+(c+ g) by the induction hypothesis
and Theorem 9, and 4g + f = [bp+ d] = [bp] + d = bp+ d by Theorem 9. ⊓⊔
Theorem 11. If m,n, p are numerals, and ⊢ m = m′, n = n′, p = p′, then
[mp+ n] = m′p′ + n′.

Proof. By induction on p, using the theorem

⊢ a, b, c, d,m, f, g ∈ IN0 ⊢ 4a+ b = p ⊢ 4c+ d = n
⊢ e = ma+ (c+ g) ⊢ 4g + f = mb+ d

⊢ 4e+ f = mp+ n
decma2c.

If p ∈ {0, 1, 2, 3}, then [mp+n] = m′p+n′ = m′p′+n′ by Theorem 10. Otherwise
let m = 4a + b, and write n = 4c + d and [mb + d] = 4g + f for some c, d, f, g
by Theorem 6. Then the assumptions to decma2c are satisfied by 4a + b = p′,
4c+d = n′, [ma+c+g] = ma+[c+g] = ma+(c+g) by the induction hypothesis
and Theorem 9, and 4g + f = [mb+ d] = mb+ d by Theorem 10. ⊓⊔
Corollary 1. If m,n are numerals, and ⊢ m = m′, n = n′, then [mn] = m′n′.

Proof. Theorem 11 gives [mn] = m′n′ +0, and m′n′ +0 = m′n′ because m′n′ =
mn ∈ IN0. (Slightly more efficient than this approach is an application of the
theorems decmul1c, decmul2c which are essentially the same as decmac, decma2c

without the addition component.) ⊓⊔

10 Mario Carneiro

3 A Mathematica Implementation of the Decimal

Arithmetic Algorithm

The purpose of the preceding section was not merely to prove that arithmetic
operations are possible, which could be done just as easily using finite sums or
unary representation. Rather, by proving the results contructively it is in effect a
description of an algorithm for performing arithmetic calculations, and as such
it is not difficult to implement on a computer. Due to its advanced pattern-
matching capabilities, Mathematica was selected as the language of choice for
the implementation.

In order to avoid Mathematica’s automatic reduction of arithmetic expres-
sions, we represent the Metamath formulas of our limited domain via the follow-
ing correspondence:

– An integer n is represented as itself
– The term a+ b becomes pl[a, b]
– The term a · b becomes tm[a, b]
– ⊢ a = b becomes eq[a, b]
– ⊢ a < b becomes lt[a, b]
– ⊢ a ∈ IN becomes elN[a]
– ⊢ a ∈ IN0 becomes elN0[a]
– ⊢ a ∈ C becomes elC[a]

These symbols have no evaluation semantics and so simply serve to store the
shape of the target expression.

The output proof is stored as a tree of list expressions by the following
correspondence:

If the expression e is obtained by applying the theorem t to the list of
expressions e1, . . . , ek with proofs p1, . . . , pk, then the proof of e is stored
as the expression p = {{p1, . . . , pk}, e, t}.

For example, the expression 4 · (4 · 1 + 3) + 2 = 5 · 6 is represented as

eq[pl[tm[4,pl[tm[4,1],3]],2],tm[5,6]]

and the proof of 2 · (4 · 1 + 1) ∈ IN0 (by the sequence of theorems: 2 ∈ IN0 by
2nn0, 1 ∈ IN0 by 1nn0, 4 · 1+ 1 ∈ IN0 by decclc, 2 · (4 · 1+ 1) ∈ IN0 by nn0mulcli)
is:

{{{{}, elN0[2], "2nn0"},

{{{{}, elN0[1], "1nn0"},

{{}, elN0[1], "1nn0"}},

elN0[pl[tm[4,1],1]], "decclc"}},

elN0[tm[2,pl[tm[4,1],1]]], "nn0mulcli"}

(There are more efficient storage mechanisms, but this one is relatively easy
to take apart and reorganize. Furthermore, since it only needs to run once in

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 11

order to produce the proof, we are much more concerned with the length of the
output proof than the speed of the proof generation itself.) For intermediate
steps, we will also have use for the “proof stubs” {Null,e,"?"} (representing a
proof with goal expression e that has not been completed) and {$Failed,e,"?"}
(for a step that is impossible to prove or lies outside the domain of the prover).

Given a term expression, we can evaluate it easily using a pattern-matching
function:

eval[pl[a_, b_]] := eval[a] + eval[b]

eval[tm[a_, b_]] := eval[a] eval[b]

eval[n_Integer] := n

Then the domain of our theorem prover will be expressions of the form eq[m,n]
where m and n are terms built from the integers 0-10 and pl, tm which sat-
isfy eval[m] == eval[n]. (As a side effect we will also support elN0[n], and
elN[n] when eval[n] != 0.) We will also need the reverse conversion:

bb[n_] := If[n < 4, n, pl[tm[4, bb[Quotient[n, 4]]], Mod[n, 4]]]

This is the equivalent of the [x] function from Definition 4.

Our algorithm works in reverse from a given goal expression, breaking it
down into smaller pieces until we reach the basic facts. The easiest type of proof
is closure in IN0:

prove[elN0[n_Integer]] :=

With[{s = ToString[n]},

If[n <= 4, {{}, elN0[n], s <> "nn0"}, {{prove[elN[n]]}, elN0[n],

"nnnn0i"}]]

prove[x : elN0[pl[tm[4, a_], b_]]] := {{prove@elN0[a], prove@elN0[b]},

x, "decclc"}

prove[x : elN0[tm[a_, b_]]] := {{prove@elN0[a], prove@elN0[b]}, x,

"nn0mulcli"}

prove[x : elN0[pl[a_, b_]]] := {{prove@elN0[a], prove@elN0[b]}, x,

"nn0addcli"}

prove[elN[n_Integer]] /; n > 0 := {{}, elN[n], ToString[n] <> "nn"}

prove[elN[x : pl[y : tm[4, a_], b_Integer]]] :=

If[b === 0, {{{prove@elN0[a], eq[x, y], "dec0u"}, prove@elN[y]},

elN[x], "eqeltri"}, {{prove@elN0[a], prove@elN[b]}, elN[x],

"decnnclc"}]

prove[elN[x : tm[4, a_]]] := {{prove@elN[a]}, elN[x], "decnncl"}

This simply breaks up an expression according to its head and applies decclc

to numerals, nn0addcli and nn0mulcli to integer addition and multiplication, and
theorems 0nn0, 1nn0, . . . , 4nn0, 5nn, . . . , 10nn to the integers 0-10 (where we
switch to IN closure for numbers larger than 4 because we do not have IN0 closure
theorems prepared for these). Similarly, we can do closure for IN:

12 Mario Carneiro

prove[elN[n_Integer]] /; n > 0 := {{}, elN[n], ToString[n] <> "nn"}

prove[elN[x : pl[y : tm[4, a_], b_Integer]]] :=

If[b === 0, {{prove@elN[a]}, elN[x],

"decnncl2"}, {{prove@elN0[a], prove@elN[b]}, elN[x], "decnnclc"}]

prove[elN[x : tm[4, a_]]] := {{prove@elN[a]}, elN[x], "decnncl"}

This is just an implementation of Theorem 4.
In order to do arbitrary equalities, we first ensure that both arguments are

numerals, by chaining x = [x] < [y] = y for inequalities and x = [x] = y for
equalities (where [x] and [y] are identical since we are assuming that the equality
we are proving is in fact correct). We also allow the case “x < 4” where x is
a numeral even though 4 is not a numeral, because it comes up often and we
already have theorems for this case.

prove[lt[x_, y_]] /; eval[x] < eval[y] :=

If[x === bb@eval[x],

If[y === bb@eval[y] || y === 4,

provelt[x, y], {{prove@lt[x, bb@eval[y]], proveeq2[y]}, lt[x, y],

"breqtri"}], {{proveeq2[x], prove@lt[bb@eval[x], y]}, lt[x, y],

"eqbrtrri"}]

prove[eq[x_, y_]] /; eval[x] == eval[y] :=

If[x === bb@eval[x],

proveeq2[y], {{proveeq2[x], proveeq2[y]}, eq[x, y], "eqtr3i"}]

proveeq2[x_] := proveeq[bb@eval[x], x]

It remains to define provelt and proveeq. We start with provelt, imple-
menting Theorem 7.

provelt[x_Integer, y_Integer] := {{}, lt[x, y],

ToString[x] <> "lt" <> ToString[y]}

provelt[x_Integer,

y : pl[tm[4, a_], b_]] := {{prove@elN[a], prove@elN0[b],

prove@elN0[x], provelt[x, 4]}, lt[x, y], "declti"}

provelt[x : pl[tm[4, a_], c_], y : pl[tm[4, b_], d_]] :=

If[a === b, {{prove@elN0[a], prove@elN0[c], prove@elN[d],

provelt[c, d]}, lt[x, y], "declt"},

{{prove@elN0[a], prove@elN0[b], prove@elN0[c],

prove@elN0[d], provelt[c, 4], provelt[a, b]}, lt[x, y], "decltc"}]

The contract of proveeq[x, y] is such that it returns a proof of ⊢ x = y given
an expression y, assuming x = [y] (since we can calculate x from y, the left
argument is not necessary, as in the variant proveeq2, but it simplifies pattern
matching), and it is defined much the same as previous functions; we elide it
here due to space constraints.

Basic facts. One fine point which may need addressing, since it was largely
glossed over in Theorem 2, is the algorithm for basic facts. We define a function

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 13

basiceq[x] which is valid when x is either pl[m,n] or tm[m,n] and eval[x]≤
10; in this case it corresponds to a “basic fact” of either addition or multiplica-
tion, and the return value is a proof of eq[eval[x], x]. There are many special
cases, but every such statement follows from addid1i, addid2i (addition with 0),
mulid1i, mulid2i (multiplication by 1), mul01i, mul02i (multiplication by 0), df-2,
. . . , df-10 (addition with 1), or a named theorem like 3p2e6 for 3·2 = 6 – these ex-
ist for each valid triple containing numbers larger than 1 – possibly followed with
addcomi, mulcomi (commutation) and/or eqcomi, eqtri (symmetry/transitivity of
equality) to tie the components together.

4 Results

In this section we will describe the purpose to which we applied the arithmetic
algorithm.

4.1 Prime Numbers

There are several ways to prove that a number is prime, and the relative effi-
ciency can depend a lot on the size of the numbers involved. For small numbers,
especially if it is necessary to find all primes below a cutoff, the most efficient
method is simple trial division. The biggest improvement in efficiency here is
gained by looking only at primes less than

√
n in a proof that n is prime. Start-

ing from the two primes 2, 3 which are proven “from first principles”, we can use
this to show that a number less than 25 which is not divisible by 2 or 3 is prime,
and we reduce these primality/compositeness deductions to integer statements
via

⊢ q ∈ IN0 ⊢ a, r ∈ IN ⊢ b = aq + r ⊢ r < a

⊢ a ∤ b
ndvdsi

⊢ a, b ∈ IN ⊢ 1 < a ⊢ 1 < b ⊢ n = ab

⊢ n /∈ IP
nprmi.

As a consequence of our choice of base 4, we also have easy proofs of composite-
ness or non-divisibility by 2:

⊢ a ∈ IN0

⊢ 2 ∤ 4a+ 1
dec2dvds1

⊢ a ∈ IN0

⊢ 2 ∤ 4a+ 3
dec2dvds3

⊢ a ∈ IN

⊢ 4a+ 2 /∈ IP
dec2nprm

This yields proofs of 5, 7, 11, 13, 17, 19, 23 ∈ IP. We repeat the process to show
that a number less than 292 = 841 and which is not divisible by 2, 3, 5, 7, 11, 13, 17,
19, 23 is prime (the upper bound is 292 because 29 is the first prime larger than
23), and we use this theorem to prove primality of 37, 43, 83, 139, 163, 317, 631.
There are three more primes needed for the prime sequence in Bertrand’s postu-
late, namely 1259, 2503, 4001, and we would need many more primes to repeat
the process with a still-larger upper bound, so we switch methods.

14 Mario Carneiro

Pocklington’s Theorem.

Theorem 12. If N > 1 is an integer such that N − 1 = AB with A > B, and
for every prime factor p of A there is an ap such that aN−1

p ≡ 1 (mod N) and

gcd(a
(N−1)/p
p − 1, N) = 1, then N is prime.

This theorem has been proven in set.mm in decimal-friendly form (in the
case when A = pe is a prime power) as

⊢ p ∈ IP ⊢ g,B, e, a ∈ IN ⊢ m = gp ⊢ N = m+ 1 ⊢ m = Bpe

⊢ B < pe ⊢ am ≡ 1 (mod N) ⊢ gcd(ag − 1, N) = 1

⊢ N ∈ IP
pockthi.

Ignoring the pe term which is easily evaluated by writing it out as a product of
p’s since pe < N is relatively small, there are two new kinds of integer statements
involved here, a ≡ b (mod N) and gcd(c, d) = e. We can further narrow our
concern to statements of the form am ≡ b (mod N) and gcd(c, d) = 1 (where
c ≥ d), and we can reduce the second via Euclid’s algorithm in the form

⊢ k, r, n ∈ IN0 ⊢ m = kn+ r ⊢ gcd(n, r) = g

⊢ gcd(m,n) = g
gcdi.

For the power mod calculations, we used addition-chain exponentiation on man-
ually selected chains which had good calculational properties (small intermediate
calculations), since the hardest step in the calculation

⊢ e = b+ c ⊢ dn+m = kl ⊢ ab ≡ k, ac ≡ l (mod n)

⊢ ae ≡ m (mod n)
modxai2

is evaluating the expression dn + m = kl, whose proof length is driven by the
size of k, l, so that exponents with smaller reduced forms yield shorter proofs.
In the worst case, for N = 4001 we are calculating products on the order kl ≤
N2 = 16 008 001, which are roughly 12-digit numbers in base 4.

4.2 Bertrand’s Postulate Gets the Last Laugh

As mentioned in Section 1.1, the framework described in this paper was devel-
oped in preparation for performing the large calculations needed to prove that
numbers like 4001 are prime. After this work was completed, we discovered that
there was a new proof by Shigenori Tochiori [5] (unfortunately untranslated to
my knowledge) which, by strengthening the estimates in Erdős’ proof, manages
to prove the asymptotic part for n ≥ 64 (instead of n ≥ 4000), so that the ex-
plicit enumeration of primes above this became unnecessary for the completion
of the proof. Nevertheless, the proof of 4001 ∈ IP remains as a good example
of a complicated arithmetic proof, and we expect that this arithmetic system
will make it much easier to handle such problems in the future, and bpos is now
completed in any case.

2 closure assumptions elided

Arithmetic in Metamath, Case Study: Bertrand’s Postulate 15

4.3 Large Proofs

One recent formal proof which has gathered some attention is Thomas Hales’
proof of the Kepler Conjecture, also known as the Flyspeck project [6], and it
highlights one foundational issue regarding Metamath’s prospects in the QED
vision of the future [7] – which and how much resources are stressed by projects
like this with a large computational component? The design of Metamath is
such that it can verify a proof in nearly linear time, assuming that it can store
the entire database of theorem statements in memory, because at each step it
need only verify that the substitutions to the theorem statement are in fact done
correctly (and the substitutions themselves are stored as part of the proof, even
though they can be automatically derived with more sophisticated and slower
algorithms). Thus the primary bottleneck in verification time is the length of
the proof itself, and we can analyze this quite easily for our chosen algorithm.

Since we are essentially employing grade-school addition and multiplication
algorithms, it is easy to see that they are O(n) and O(n2) respectively, and with
more advanced multiplication algorithms we could lower that to O(n1.5) or lower.
Indeed, there does not seem to be any essential difference between the number
of steps in a Metamath proof and the number of cycles that a computer might
go through to perform the equivalent algorithm, even though a Metamath proof
doesn’t “run” per se as it is a proof and not a program. (In fact a Metamath
proof has at least one big advantage over a computer in that it can “guess the
right answer” in the manner of a non-deterministic Turing machine.) To take
this example to its conceptual extreme, we could even simulate an ALU with
addition and multiplication of integers representing data values of a computer,
and then the progress of the proof would directly correspond to the steps in a
computer program. Of course this would introduce a ridiculously large constant,
but it would suggest that any program, including a verifier for another formal
system such as the HOL Light system in which Flyspeck runs, can be emulated
with a proof whose length is comparable to the running time of the verifier
without a change in the overall asymptotics.

Acknowledgments. The author wishes to thank Norman Megill for discus-
sions leading to the developments of Section 2, N. Megill and Stefan O’Rear
for reviewing early drafts of this work, and the many online Japanese language
learning resources that assisted in translating and eventually formalizing [5].

References

1. Megill, N.: Metamath: A Computer Language for Pure Mathematics. Lulu Publish-
ing, Morrisville, North Carolina (2007)

2. Metamath Proof Explorer, http://us.metamath.org/mpegif/mmset.html
3. Grabowski, A., Korni lowicz, A., Naumowicz, A.: Mizar in a Nutshell. J. of Formal-

ized Reasoning Vol. 3, No. 2, pp. 153–245 (2010)
4. Pratt, V.: Every Prime Has a Succinct Certificate. SIAM J. Comput. 4, 214–220

(1975)

16 Mario Carneiro

5. Tochiori S.: Considering the Proof of “There is a Prime between n and 2n”: Proof
by a stronger estimation than the Bertrand-Chebyshev theorem (in Japanese). Ac-
cessed from http://www.chart.co.jp/subject/sugaku/suken_tsushin/76/76-8.

pdf.
6. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. Cambridge Uni-

versity Press, Cambridge (2012)
7. The QED Manifesto. In Automated Deduction – CADE 12, Springer-Verlag, Lecture

Notes in Artificial Intelligence, Vol. 814, pp. 238–251 (1994)

Auto-hyperlinking the Stacks Project

Johan Commelin1 and Josef Urban1

Radboud University Nijmegen

Abstract. This paper describes an effort to automatically hyperlink
mathematical terms to their definitions in the Stacks Project.
The Stacks Project is an open source, collaborative textbook on Alge-
braic Geometry. It covers the definition of an algebraic stack (unrelated
to the notion of stack in Computer Science), and beyond; providing a
technical reference of the state of the art for researchers in the field. It
provides a web interface and a stand-alone PDF (currently over 4600
pages).
Throughout the project there is a thorough linking to earlier results used
in proofs. However, as is customary in mathematics, nouns and symbols
are not hyperlinked to their definitions. In this paper we outline our
initial approach to auto-hyperlinking terminology to their definitions,
and our future plans.

1 Introduction: Stacks Project

The Stacks Project1 was initiated in 2005 by Aise Johan de Jong with the aim of
collaboratively writing an online introductory text on algebraic stacks (a rather
advanced topic in Algebraic Geometry). Over time it has evolved into a textbook
covering the foundations of Algebraic Geometry, and serves as an online reference
for algebraic geometers. The text is written in a very restricted subset of LATEX,
with a minimal amount of packages and custom commands. This allows custom
translation of the text to HTML implemented by the project’s PHP code, and
relying on MathJaX for math-mode rendering. At the moment the compiled
PDF consists of more than 4600 pages.

A crucial element of the Stacks Project is its web interface, and the concept of
tags. Every result (theorem, lemma, equation, etc, but also chapters and sections)
has a LATEX-label, used for internal references. Besides that, each such label is
assigned a tag, a 4-character alphanumerical string. The tag is stable, and the
web interface provides an easy method to look up the mathematical statement
associated with a tag. This also solves the problem of referencing results in the
Stacks Project, since the tag provides a permanent URI for the mathematical
statement. It should be understood that the content of a tag will not change
(up to corrections of minor mathematical mistakes, typographical errors, and
clarifications/expansions of proofs).

Part of the Stacks Project now also consists of several pieces of software
(mostly written by Aise Johan de Jong and Pieter Belmans) covering amongst
more:
1 http://stacks.math.columbia.edu/

http://stacks.math.columbia.edu/

– tools to assign new tags to new results;

– scripts that parse the LATEX source files, generating chunks of source for each
tag, and converting the LATEX to HTML (+MathJaX);

– an API that can be used to request the LATEX source for a tag;

– dependency graphs for each tag (recursively showing which results are used
in the proof).

The authors of the Stacks Project have initially decided (as is customary in
pen-and-paper mathematics) that symbols in the text are not hyperlinked to
their definitions.

While expert mathematicians usually understand texts written by other ex-
pert mathematicians, nonintrusive (e.g., Wikipedia-style) hyperlinking of termi-
nology can be useful for non-experts and students. It is also a prerequisite and
one of the first steps needed for making such texts – at least partially, and possi-
bly with human assistance – computer-understandable and verifiable by formal
proof assistants. Below we outline our initial approach to auto-hyperlinking sym-
bols to their definitions. It consists of (i) heuristically collecting defined terms
from the texts (Section 2) and (ii) heuristically linking symbols in an arbitrary
Stacks text to their estimated definitions (Section 3).

2 Collecting definition data

The Stacks Project website employs an SQLite database to store all the informa-
tion about tags that it needs. We queried this database for a list of all tags that
correspond to a LATEX definition environment. We then parsed the source of
these tags for strings of the form {\it foobar}, to generate a list of all defined
terminology, together with the tag where they were defined. The list consists of
2238 items, and we can already make some observations about it:

1. Certain tags define multiple terms. This is not a problem for our purposes.

2. Certain terms have definitions in multiple tags. For example, the term flat

is defined in the following tags:

00HB 01U3 0251 0253 02N3 03ER 03ML 04JB 05ND 06PW.

Tag 00HB defines what flat module over a ring is, and when a morphism of
rings is flat. Next, 01U3 defines when a sheaf of modules is flat at some point,
and when a morphism of schemes is flat. This list continues, and finally 06PW

defines when a morphism of algebraic stacks is flat.

For (expert) mathematicians it is usually clear from the context which def-
inition is meant. Of course for our purpose this poses a challenge, because
we somehow have to take the context into account.

3. Certain terms occur as substrings of other terms. In most cases this can be
solved by greedily choosing the longest matching term. Sometimes we may
also need to take context into account, as in the previous point.

3 Auto-linking

While ultimately we are interested in trying as sophisticated context-based al-
gorithms as possible,2 initially we have tried to make the whole website work
with two simple methods. A particular problem with using e.g. machine-learning
approaches is that we do not have annotated training data, as for example in the
Wikifier [8] project,3 where disambiguation can be learned on the large amount
of manually hyperlinked concepts, or in our related work on parsing informal-
ized large formal corpora [7,6] with the help of strong large-theory automated
reasoning “hammers” [5,1].

The first method goes through all the defined terms (series of words) se-
quentially from the longest to the shortest, and in the target text it globally
rewrites matched strings to special unique markers that cannot be matched by
any other defined term. This way, the longest matched concepts are greedily
removed, avoiding clashes in the form of possible further matches of their sub-
strings. For example, once flat module has been matched at a certain position,
neither of its constituent words can be matched. This is a simple longest-first
greedy heuristic, which could likely be extended to Knuth-Morris-Pratt-like al-
gorithm ensuring maximal cover by longest possible strings, using e.g. heuristics
trading the average length of the matched strings for the total matched ratio of
the whole text. While the efficiency of doing sequential scan with all the defined
terms in SP seemed far from optimal, in practice the speed of linking turned out
not to be an issue on our hardware and happens in real time.

Having the first method running allowed us to see its main deficiencies by
randomly browsing dozens of the auto-linked pages. One frequent and easily
removable deficiency is linking to future. The Stacks tags have a chronological
ordering (as common in textbooks). Only very rarely do mathematicians allow
use of concepts that have not been introduced yet, and SP explicitly forbids this.
Hence our second method: when rendering a particular tag, we still go through
all the defined concepts from the longest, however we only allow replacement
of the matched term if it has been defined in a tag that precedes the currently
rendered tag. Again, the information about the chronological ordering of the
tags can be easily extracted from the SQLite database of tags. A side-by-side
comparison of the second version running on our server4 with the unmodified
(slightly later) version from the Stacks website is shown on Figure 1.

4 Evaluation Methods

As mentioned above, we do not have any “ground truth” data for evaluating the
quality of the autolinking and comparing different methods. Instead, we use or
plan to use the following methods for evaluation:

2 See, e.g., [2,3,4] for the decade of work on the much older PlanetMath corpus, which
is however quite different in terms of the technology used, focus, and coverage of
advanced topics.

3 http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
4 http://mws.cs.ru.nl:8008

http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
http://mws.cs.ru.nl:8008

– Random browsing through several topics, possibly using side-by-side compar-
ison of the same text rendered with different methods. To make this easier,
we use a copy-on-write filesystem (BTRFS5) to minimize the overhead of
several simultaneous differently modified installations (each over 2GB big)
of Stacks, and we optionally use javascript code that immediately previews
on mouse-over the linked pages.

– We have written scripts that go through all the tags using a tracing version
of the autolinking methods, resulting in a large file with the statistics of how
often a particular disambiguation was used in each tag. We then compare the
traces for different versions of the autolinking methods. Full tracing for all
the 12500 tags takes about 30 minutes. Table 1 compares the most frequent
disambiguations for the two autolinking methods explained above.

– We are working on an evaluation interface that will present readers (math-
ematicians, students, or just us) for each autolinked item on a page with
a selection window, allowing to choose the correct disambiguation from all
the options. Such choices will be stored on the server, eventually generating
the ground-truth data against which we will be comparing and training the
algorithms.

No position filtering Position filtering
count term tag count term tag

14522 morphism 03UM 13184 finite 09G3
8941 scheme 01IJ 8984 scheme 01IJ
7793 finite 09G3 7727 morphism 03UM
7104 open 06U2 7340 algebraic 09GC
6850 algebraic 09GC 5910 category 0014
6794 flat 06PW 5225 functor 003N
6135 surjective 04ZS 4724 isomorphism 0017
5910 category 0014 3910 quasi-compact 090H
5806 affine 03WF 3396 finite type 01T1
5323 functor 003N 3225 field 09FD

Table 1: Initial statistics of the two linking methods.

5 Future Work

Even the simplest auto-linking methods described above seem to be already use-
ful, but there is a wealth of research we can draw on. The obvious extensions
include use of machine learning on the collected data, use of the(bag-of-words)
context for disambiguation, stemming of the words and their permuting, detect-
ing typing information for supplying more advanced context, etc. Since the proof

5 https://btrfs.wiki.kernel.org

https://btrfs.wiki.kernel.org

style is quite uniform, a distant dream is to eventually try creation of formally
correct formulas and proof sketches by semi-automated methods, and attempting
their discharging with strong large-theory automated reasoning tools.

References

1. J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards
QED. Accepted to Journal of Formalized Reasoning, preprint at http://www4.in.
tum.de/~blanchet/h4qed.pdf, 2015.

2. J. J. Gardner, A. Krowne, and L. Xiong. NNexus: Towards an automatic linker for
a massively-distributed collaborative corpus. In E. Blanzieri and T. Zhang, editors,
2nd International ICST Conference on Collaborative Computing: Networking, Ap-

plications and Worksharing, CollaborateCom 2006, Atlanta, GA, USA, November

17-20, 2006. IEEE Computer Society / ICST, 2006.
3. J. J. Gardner, A. Krowne, and L. Xiong. NNexus: An automatic linker for collabo-

rative web-based corpora. IEEE Trans. Knowl. Data Eng., 21(6):829–839, 2009.
4. D. Ginev and J. Corneli. NNexus reloaded. In Watt et al. [9], pages 423–426.
5. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL Light.

Mathematics in Computer Science, 9(1):5–22, 2015.
6. C. Kaliszyk, J. Urban, and J. Vyskocil. Learning To Parse on Aligned Corpora

(Rough Diamond). Accepted for publication in ITP’15, preprint at http://mws.

cs.ru.nl/~urban/itp15/paper1-final.pdf, 2015.
7. C. Kaliszyk, J. Urban, J. Vyskocil, and H. Geuvers. Developing corpus-based trans-

lation methods between informal and formal mathematics: Project description. In
Watt et al. [9], pages 435–439.

8. L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for
disambiguation to Wikipedia. In D. Lin, Y. Matsumoto, and R. Mihalcea, editors,
The 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,

Oregon, USA, pages 1375–1384. The Association for Computer Linguistics, 2011.
9. S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and J. Urban, editors. In-

telligent Computer Mathematics - International Conference, CICM 2014, Coimbra,

Portugal, July 7-11, 2014. Proceedings, volume 8543 of Lecture Notes in Computer

Science. Springer, 2014.

http://www4.in.tum.de/~blanchet/h4qed.pdf
http://www4.in.tum.de/~blanchet/h4qed.pdf
http://mws.cs.ru.nl/~urban/itp15/paper1-final.pdf
http://mws.cs.ru.nl/~urban/itp15/paper1-final.pdf

Fig. 1: Auto-linked and original page for Tag 03YQ

The SMGloM Project and System

Deyan Ginev1, Mihnea Iancu1, Constantin Jucovshi1, Andrea Kohlhase1,
Michael Kohlhase1, Jürgen Schefter2, and Wolfram Sperber2

1 Computer Science, Jacobs University Bremen; http://kwarc.info
2 Zentralblatt Math, Berlin; http://zbmath.org

Abstract. Mathematical vernacular – the everyday language we use to

communicate about mathematics is characterized by a special vocabu-

lary. If we want to support humans with mathematical documents, we

need a resource that captures the terminological, linguistic, and ontolog-

ical aspects of the mathematical vocabulary. In the SMGloM project and

system, we aim to do just this. We present the glossary system prototype,

the content organization, and the envisioned community aspects.

1 Introduction

One of the challenging aspects of mathematical language is its special terminol-
ogy of technical terms that are defined in various mathematical documents. To
alleviate this, mathematicians use special glossaries, traditionally lists of terms
in a particular domain of knowledge with the definitions for those terms. Orig-
inally, glossaries appeared as alphabetical lists of new/introduced terms with
short definitions in the back of books to help readers understand the contents.
Another kind of resource that deals with terminology of mathematics are “dictio-
naries”, which align mathematical terms in different languages by their meaning
– originally without giving a definition.

In the last decades the term “glossary” has also been applied to digital vo-
cabularies (online encyclopedias, thesauri, dictionaries, etc.), which have be-
come important resources in knowledge-based systems. This is especially true
for vocabularies that have a i) semantic aspect – i.e. some of the relations
are made explicit and machine-actionable, they are also called “ontologies” – or
ii) that are multilingual. Digital vocabularies can be hand-curated, or machine-
generated/collected; an example of the former is the WordNet lexical database
for English,an example of the latter is DBPedia,but they can also be hybrid,
e.g. the UWN/Menta projectgenerates a multilingual WordNet by automatically
adding other languages by crawling Wikipedia.

We present the SMGloM project, which aims to create a semantic, multi-
lingual glossary for mathematics. This resource combines the characteristics of
dictionaries and glossaries, with those of ontologies, but restricts the content to
definitions and the relations to the lexical ones to keep the task manageable.
Here we give a high-level overview over the data model, the SMGloM system,
organizational and legal issues, possible applications, and the state of the effort
of seeding the glossary.

http://kwarc.info
http://zbmath.org

2 The SMGloM System

Data Model and Encoding We build the data model of SMGloM on top of
the one of OMDoc/Mmt, which provides views, statements, and theories. In
a nutshell – see [Koh14] for details, a glossary entry consists of one symbol,
its definition, and a set of verbalizations and notations. A symbol is a
formal identifier of a mathematical object/concept (i.e a formal object). The
verbalizations relate it to lexical entries (identified by the stem of the head),
which we call glossary terms.

The definitions could be written down in a formal logic, but in the SMGloM,
we write them down in mathematical vernacular (common mathematical lan-
guage; in SMGloM natural language with STEX annotations). Thus we consider
“the definition” of a symbol to be given by a set of vernacular definitions, which
are assumed to be translations of each other – an important structural invariant
of the SMGloM that needs to be maintained.

Glossary entries are often grouped into a glossary module, which is rep-
resented as n + 1 OMDoc/Mmt theories: one for the language-independent
part (called the module signature, it introduces the symbols, their dependen-
cies, and notations), and n for the language bindings (which introduce the
definitions and verbalizations of symbols).

Organizing a Communal Resource The ultimate cause of the SMGloM

project and system is to facilitate the establishment of a knowledge resource
for mathematics. We need to take appropriate organizational measures to sup-
port this. We are currently establishing a wiki-like archive submission system
for glossary modules on MathHub [MH] and thinking of a quality assurance
system that is based on a community/karma-driven approval system. Openness
and semantic stability are ensured by a special licensing and publication regime:
The SMGloM license protects symbols against non-conservative changes while
allowing derived works.

3 Applications of the SMGloM

The main advantage of SMGloM over existing terminological resources for math-
ematics is that it makes important linguistic and ontological relations explicit
that these do not. This extension makes a large variety of applications feasible
without requiring full formalization, the cost of which would be prohibitive. We
will sketch some of the applications here.

Glossary of Mathematical Terms An interface that presents SMGloM like
a traditional glossary, i.e. as a (sorted) list of glossary entries. In addition, the
semantic information in SMGloM can be used to adequately mark up references
to as well as relations with (e.g. “synonym of”, or “translation of”) other entries.
See Figure 1 for the current interface. There can be sub-glossaries, for certain
areas of mathematics, for certain languages, etc.

Fig. 1. The glossary interface at https://mathhub.info/mh/glossary

Mathematical Dictionaries The mathematical terminology is synchronized
by content symbols in SMGloM, therefore a mathematical dictionary is simply
an interface problem; see https://mathhub.info/mh/dictionary.

Flexible Styling/Presentation If we have formulae in content markup (i.e. in
content MathML e.g. in OMDoc or STEX), then we can adapt the rendering of
formulae with symbols that having multiple notations in SMGloM to the user’s
preferences. Then, each user can state their notational preferences (in terms of
SMGloM notation definitions), and the formulae in SMGloM will be rendered
using these, adapting to the preferences of the reader.

Notation-Based-Parsing The notation definitions from SMGloM can be seen
as user-contributed grammar rules. Therefore, they can be used for parsing for-
mulae from presentation to content markup in the longer run. This will lead to a
context-sensitive formula parser, where “context” is defined by the SMGloM glos-
sary modules currently in focus – here the data model in term of OMDoc/Mmt

theories directly contributes to the applications of the SMGloM.

More Semantic Search As SMGloM declares symbols together with notations,
definitions and verbalizations it provides an unique opportunity for applying
semantic search services based on it in a variety of settings:
1. notation-based parsing in the input phase could make formula entry into an

interactive disambiguation process. For instance, a user enters eˆ?x (where ?x

represents a query variable), and the system ask her: “with e, do you mean
Euler’s number?”, and also: “Is e

?x a power operation?”. The answers will
then help refine the search.

2. Alternatively, search could use disambiguation as a facet in the search to
refine the results or for clustering the results.

3. Furthermore, the SMGloM information could be used for query expansion
(both visible or automatic): if the user searches for e, then the query could
be expanded e.g. by i) the string Euler’s Number (there is an interesting
question about what to do with the language dependency here) and even
ii) the formula lim?n→∞(1 + 1

?n
)?n.

Verbalization-Based Translation One of the most tedious parts of translat-
ing mathematical documents is the correct use of technical terms. A semantically
preloaded text (i.e. one that has all formulae in content markup and many se-
mantic objects explicitly marked up) can be term-translated automatically using
the translation relation induced by SMGloM. Of course, synonyms must be re-

https://mathhub.info/mh/glossary
https://mathhub.info/mh/dictionary

solved consistently (there has to be an interface for this). This (and related
semantic tasks) are for domain specialists. The intervening text can be done by
lesser trained individuals (or even a variant of google translate). This will make
translations much cheaper and will make math available in more languages.

Wikifiers like NNexus Wikifiers are systems that given a glossary of terms
create definitional links in documents. A math-specific example is the NNexus
system [GC14], it can already use the SMGloM glossary.

4 Conclusion & State

We have described a project to establish a public, semantic, and multilingual
termbase for mathematics. We have a first prototype that supports authoring of
glossary entries and glossary management at https://mathhub.info/smglom.
The SMGloM system partially automates editing, management, refactoring, qual-
ity control, etc; for more information see https://mathhub.info/help/main.

html.
To make public contributions to SMGloM feasible, it must already contain a

nucleus of (basic) entries that can be referenced in other glossary components.
The SMGloM project is currently working towards a basic inventory of glossary
entries, and has almost arrived at the first milestone of 600 entries – most with
two language bindings, some with 6. The current glossary contains
i) ca. 200 glossary entries from elementary mathematics, to provide a basis for

further development
ii) ca. 400 are special concepts from number theory to explore the suitability

of the SMGloM for more advanced areas of mathematics.

AcknowledgementsWork on the SMGloM system has been partially supported
by the Leibniz association under grant SAW-2012-FIZ KA-2 and the German
Research Foundation (DFG) under grant KO 2428/13-1.

References

[GC14] Deyan Ginev and Joseph Corneli. “NNexus Reloaded”. In: Intelli-
gent Computer Mathematics 2014. Ed. by Stephan Watt et al. LNCS
8543. Springer, 2014, pp. 423–426. isbn: 978-3-319-08433-6. url:
http://arxiv.org/abs/1404.6548.

[Koh14] Michael Kohlhase. “A Data Model and Encoding for a Semantic,
Multilingual Terminology of Mathematics”. In: Intelligent Computer

Mathematics 2014. Ed. by Stephan Watt et al. LNCS 8543. Springer,
2014, pp. 169–183. isbn: 978-3-319-08433-6. url: http://kwarc.
info/kohlhase/papers/cicm14-smglom.pdf.

[MH] MathHub.info: Active Mathematics. url: http://mathhub.info
(visited on 01/28/2014).

[Wat+14] Stephan Watt et al., eds. Intelligent Computer Mathematics. LNCS
8543. Springer, 2014. isbn: 978-3-319-08433-6.

https://mathhub.info/smglom
https://mathhub.info/help/main.html
https://mathhub.info/help/main.html
http://arxiv.org/abs/1404.6548
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://mathhub.info

Parsing Texts and Checking Proofs in LATEX

Bob Neveln and Bob Alps

Widener University, Chester, PA 19013, USA,
neveln@cs.widener.edu,

2222 Simpson Street, Evanston, IL 60201, USA,
BobAlps@aol.com

Abstract. ProofCheck is a Python package which supports parsing
mathematical texts and checking mathematical texts with proofs. The
mathematical texts must have been written in a LATEX or plain TEX doc-
ument. By defailt, everything inside TEX dollar signs is parsed and must
adhere to a very flexible syntax based on the work of A. P. Morse. The
syntax for proofs consists of indications of which lines are to be checked,
references to previously established results, and indication of the end of
the proof. ProofCheck checks each step by searching a rules file for a rule
of inference that will match up with the inidcated references. ProofCheck
can be configured to work with any logic or set theory that can be ex-
pressed in the Morse syntax. The initial configuration of ProofCheck is
based on a system of free logic and set theory with classes. The authors
are working to adapt ProofCheck to a relevance logic, in one project, and
to a constructive logic and set theory, in another. A general explanation
of the use and structure of the system and programs is provided, and
a sample proof is shown in detail. A description of ProofCheck can be
found in the TEX User’s Group Journal in 2007 and 2009 in addition to
online at www.proofcheck.org. The package can be downloaded from the
online site as well as from the Python Package Index (pypi.python.org.).

1 Introduction

ProofCheck is a tool for (1) checking the sytactical correctness of formal math-
ematical texts written in TEX and (2) checking the correctness of formal math-
ematical proofs. To get an understanding of of ProofCheck, it may be helpful to
know its genesis. ProofCheck was not conceived as a proof checking tool. The
authors were writing mathematical texts in TEX using the formal syntax of A.
P. Morse [6]. As an aid to ensuring the syntactical correctness of the texts, the
first author wrote a Python program to read the TEX file and check the mathe-
matical expressions for syntactical errors, such as unbalanced parentheses. This
syntax checking program deals with the syntax in a very general way, and allows
definitions of new terms and formulas.

The authors found themselves writing very detailed proofs in which nearly
each line had a justification citing an previous step or earlier result. It occurred
to the authors that this mode of proof was close to being checkable by com-
puter. Once again, the first author undertook the task of implementing the proof
checker, which has led to what is now called ProofCheck.

The key commitment in ProofCheck is not to a certain set theory or logic, but
to a set of rules of syntax. These rules, largely based on rules devised by Morse,
are quite flexible and permit the development of a wide variety of mathematical
foundations and systems. For example, the authors prefer a foundation using free
logic with indefinite descriptions and set theory with proper classes. However,
a foundation using standard logic and Zermelo-Fraenkl set theory could equally
well be used.

The program was used to check all the proofs in a submission to a well-known
logic journal. The file checked was the submitted LATEX file written using the
journal’s own LATEX class file. The referee commented upon but did not object to
the paper’s formality. The paper was rejected based on the referee’s belief that
it contained no new results. The program has also been used to check student
proofs in an introductory discrete mathematics class. The parser is currently
being used to check the syntax of a comprehensive presentation of Morse’s work
on logic, set theory and analysis, edited by the second author.

2 Morse-style Formalism

In this section we describe the basic Morse formalism. We show how the language
is generated by the author’s definitions, by way of basic forms and signatures.
Morse’s goal was to be completely formal and yet as convenient and readable as
possible. Besides Morse’s book [6], the Ph.D. dissertations of the authors [7] [1],
the Ph.D. dissertation of Morse’s student Robert Arnold [3], an article on the
authors’ logic [2], and a long article by Hewittt Kenyon and Morse on abstract
measure-type derivatives [5] have all been written in Morse-style formalism.

2.1 Basic Forms

One of Morse’s basic notions of mathematical language is that it is generated by
an author’s definitions, or more precisely, the left sides of those definitions. These
are called basic forms. We also allow primitive or undefined forms as basic forms.
Thus in set theory we might have as basic forms the primitive form ‘(x ∈ y)’,
the defined form ‘(x ∩ y)’ resulting from a definition such as

((x ∩ y) = {z : (z ∈ x ∧ z ∈ y)})

and many more as well. This kind of mathematical notation is perfectly standard.
On the other hand standard notation which contains bound variables is often
introduced using forms with function notation mixed in such as

limx → a f(x)

Morse’s replaces the unsatisfactory function notation ‘f(x)’ with what he calls
a schematic expression, ‘ux’. Here the symbol ‘u’ is a called schemator, which

is essentially a second order function symbol1 which is allowed only free occur-
rences. With a schematic expression carrying the bound variable ‘x’ we can then
define the following basic form:

limx → a ux

using a definite description and the conventional ǫ - δ approach. With this ex-
ample in view we can begin to understand the syntactic treatment of bound
variables in a Morse language. In particular we have by agreement that

1. A variable is free in a basic form if and only if it occurs in it at most once.
2. A variable is bound in a basic form if and only if it occurs in it at least twice.
3. The scope of a bound variable in a basic form consists of all the schematic

expressions in which it appears.

Thus in the limit form above, ‘a’ is free, ‘x’ is bound, and the schematic express-
sion ‘ux’ defines the scope of the bound variable ‘x’.

Defining the roles of the variables in the basic form in this very general way
allows for considerable freedom in the choice of expressions which are to be used
as basic forms. In particular we see the purpose of this generality is to allow
latitude to an author, by eliminating as many arbitrary constraints as possible.

2.2 Symbols

The limit form introduced above contains the constant symbols ‘lim’ and ‘→’,
the variables ‘x’ and ‘a’, and the schemator ‘u’. The variables ‘x’ and ‘a’ are
used to denote objects and are terms. In addition variables are needed which
are formulas and denote sentences: ‘p’, ‘q’, etc. Using them we may form logical
expressions such (p ∧ q) for conjunction. Such variables are called sentential

variables to distinguish them from ordinary variables such as ‘x’ and ‘a’ which
are also called object variables.

Similarly schematic expressions are needed which are formulas as well as
those such as ‘ux’ which are terms. We further qualify the description of ‘u’ as a
term schemator and introduce formula schemators such as ‘p’ and ‘q′’. We thus
have the predicate expressions ‘px’ and ‘q′xy’ which are formulas. These occur
for example in basic forms quantification ‘∀x px’, ‘∀x, y q′xy’, etc.

To summarize we may describe our set of symbols Σ as

Σ = C ∪ V ∪ Q ∪ U ∪ P

where:

– C is the set of constants
– V is the set of object variables
– Q is the set of sentential variables

1 The latter usage is somewhat unfortunate due to its possible confusiton with a
mathematical function which is a set of ordered pairs.

– U is the set of term schemators
– P is the set of formula schemators

These symbols make up the actual expressions of the language and and there-
fore constitute the set of terminal symbols of the grammar.

To build a context-free grammar for any Morse language four non-terminal
symbols suffice

N = {‘S’, ‘F ’, ‘T ’, ‘V ’},2

using ‘S’ for “start,” ‘F ’ for “formula,” ‘T ’ for “term,” and ‘V ’ for “variable.”

2.3 Signatures

Before describing the production rules of the grammar we need to build the term
and formula signatures.

To obtain the signature of a schematic expression replace each variable by
‘T ’.

To obtain the signature of a basic form replace

1. Each free variable by ‘T ’.
2. Each sentential variable by ‘F ’.
3. Each schematic expression which is a term by ‘T ’.
4. Each schematic expression which is a formula by ‘F ’.
5. Each remaining variable by ‘V ’.

Since both basic forms and schematic expressions may be either terms or
formulas we obtain a set of term signatures ST and a set of formula signatures

SF . For example we have the following signatures of several previously mentioned
basic forms and schematic expressions.

Expression Signature
limx → a ux limV → T T

ux uT
(p ∧ q) (F ∧ F)
p′xy p′TT
(x ∈ y) (T ∈ T)
∀x px ∀V F

The first two of these are term signatures while the remaining four are formula
signatures.

We begin by describing a Morse-like grammar as a context-free grammar.3

2 Because the non-terminal symbols must be distinct from the terminal symbols, we
imagine, for the purposes of this discussion, that these four symbols are not among
the symobls of the mathematical language.

3 Using a context-free grammar to describe a Morse language of necessity produces
anamolous formulas with repeated bound variables such as ‘∀x, x q′xx’. This requires
either modifying BF 3. in section 2.5 so as to allow such forms to be defined, or
leaving them inferentially stranded.

2.4 Context-Free Grammars

The context-free grammar (N,Σ,R, S) generates the language, where N , Σ, and
S are as defined in section 2.2 and R is the set of all the following production
rules:

1. S → T

2. S → F

3. T → t, for each t ∈ ST

4. F → f , for each f ∈ SF

5. V → v, for each v ∈ V
6. F → q, for each q ∈ Q
7. T → V

The terms of the language are generated by the grammar (N,Σ,R, T), and
the formulas by (N,Σ,R, F).

The simplicity of this prescription for the generation of a language makes
it clear how ProofCheck is able to parse mathematical text which is generated
almost at will by the author.

2.5 Rules for Basic Forms

Although basic forms may be constructed very freely, some restrictions are nec-
essary. The following rules are imposed:

BF 1. No schemator or sentential variable may occur more than once in
a basic form.
BF 2. Every occurrence of a schemator in a basic form is as the initial
symbol of a schematic expression.
BF 3. An object variable occurring in a basic form must occur exactly
once not within some schematic expression.

A constant which is the initial symbol of some basic form is called an
introductor. A rule which is needed to show that the language is unam-
biguous and has the prefix property, that no term of formula is the prefix
of another, is as follows.

BF 4. If s and s′ are signatures of f and f ′ respectively where f and f ′

are distinct and p is the longest shared prefix of s and s′, then p is not
s nor is it the case that p is followed in s by an introductor and in s′ by
a non-terminal symbol ‘F’,‘T’, or ‘V’.

2.6 Tempering the Formalism

The fact that ProofCheck works depends on several modifications of a strict
literal implementation of the above formalism. We mention what we believe are
the most important of these.

Infix Notation and Precedence Standard infix notation uses operator prece-
dence to parse a formula such as (p ∧ q → r) as ((p ∧ q) → r). Reconciling this
common practice with a definition-based grammar requires that definitions such
as

((p ∧ q → r)↔((p ∧ q) → r))

be allowed to have an “implicit” status or be generated by a definitional scheme.
ProofCheck’s parser, is actually a hybrid of a left-to right recursive parser

which handles explicitly defined basic forms and an infix parser which kicks in
whenever an introductory left parenthesis is encountered. Default precedence
values are assigned for some standard operators, but these may be changed and
precedence for new operators may be set at will by the user.

Default behavior is also built in for operators having the “verbal” precedence
value so that, for example, (a, b ∈ c ⊂ d) is parsed as (a ∈ c ∧ b ∈ c ∧ c ⊂ d)

Scope Notation Bound variable forms whose definition has either of the forms
‘
⋂
x; px ux’ or ‘Thex px’ (whatever the initial symbol) has automatically ren-

ders varied scope notations such as ‘
⋂
x ∈ A ∪B ux’ or ‘Thex > 0 (x · x = 4)’.

Polyabbreviations Many notes in checked proofs consist of single formulas
which are in fact abbreviations of several. For example a formula such as:

(p → q

→ r)
used as a note in a proof is taken as an abbreviation of the following three
formulas:

(p → q)

(q → r)

(p → r)
The first two of these are called delta goals and the third is called a sigma

goal. Each line of a multi-line proof represents a delta goal and may be justified
by a right-hand marginal note. In general a multi-line proof spanning n lines
generates n delta goals and (n− 1) sigma goals. Sigma goals must of course be
checked as well as delta goals.

Polyabbreviations may be nested as in the following example where a 5 line
note becomes 9 separate assertions:

Line Delta Goal Sigma Goals

(p → q (p → q)

→ r (q → r) (p → r)

→ a < b (r → a < b)

< c (r → b < c) (r → a < c)

(p → a < c)

→ s) (a < c → s) (p → s)

Subsequent reference to a multi-line note appeals to the final sigma goal only.

Derived Rules of Inference ProofCheck obtains rules of inference other than
these from a .tex file which by default is named rules.tex. One of the funda-
mental ideas on which ProofCheck is based is that this rules file needs to be big
in order for the program to behave reasonably.

Although there is nothing to prevent derived rules from embodying math-
ematics, ProofCheck is currently implemented using rules of inference which
embody only logic. The file which has been used to do the most proofs has
over 1500 rules. Most of these, far from obscure, are annoyingly transparent. An
example of a fairly short derived rule would be:

(p → (q → r)); p, q ⊢r

In order to provide a mechanism for preventing errors from creeping into the
rules of inference file, ProofCheck can be applied to derivations of derived rules.
For example, the rule just stated can be derived simply as follows

1. (p → (q → r)) ‡P

2. p ‡P

3. (q → r) ‡.1; .2

4. q ‡P

Q.E.D. .3; .4

The justification ’P’ claims that the note is a premise. This rule checks easily
provided that modus ponens, used to check note 3 and the Q.E.D., is in the rule
of inference file.

Deduction Theorems For standard logic and several forms of non-standard
logic there are deduction theorems, which state that if there is a deduction of a
formula q from a premise p then there is also a proof of the formula (p → q). A
constructive proof of this theorem yields a procedure for translating the original
deduction into a proof. But, if instead of using this procedure one just appeals
directly to the result of the theorem, then it becomes another rule of inference.

There are of course, derived rules of this nature as well. For example if the
negation of p can be deduced form p then there must be a proof of ¬p. There
are about 40 such derived rules of inference in ProofCheck’s main rules file.

Associative and Commutative Unification Gallier has designed a unifica-
tion algorithm called E-unification which recognizes equations in the unification
process. ProofCheck uses a unifier which recognizes commutativity and associa-
tivity of operators so specified by the user, in the presence of commutative and
associative theorems.

This feature of ProofCheck is of very great importance in shortening the
length of proofs. ProofCheck’s unifier is written to be quick and dirty, to succeed
or fail quickly. It is not complete and is not intended to be.

3 Parsing

3.1 Definitions

In any mathematical system there are a few primitive terms and formulas from
which all others are derived by definitions. Thus each basic form becomes known
to ProofCheck either by way of a declaration as primitive or by way of a defi-
nition. For the purpose of parsing, we do not need to know how one basic form
depends on another. It is enough to know for each basic form whether it is a
basic term or a basic formula. Thus for the purpose of parsing we could declare
each basic form as if it were primitive.

3.2 Parsing Setup

Several files are usually needed for parsing, beginning with the user’s TEX or
LATEX file. For the purpose of this discussion we will refer to this document
as “myfile.tex.” The parser will require information on basic forms presumed
by the user in his paper, such as the basic forms of logic and set theory. Such
presumed basic forms must be defined or declared in one or more auxiliary TEX
files. For the purpose of discussion we will refer to this as a single file called
“common.tex.” This file would be listed as an input file at the beginning of
myfile.tex. Special constants used in the basic forms of a file should be given
TeX definitions in an auxiliary file with the same name as the file but having an
extension ”.tdf” for TeX or ”.ldf” for LaTeX. This file may also contain primitive
form declarations, and other ProofCheck macros. It needs to be listed as an input
file at the beginning of <myfile>.tex. Other input ”.tdf” or ”.ldf” files may also
be needed including always ”utility.tdf”. Any other files whose definitions may
be relied upon, such as those in ”common.tex” should have their corresponding
”.tdf” or ”.ldf” files input at the beginning of <myfile>.tex. Thus for example,
assuming we are working in LaTeX, there would be three .ldf files listed as an
input: <myfile>.ldf, common.ldf and utility.ldf.

3.3 Parsing Execution

Once all the needed files are in place and have been TEX’d, the process of parsing
can begin. The user runs the parser on myfile.tex. The parser parses mathemat-
ical text found between TEX dollar signs or between double dollar sign displays.
The parser stops at the first error and reports back. After the user fixes that
error, the parser must be restarted from the beginning, until all errors are found
and fixed.

4 Checking

4.1 File Structure

Figure 1 shows the relationships among the primary checking files. The rect-
angular boxes represent TEX files whereas the unifier and the rule matcher are

Inference
Rules

Common
Notions

Operator
Properties

TEX or LATEX
Document

Unifier✫✪
✬✩✓✒ ✏✑Rule Matcher

Fig. 1. Main Proof Checking Files

Python files. The default name for the Inference Rules file is “rules.tex” and
the default name for the Common Notions file is “common.tex.” The current
compressed download file, which contains the current rules.tex and common.tex
files in use by the authors, is under 300 kB.

4.2 General Structure

In ProofCheck, a proof is a sequence of noted (i.e., numbered) steps, where each
step is a complete mathematical statement. Each step has one or more lines
with justification. A multi-line step involves transitive relationships such as with
equality, inequality, equivalence, or implication.

Each line within a step is checked individually using its justification which is
an end-of-line references to theorems and/or notes. Each of these checks is done
by submitting a formula and the formulas referred to in its justification to a rule
matcher which conducts a simple linear search of the list of inference rules. The
search must find a rule which unifies with the submitted formulas in order for
the check of the assertion to succeed.

4.3 Justifications and Rules of Inference

Whatever basic forms the user creates, the rules of syntax will determine which
variables are free in any basic form and which are bound. ProofCheck has rules
programitically built in for substituting for a free variable, for substituting for a
schematic expression, and for changing a bound variable. Other rules of inference
are left to the user and stored in a file called “rules.tex”. For the logic[2] used
by the authors, the only additional required rule of inference is modus ponens.

From a practical perspective, ProofCheck needs many additional rules of
inference, all of which are derived rules. While such derived rules could embody

mathematics, the authors have chosen to include rules that embody only logic.
There are currently about 1500 rules of inference in the rules.tex file used by the
authors.

When providing a justification for a line or step in ProofCheck, the user cites
which previous lines or results are needed to justify the step. There is a certain
syntax in how the results are cited. For example if it is a situation where there is
a major premise M and a minor premise m, then the justification is written as
M ;m. If two previous results A and B have equal standing, then the citation is
A,B. Rules of inference are never cited, but they will have the same syntactical
structure as the coding of the justification. Thus, the entry for modus ponens is
as follows:

(p → q) ;p ⊢ q

There is a major premise (p → q), a minor premise p, and a conclusion q.
Many references in justifications may be to facts that are not contained in

the user’s document. Such facts are kept in auxiliary files. The authors tend to
keep such facts in a single file called “common.tex”.

4.4 Deduction Theorem Rules

For most logics there are deductions theorems such as: If q can be deduced from
the premise p, then (p → q) is a theorem. A constructive proof of a deduction
theorem yields a procedure for constructing the proof of (p → q) from the
deduction of q from p. Assured of the possibility of such a construction, the prover
simply appeals directly to the deduction theorem. In this way, the deduction
theorem becomes another derived rule of inference. The rule.tex file used by the
authors includes about 40 such rules. For example, if ¬p can be deduced from
the premise p, then ¬p is a theorem.

4.5 Sample Proof: Reader View

The sample proof in figure 2 is taken from a development of the Von-Neuman
model of the natural numbers, ω, in which each natural number is the set of
the preceding natural numbers. The theorem asserts that if y is an element of a
natural number x then y is a subset of x.

The first line of the proof defines a set A. This note should be easy to read
except for possibly the quantifier notation and the classifier notation. The second
note translates the definition in note 1 into a bi-conditional which is much more
useful deductively. We often refer to steps that turn a definition into one or more
implications as “unwrapping” steps. Explicit inclusion of such unwrapping steps
is often key in getting a proof to check. The stage is set for an induction proof.

The theorem 4.7 referred to is just the standard induction theorem:
(∅ ∈ A ∧

∧
x ∈ A(x ∈ A → scsr x ∈ A) → ω ⊂ A)

where “scsr x” denotes the successor of x. Its two hypotheses are the base case
which in this proof is established in note 3 and the universalization of the in-
duction step established in note 9. This theorem is invoked in the justification

Theorem
4.8 (y ∈ x ∈ ω → y ⊂ x)

Proof: To prove this by induction we begin by letting A be the set of all x
such that each element y of x is a subset of x. We set
.1 (A ≡ Ex

∧
y ∈ x(y ⊂ x)) ‡S

It will follow from 4.7 that ω is a subset of A. First we unwrap .1.
.2 (x ∈ A↔

∧
y ∈ x(y ⊂ x) ∧ x ∈ U) ‡08.3;.1

Base Case (∅ ∈ A) .
.3 (∅ ∈ A) ‡.2;09.19,09.12

Induction Step (x ∈ A→ scsrx ∈ A) .

Given
.4 (x ∈ A) ‡G

We note first that
.5 (x ∈ U) ‡09.20;.4

.6
∧

y ∈ x(y ⊂ x) ‡.2;.4

Then we have
.7 (y ∈ scsrx→ y ∈ x ∨ y = x ‡3.7

→ y ⊂ x ∨ y = x ‡.6

→ y ⊂ x ‡011.14

→ y ⊂ scsrx) ‡011.10;(3.5;(09.20;.4))

So we can conclude that
.8 (scsrx ∈ A) ‡.2;(3.3;.5),(.7 U)

Hence
.9 (x ∈ A→ scsrx ∈ A) ‡.8 H .4

This completes the proof that
.10 (ω ⊂ A) ‡4.7;.3,(.9 U)

The conclusion now follows quickly.
.11 (y ∈ x ∧ x ∈ ω→ y ∈ x ∧ x ∈ A ‡011.7;.10

→ y ∈ x ∧
∧

y ∈ x(y ⊂ x) ‡.2

→ y ⊂ x)

Q.E.D. .11

Fig. 2. Sample Proof: DVI output

of note 10. In the proof of the induction step note 7 shows that any member y
of scsr x is a subset of scsr x. In note 8, we conclude that scsr x is in A. In note
9 we join the hypothesis from note 4 to the conclusion obtained in note 8.

Note 11 details the step from note 10 to the theorem which is short but
cannot be skipped. The “QED .11” at the end asserts that the theorem itself
follows from note 11.

4.6 Sample Proof: Author View

In Figure 3 we have the LATEX source code for the sample proof.
The first couple of lines of the sample proof begin explaining the proof. Since

they are not noted they do not contribute to the check. But neither do they get
in the way of the check. Unchecked text of any sort is admissible so long as it
does not interrupt mathematical expressions interfere with proof specification.

Note 4 opens a Given-Hence block and establishes (x ∈ A) as a working
hypothesis. Note 4 may be referred to only within this Given-Hence block. A
Hence justification may close more than one Given note, but each Given note
must be explicitly closed by a Hence justification. This Given-Hence block is
closed by note 9.

Note 7 is a multi-line note each line of which has a justification. A reference
to note 7 accesses the telescoped result of the note which is

(y ∈ scsr x → y ⊂ scsr x)

4.7 Checking a Line: An Example

Let us look at note 3 of the above proof is more detail. This note reads as follows:
.3 (∅ ∈ A) ‡.2;09.19,09.12
The justification refers to three things: previous note 2, and theorems 9.19

and 9.12 from common.tex. We now list these three things.
.2 (x ∈ A↔

∧
y ∈ x (y ⊂ x) ∧ x ∈ U)

9.19 (∅ ∈ U)
9.12

∧
x ∈ ∅ px

The justification has the form m;a,b. ProofCheck scans the rules.tex file look-
ing for rules of this form. Each rule having this form is tested to determine
whether it can be used to justify the given step. In this case, rule number 338
happens to do the trick. It goes as follows.

(r↔ p ∧ q);p,q ⊢r
If in note 2, we replace ‘x’ by ‘∅’ we get a modified note 2 as follows.

(∅ ∈ A↔
∧
y ∈ ∅ (y ⊂ ∅) ∧ ∅ ∈ U)

Next consider the major premise in the rule: (r↔ p ∧ q). If in this major

premise, we replace ‘r’ with ‘(∅ ∈ A)’, ‘p’ with ‘
∧
y ∈ ∅ (y ⊂ ∅)’, and ‘q’ with

‘(∅ ∈ U)’ the result, modulo removal of some parentheses, is modified note 2. The
same replacement for ‘q’ gives us 9.19. Notice that 9.12 is a general statement

\noindent{}Theorem

\prop 4.8 $(y \in x \in \omega \c y \subset x)$

\lineb Proof: To prove this by induction we begin by

letting A be the set of all x such that each element y of x

is a subset of x. We set

\notez 1 $(A \ident \setof x \Each y\in x(y\subset x))$ \By S

\linea It will follow from 4.7 that ω is a subset of A. First we unwrap .1.

\notez 2 $(x \in A \Iff \Each y \in x (y \subset x) \And x \in \U)$ \By 08.3;.1

\lineb Base Case $(\e \in A)$~.

\notez 3 $(\e \in A)$ \By .2;09.19,09.12

\lineb Induction Step $(x \in A \c \scsr x \in A)$~.

\linea Given

\notez 4 $(x \in A)$ \By G

\linea We note first that

\notez 5 $(x \in \U)$ \By 09.20;.4

\notez 6 $\Each y \in x(y \subset x)$\By .2;.4

\linea Then we have

\notez 7 $(y \in \scsr x \c y \in x \Or y = x$ \By 3.7

\lined $\c y \subset x \Or y = x$ \By .6

\lined $\c y \subset x $ \By 011.14

\lined $\c y \subset \scsr x)$ \By 011.10;(3.5;(09.20;.4))

\linea So we can conclude that

\notez 8 $(\scsr x \in A)$ \By .2;(3.3;.5),(.7 U)

\linea Hence

\notez 9 $(x \in A \c \scsr x \in A)$ \By .8 H .4

\linea This completes the proof that

\notez 10 $(\omega \subset A)$ \By 4.7;.3,(.9 U)

\linea The conclusion now follows quickly.

\notez 11 $(y \in x \And x \in \omega\c y \in x \And x \in A$ \By 011.7;.10

\lined $\c y \in x \And \Each y \in x(y \subset x)$ \By .2

\lined $\c y \subset x)$

\lineb \Bye .11

Fig. 3. Sample Proof: LATEX Input

involving a schematic expression. No matter what predicate replaces ‘px’, for
each x in the empty set, that predicate is (vacuously) true for x. First we make
a change of bound variable in 9.12 so that it reads

∧
y ∈ ∅ py.

Next we replace ‘py’ with ‘(y ⊂ ∅)’ which gives

∧
y ∈ ∅ (y ⊂ ∅).

This is the result of replacing ‘p’ in the rule. Therefore we have the major premise,
and 9.19 and 9.12 are the two minor premises. Thus this rule allows us to justify
the conclusion r.

(∅ ∈ A).

5 ProofCheck Characteristics and Issues

5.1 Checking Derived Rules of Inference

The main rules file used by the authors contains over 1500 rules of inference.
All but a handful of these rules are derived rules, with most of them being
annoyingly transpararent. The following is an example of such a rule.

(p → (q → r));p,q ⊢r

ProofCheck may be used to verify the derivation of derived rules. A derivation
for the above rule goes as follows.

.1 (p → (q → r)) ‡P

.2 p ‡P

.3 (q → r) ‡.1; .2

.4 q ‡P

Q.E.D. .3; .4

The justification ’P’ claims that the note is a premise. This rule checks easily
provided that modus ponens is in the rule of inference file.

5.2 Associative and Commutative Unification

Gallier designed a unification algorithm called E-unification which recognizes
equations in the unification process. ProofCheck uses a unifier which recognizes
commutativity and associativity of operators so specified by the user, in the
presence of commutative and associative theorems.

This feature of ProofCheck is of very great importance in shortening the
length of proofs. ProofCheck’s unifier is written to be quick and dirty, to succeed
or fail quickly.

5.3 Completeness

Based on its current design, it will always be possible to construct a correct
proof that ProofCheck will not check. Each rule involves reference to one or
more theorems. Suppose that the largest number of theorems referred to by any
rule in the rules file is n. Then a justification that references n + 1 theorems
cannot be matched to any rule in the file. In general, the unification algorithm
is designed with speed in mind rather than completeness. As the authors have
worked through proofs, additional rules of inference have frequently been added.
At this point, new rules are seldom added.

6 Conclusion

We find the parsing capability of ProofCheck to be an extremely valuable tool
in preparing manuscripts. Of course, that implies that the manuscripts contain
mathematical text conforming to the syntactical rules of ProofCheck.

ProofCheck has been used to check about 500 proofs, including about 400
proofs in a work-in-progress by the authors on combinatorial topology.

A checkable proof is usually at least twice as long as a usual proof and may
be as much as ten times as long. Even with the added length, a checkable proof
can be readily followed by a human reader familiar with the syntax. We are
seeking ways to shorten checkable proofs.

References

[1] Alps, R. A.: A Translation Algorithm for Morse Systems. Ph. D. Dissertation,
Northwestern University (1979)

[2] Alps, R. A., Neveln, R. C.: A Predicate Logic Based on Indefinite Descriptions and

Two Notions of Identity. Notre Dame Journal of Formal Logic (1981)
[3] Arnold, R. S.: Plus and Times. Ph.D. Dissertation, University of California Berkeley
(1969)

[4] Bledsoe, W. W., Gilbert, E. J.: Automatic Theorem Proof-Checking in Set Theory.
Sandia Labarotories Research Report SC-RR-67-525 (July 1967)

[5] Kenyon, H., Morse, A. P.,Web Derivatives. Memoirs of the American Mathematical
Society (1973)

[6] Morse, A. P.: A Theory of Sets Second Edition. Academic Press (1986)
[7] Neveln, R.C.: Basic Theory of Morse Languages. Ph.D. Dissertation, Northwestern
University (1975)

[8] Neveln, Bob, Alps, Bob: Writing and Checking Complete Proofs in TEX. TUGboat,
Volume 28 (2007), No. 1

[9] Neveln, Bob, Alps, Bob: Writing and Checking Complete Proofs in LATEX. TUGboat,
Volume 28 (2009), No. 2

A Web Environment for Geometry

Pedro Quaresma1,2, Vanda Santos2,3, and Milena Marić4

1 Department of Mathematics, University of Coimbra, Portugal
2 CISUC, Coimbra, Portugal

3 University National of Timor Lorosa’e, East-Timor
4 Faculty of Mathematics, University of Belgrade, Serbia

pedro@mat.uc.pt, vsantos7@gmail.com, milena.maric.f@gmail.com

Abstract. The Web Geometry Laboratory,WGL, is a blended-learning,
collaborative and adaptive, Web environment for geometry. It integrates
a well known dynamic geometry system.
In a collaborative session, exchange of geometrical and textual informa-
tion between the user engaged in the session is possible.
In a normal work session (stand-alone mode), all the geometric steps
done by the students are recorded, alongside the navigation information,
allowing, in a latter stage, their teachers to “play back” the students ses-
sions, using that info to assert the students level and adjust the teaching
strategies to each individual student.
Teachers can register and begin using one of the public servers, defin-
ing students, preparing materials to be released to the students, open
collaborative sessions, etc.
Using an action research methodology the WGL system is being devel-
oped, validated through case-studies, and further improved, in a cycle
where the implementation steps are intertwined with case studies.

Keywords: adaptive learning, collaborative learning, blended-learning,
dynamic geometry

1 The Web Geometry System

The Web Geometry Laboratory (v1.4) is a Web client/server application; the
server must be hosted by a Web-server (e.g. Apache server) the clients may use
any Web-browser available. The database (to keep: constructions; users infor-
mation, constructions permissions, etc.); the dynamic geometry system (DGS),
JavaScript applet; the synchronous and asynchronous interaction, are all imple-
mented using free cross-platform software, namely GeoGebra, PHP, JavaScript,
AJAX, JSON, JQuery and MySQL. Also Web-standards like HTML5, CSS style-
sheets and XML. The WGL is an internationalised system with the English lan-
guage as the default language and already localised to the Portuguese and Ser-
bian languages. It is an open-source system5, versions of the server are available
to be installed on Linux systems (or other systems through virtual machines).

5 http://webgeometrylab.sourceforge.net/

http://webgeometrylab.sourceforge.net/

The last version of WGL (1.4) introduces a total separation between develop-
ment branches: stable; testing; unstable (development), given a added stability
to the public (stable) server and allowing a public availability of the code. Apart
many small improvements the major new features are: the text chat; the ex-
change of geometric information between the group and individual windows and
the saving of the students work to their own scrapbook, when in a collaborative
sessions; the “record & play” of student’s sessions, i.e. the adaptive module (at a
prototype stage in [8]); the JavaScript/HTML5 DGS applet (instead of the Java
applet).

Two instances of the WGL server are available, one in Portugal,6 another in
Serbia.7 Users can log on to the system using the anonymous student-level user,
but without access to collaborative sessions. For more advanced use, a user must
register and then be confirmed by the administrator. During the last three years
these systems have been intensively used, e.g., for testing collaborative learning
in teaching geometryr [2,7,8,10]. Please feel free to contact the authors if you
want to use the WGL platform, accessing the platform as a teacher.

In any WGL server there are four distinct types of users: administrators,
teachers, students and anonymous visitors. The administrator(s) main role is
the administration of teachers. They have also access to the log-in information
off all users, information that can be used to streamline the server.

The teachers are privileged users in the sense that they will be capable of
defining other users; their students. In the beginning of each school year the
teachers should define all their classes, the students in each class and, if needed,
the aggregation of the students into groups

The students, each linked to a given teacher, are able to work in the platform,
performing tasks created by their teachers and/or pursuing their own work. The
students are unable to create other users.

Finally, the anonymous visitor is a student-type user, not linked to any
teacher and because of that, unable to participate in collaborative sessions. The
purpose of this type of user is solely to allow unregistered users to test the WGL

platform.

There are two distinct modes for the students to interact with the WGL

system. The collaborative sessions and the regular (stand-alone) sessions. These
two distinct modes are controlled by the teachers. In a collaborative session the
students, working in groups, have some specific assignment to fulfil and they will
do it in a collaborative way, exchanging geometric and textual information to
reach the common goal. In a regular session the students will be working alone,
they can share constructions with the other users of the platform but all this
exchange of information will be asynchronous.

6 http://hilbert.mat.uc.pt/WebGeometryLab/
7 http://jason.matf.bg.ac.rs/wgl/

http://hilbert.mat.uc.pt/WebGeometryLab/
http://jason.matf.bg.ac.rs/wgl/

2 The Collaborative Module

Planning a collaborative working session the teacher has to decide how to group
the students and the design of the tasks to be solved collaboratively, i.e., prepare
a set of geometric constructions, starting points for tasks to be completed during
the class; illustrative cases; etc.

In a WGL collaborative session the students will solve the tasks proposed
by their teachers, being able to exchange geometric and textual information,
producing the geometric constructions in a collaborative fashion.

The students engaged in a collaborative session will always be in working
groups, with access to the material prepared by the teacher and with access to
two DGS applets. One of those DGS applets is for their own work, the other is
where the group construction is being done. The group-construction is shared
by all the members of a given group, one of the students will have the lock
over the construction, all the other group members will see the work being done
(synchronised every 20s). At any given moment the student can release the lock,
which can be claimed by any student in the group.

At the same time, the students has their own work-space, this can be used
to: follow the work that is being done by the group representative; develop their
own constructions; to anticipate the group construction; to develop auxiliary
constructions. In this work-space the saving of the work being done is the re-
sponsibility of the student.

The students have the possibility of exchange constructions between DGS
workspace windows. The students without the lock should be able to “import”
the group construction to his/her own work-space. The student with the lock
adds to that, the possibility of exporting the construction to the group work-
space. A chat is provided to allow the exchange of short messages between all
the members of the group, including the teacher.

Apart from being responsible for setting the collaborative session and being
able to assess its results at the end, the teacher has also access to a DGS work-
space window where he/she can follow the work of all the groups and all the
individual students in each group.

3 The Adaptive Module

To be able to build individual student’s profiles and/or individual learning paths,
the system collects information about the student’s interactions when in the
stand-alone mode, i.e., in a regular work session.

The system records navigation and also geometric information for each stu-
dent. The navigation information is a plain list of all the pages visited with enter
and exit time-stamps. The geometric information is recorded when the student
is using the DGS applet, using JavaScript listeners of the DGS application pro-
gramming interface. We record every step done by the students.

At a later stage the student’s teacher is able to see the work done by the
student, play step by step, play in a regular speed, play in a fast forward fashion.

In this way the teacher can analyse the path used by the students to solve a
given task, getting information that can be used to assert the student’s van
Hiele level [1].

4 Access to the System

The WGL public servers can be used by any interested teacher. The Interna-
tional/Portuguese server is http://hilbert.mat.uc.pt/WebGeometryLab, the
Serbian server is http://jason.matf.bg.ac.rs/wgl. After registration (sub-
ject to validation) a teacher can create classes and use the system as a geometry
laboratory or as platform for homework tasks. In a stand-alone fashion or in
collaborative sessions.

We performed two different set of studies, one in Portugal, in classroom
mode, and another in Serbia, in remote access mode8. The first set of studies
was done using WGL version 1.2, still without the group-wise communication
channel (chat). The second set of studies were done using WGL version 1.3, al-
ready with the chat communication channel, among other developments done in
the platform. The platform was positively received by teachers and students, im-
proving their learning experience [10]. The case-studies were/are used to improve
the system but also to publicise the system, training teachers in its use.

A forum (phpBB forum) is provided to allow the exchange of information
between users.

5 Conclusions and Future Work

Related Systems There are several DGS available (see [11] for a comprehensive
list) but none of them defines an environment where the DGS is integrated
into a learning platform with collaborative and adaptive features. In [5,6,9] we
can find accounts of DGSs and geometric automated theorem provers (GATPs)
integration and the integration of those tools in learning environments but always
partial integrations not building any kind of collaborative, adaptive blended-
learning platform. Some learning environments in the area of geometry have
been developed, e.g. Tabulae [3] and GeoThink [4]. The WGL distinguishes itself
relying on an external DGS, allowing in this way to possess a full fledged DGS,
well known by its users and supported by its developers. The well grounded
permissions system and the capability that this opens for a personalised contact
with the platform, is also something in favour of WGL. The many case-studies
already conducted, validating the WGL goals, and the internationalisation, i.e.
the ability to receive translations into different languages (Tabulæ lacks this
feature), are also positive points for WGL.

8 Web Geometry Laboratory: Case Studies in Portugal and Serbia, submitted to Edu-
cational Technology Research and Development, May 2015

http://hilbert.mat.uc.pt/WebGeometryLab
http://jason.matf.bg.ac.rs/wgl

Conclusions and Future Work At the moment the adaptive module only collects
the student’s information and allow the teachers to “play” that information. A
first step ahead, already planned, will give the teachers the possibility of building
students profiles or individualised learning paths. A second, more ambitious,
step would give the system some capabilities of automatic construction of those
profiles and/or learning paths.

A second development planned is the integration of a GATP. To be able to
provide a formal validation of geometric properties, e.g. “two lines are perpendic-

ular, because . . . ” and also to support the automatic or semi-automatic adaptive
features, e.g. one-step guidance, formal reasoning and visual proofs.

TheWeb Geometry Laboratory is a blended-learning, collaborative, adaptive,
Web environment for geometry already being used by teachers in Portugal and
Serbia and we expect that its user base can grown not only in those countries
but also in other countries.

Acknowledgments

The first author is partially supported by the iCIS project (CENTRO-07-ST24-
FEDER-002003), co-financed by QREN, in the scope of the Mais Centro Pro-
gram and European Union’s FEDER.

References

1. Mary L. Crowley. The van Hiele Model of the Development of Geometric Thought.
Learning and Teaching Geometry, K12, Yearbook of the National Council of Teach-
ers of Mathematics, chapter 1, pages 9–23. National Council of Teachers of Math-
ematics, Reston, VA, USA, 1987.

2. Milena Marić. The Web Geometry Laboratory - mogućnosti i primene. In Ko-
relacija matematike sa drugim nastavnim predmetima, pages 248–257, Pula, Croa-
tia, 2013.

3. Thiago Guimaraes Moraes, Flávia Maria Santoro, and Marcos R.S. Borges. Tab-
ulæ: educational groupware for learning geometry. In Advanced Learning Tech-
nologies, 2005. ICALT 2005. Fifth IEEE International Conference on, pages 750
– 754, july 2005.

4. R Moriyn, F Saiz, and M Mora. GeoThink: An Environment for Guided Collabo-
rative Learning of Geometry, volume 4 of Nuevas Ideas en Informática Educativa,
pages 198–206. J. Snchez (ed), Santiago de Chile, 2008.

5. Pedro Quaresma and Predrag Janičić. Integrating dynamic geometry software, de-
duction systems, and theorem repositories. Mathematical Knowledge Management,
volume 4108 of LNAI, pages 280–294. Springer, 2006.

6. Pedro Quaresma and Predrag Janičić. GeoThms – a Web System for Eu-
clidean constructive geometry. Electronic Notes in Theoretical Computer Science,
174(2):35 – 48, 2007.

7. Pedro Quaresma, Vanda Santos, and Seifeddine Bouallegue. The Web Geometry
Laboratory project. In CICM 2013, volume 7961 of LNAI, pages 364–368. Springer,
2013.

8. Pedro Quaresma, Vanda Santos, and Juan Moral. Reproducing a geometric work-
ing session. Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops
and Work in Progress track at CICM, number 1186 in CEUR Workshop Proceed-
ings, Aachen, 2014.

9. Vanda Santos and Pedro Quaresma. eLearning course for Euclidean Geometry.
Proceedings of the 8th IEEE International Conference on Advanced Learning Tech-
nologies, July 1st- July 5th, 2008, Santander, Cantabria, Spain, pages 387–388,
2008.

10. Vanda Santos and Pedro Quaresma. Collaborative environment for geometry. 2nd
Experiment@ International Conference (exp.at’13), 2013, pages 42 – 46. IEEEX-
plore, Sept. 2013. INSPEC Accession Number: 14027552.

11. Wikipedia. List of interactive geometry software. http://en.wikipedia.org/

wiki/List_of_interactive_geometry_software, (last accessed, 2015-04-07).

http://en.wikipedia.org/wiki/List_of_interactive_geometry_software
http://en.wikipedia.org/wiki/List_of_interactive_geometry_software

Automatic and Transparent Transfer of

Theorems along Isomorphisms

in the Coq Proof Assistant

Theo Zimmermann1 and Hugo Herbelin2

1 École Normale Supérieure, Paris, France
theo.zimmermann@ens.fr

2 Inria Paris-Rocquencourt, Paris, France
hugo.herbelin@inria.fr

Abstract. In mathematics, it is common practice to have several con-
structions for the same objects. Mathematicians will identify them mod-
ulo isomorphism and will not worry later on which construction they use,
as theorems proved for one construction will be valid for all.

When working with proof assistants, it is also common to see several
data-types representing the same objects. This work aims at making the
use of several isomorphic constructions as simple and as transparent as
it can be done informally in mathematics. This requires inferring auto-
matically the missing proof-steps.

We are designing an algorithm which finds and fills these missing proof-
steps and we are implementing it as a plugin for Coq3.

1 Introduction

With examples such as the well-known relation between linear maps and matri-
ces, the various constructions of real numbers (equivalence classes of Cauchy se-
quences, Dedekind cuts, infinite sequences of digits, subset of complex numbers),
we see that there are a great many cases when identifying several constructions
of the same objects can be useful in mathematics. In particular, proofs are then
done on the most convenient one but theorems apply to all.

In formal systems like Coq [3], a canonical example is the various construc-
tions available for natural numbers. The most natural construction and the clos-
est to the mathematical view is unary (0, S 0, S (S 0) and so on) while the more
efficient binary construction is closest to what is available in most programming
languages.

When several constructions coexist, they often share an axiomatic represen-
tation, abstracting away from the internal details. In Coq, it is possible to do
proofs directly on the axiomatic representation thanks to the module and func-
tor system [1]. While this has the advantage of factoring proofs, it also makes

3 This plugin introduces a new tactic called exact modulo. Its most recent version is
available on the web at https://github.com/Zimmi48/transfer.

the proof harder as it does not allow taking advantage of the specifics of the
implementation.

The purpose of this work is to make easy to transport theorems to all isomor-
phic constructions even when the proof relies on one particular such construction.
In an informal setting, the mathematician would declare that “we can identify
the two structures” once she has proved they were isomorphic and would pro-
ceed from there. Our goal is to justify that claim because it will be that missing
justification that the proof checker will ask for. Moreover, we need to determine
when this justification is missing and insert it automatically.

Although we focus on isomorphic structures in our description of the prob-
lem and in our examples, we want to emphasize that we thrive to be as general
as possible and require as little as possible to allow the automatic transfer of a
theorem. Sometimes an isomorphism is required but sometimes a weaker corre-
spondence is sufficient. Our algorithm will typically allow the following transfer:

Example 1. Take two sets A and A′. If we have the following result on the first
set:

Axiom 1 (A is empty).
∀x ∈ A,⊥ .

then a surjective function f : A → A′ is all we need to transfer the result and
get:

Theorem 1 (A’ is empty).

∀x′ ∈ A′,⊥ .

Here is the complete corresponding Coq development (using our plugin –
although in that case, it is extremely easy to build the proof by hand):

Parameter A A’ : Set.

Axiom emptyA : ∀ x : A, False.

Parameter f : A → A’.

Parameter g : A’ → A.

Axiom surjf : ∀ x’ : A’, f (g x’) = x’.

Declare Surjection f by (g, surjf).

Theorem emptyA’ : ∀ x’ : A’, False.

exact modulo emptyA.

Qed.

In the remainder of this text, we will start by presenting our current algorithm
which is able to transfer a limited but already interesting set of theorems. Then,
we will detail our ideas to generalize it. Finally, we will compare our approach
to previous related works.

2 How to Transfer a Theorem

To start, we are limiting ourselves to transferring first-order formulas containing
only universal quantifiers, implication and relations.

2.1 User-provided declarations

We only require from the user to provide a set of surjective functions between
related data-types, along with a proof of surjectivity, and transfer lemmas. That
is, we can relate two data-types A and A′ by producing a function f : A → A′

and a proof that f is surjective. To ease our task, we will require that the proof
that f is surjective be given by producing a right-inverse4 g and a proof that

∀x′ ∈ A′, f(g(x′)) = x′ .

If the user wishes to transfer a relation R ∈ A × A × . . . × A to a relation
R′ ∈ A′ ×A′ × . . .×A′ , she must provide a transfer lemma of the form

∀x1 . . . xn ∈ A,R(x1, . . . , xn) ⇒ R′(f(x1), . . . , f(xn))

where f is called the transfer function between R and R′.
The declared surjections and transfer lemmas will be stored in tables (maps).

A given surjection can be retrieved by looking for a pair of data-types while a
given transfer lemma can be retrieved by looking for a pair of relations. There
can be only one stored item for each key which prevents defining several distinct
isomorphisms between two structures.

Example 2 shows how this is enough for transferring interesting theorems
from one data-type to another.

Example 2. Suppose we are given two data-types to represent N, called nat and
N together with two relations ≤nat and ≤N.

We know nothing of their implementation but we are also given two functions
N.to nat : N → nat and N.of nat : nat → N and the four accompanying axioms:

Axiom 2 (Surjectivity of N.to nat).

∀x ∈ nat,N.to nat(N.of nat(x)) = x .

Axiom 3 (Surjectivity of N.of nat).

∀x′ ∈ N,N.of nat(N.to nat(x′)) = x′ .

Axiom 4 (Transfer from ≤N to ≤nat by N.to nat).

∀x′, y′ ∈ N, x′ ≤N y′ ⇒ N.to nat(x′) ≤nat N.to nat(y′) .

Axiom 5 (Transfer from ≤nat to ≤N by N.of nat).

∀x, y ∈ nat, x ≤nat y ⇒ N.of nat(x) ≤N N.of nat(y) .

Finally, we are given the following result to transfer:

4 In other words, using terminology of category theory, we ask that g be a section of
f and f be a retraction of g.

Axiom 6 (Transitivity of ≤nat).

∀x, y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z .

All these results enable us indeed to transfer Axiom 6 into Theorem 6.

Theorem 6 (Transitivity of ≤N).

∀x′, y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

Proof. Let x′, y′, z′ ∈ N and assume that the following two hypotheses hold:

x′ ≤N y′ , (1)

y′ ≤N z′ . (2)

From (1) (respectively (2)) and Axiom 4, we draw

N.to nat(x′) ≤nat N.to nat(y′) , (3)

N.to nat(y′) ≤nat N.to nat(z′) . (4)

We can now apply Axiom 6 to N.to nat(x′), N.to nat(y′) and N.to nat(z′) and
conclude

N.to nat(x′) ≤nat N.to nat(z′) . (5)

We then apply Axiom 5 to get

N.of nat(N.to nat(x′)) ≤N N.of nat(N.to nat(z′)) . (6)

That is (rewriting with Axiom 3):

x′ ≤N z′ . (7)

⊓⊔

You will have noticed that Axiom 2 has not been useful here. It would have
been if there had been a quantification to transfer inside one of the hypotheses.
This suggests a similar example where Axiom 2 would not hold, thus where there
would be no isomorphism between the two related data-types. Such an example
is provided in the repository containing the plugin: we transfer various theorems
(such as transitivity of ≤) from Z to N.

2.2 Preliminaries in type-theory-based logic

Understanding the proposed algorithm will not require much knowledge about
the internals of Coq:

– Dependent products are the way in which the Calculus of Inductive Con-
structions [3, Ch. 4], the logical base of Coq, models both universal quantifi-
cation and implication. The implication is just the degenerate non-dependent
case, i.e. A ⇒ B is just an abbreviation for ∀x : A,B when x does not appear
in B.

– In the Calculus of Inductive Constructions as well as in any other type-
theory-based logic, proofs can be viewed as programs, and in particular the
proof ρA⇒B of an implication A ⇒ B can be viewed as a function that takes
a proof ρA of A as argument and produces a proof ρA⇒B(ρA) of B.

2.3 The algorithm

Algorithm 1 takes as input two formulas (called theorem and goal) differing only
in the data-types that are quantified over and in the relations they contain, as
well as a proof of theorem. It outputs a proof of goal provided that the differences
between the two formulas all correspond to previously declared surjections and
transfer lemmas.

The algorithm is recursive over the structure of the two formulas (which must
be the same). There are two main cases: when the formulas are atoms (i.e. in
our case, relations applied to arguments) or dependent products.

You will have noticed, at line 25 of Algorithm 1, the strange choice of substi-
tuting x′ with f(g(x′)) only in covariant places. As x′ = f(g(x′)), we could have
done the substitution wherever we liked. We do it only in covariant places so that
the formulas in the recursive calls will have exactly the right form when reaching
the atomic case (relations). One can convince oneself that substituting in covari-
ant places is enough by observing what it gives on the last example (transitivity
of ≤N) while remembering that the right-hand side of an implication is covariant
while the left-hand side is contravariant.

We could add support for logical connectives such as ∧ and ∨ or the exis-
tential quantifier ∃ but as they play no specific role in the Calculus of Inductive
Constructions (unlike universal quantification and implication), we rather want
a more general way of treating any such addition. As for the negation ¬A, in
Coq it is defined as A ⇒ ⊥ so it is already supported provided we unfold its
definition first.

3 Generalizing

Algorithm 1 has quite a lot of limitations at the moment which we plan to lift.

Functions. So far we have considered only relations. Even though any function
can be expressed as a relation, this path would require a lot of preliminary
rewriting steps; thus it would be a lot more convenient to be able to transfer
functions directly. Given that relations are represented as functions to the special
sort Prop in Coq, what we need is a generalization where functions to any type,
as well as internal operators, would be supported.

New connectives. We want to be able to handle logical connectives such as ∧

and ∨ but also various other combinators and non-propositional functions. For
instance, we should be able to transfer theorems involving equality.

Other equivalence relations. Currently, Leibniz (structural) equality plays a spe-
cial role as it has to appear in the surjection lemmas. Leibniz equality has the
advantage of allowing rewriting in any subterm. But techniques have already
been devised [8] to allow rewriting with other equivalence relations and we plan
to inspire from them.

Algorithm 1 Transfer a Theorem

Precondition: In the environment Γ, F and F ′ are two well-defined formulas
and ρF is a proof of F .

Postcondition: ExactModulo(Γ, F, F ′, ρF) is a proof of F ′ in environment Γ or it
is a failure.

function ExactModulo(Γ, F, F ′, ρF)
if F = F ′ then

return ρF
5: else if F = R(t1, . . . , tn) and F ′ = R′(t′1, . . . , t

′

n) then
f ← transfer function between R and R′

⊲ return failure if it does not exist
ρtransfer ← proof of compatibility of f with respect to R and R′

for i← 1 to n do

10: if t′i 6= f(ti) then
return failure

return ρtransfer(t1, . . . , tn, ρF)
else if F = ∀x : A,B and F ′ = ∀x′ : A′, B′ then

Γ ← Γ, x′ : A′

15: t ← ExactModulo(Γ, A′, A, x′)
if t 6= failure then

ρrec ← ExactModulo(Γ, B,B′, ρF (t))
⊲ return failure if ρrec = failure

return λx′ : A′. ρrec
20: else

f ← surjection from A to A′ ⊲ return failure if it does not exist
g ← right-inverse of f
ρsurjection ← proof that g is a right-inverse of f
Bsubst ← B where x was replaced by g(x′)

25: B′

subst ← B′ where x′ was replaced by f(g(x′)) in covariant places
ρrec ← ExactModulo(Γ, Bsubst, B

′

subst, ρF (g(x
′)))

⊲ return failure if ρrec = failure
Now λx′ : A′. ρrec is a proof of ∀x′ : A′, B′

subst. With the help of ρsurjection
we can transform it into ρF ′ a proof of ∀x′ : A′, B′.

return ρF ′

30: else

return failure

No right-inverse. For simplicity, we have asked so far for proofs of surjectivity
which involved producing a right-inverse. This has a major drawback. Indeed,
surjectivity is equivalent to having a right-inverse only if we admit the Axiom
of Choice. We want our algorithm to be as general as possible, therefore we will
work to remove that requirement.

3.1 Generalizing Declarations

Transfer lemmas. The Coq Morphisms library5 introduces a new notion of
respectful morphisms for a binary homogeneous relation. We draw from [2] the
idea of using the generalized heterogeneous version for our transfer declarations.
Heterogeneous relations bring us the ability to relate objects from one data-type
with objects from another data-type.

We will note

(R ##> R’) f g := ∀ (x : X) (y : Y), R x y → R’ (f x) (g y) .

This can also be seen as a (commutative) diagram.

X Y

X ′ Y ′

R

f g

R′

It is easy to show that this corresponds precisely to a very general notion of
homomorphism that can be found in mathematics textbooks such as [7, Ch. 5.7].
The pair of mappings (f, g) is a homomorphism between the two “structures”
(X × Y,R) and (X ′ × Y ′, R′) if the following holds:

R ◦ g ⊆ f ◦R′

where ◦ is the relational composition, i.e.

∀x ∈ X, y′ ∈ Y ′, [(R ◦ g)(x, y′) ⇔ ∃y ∈ Y,R(x, y) ∧ g(y) = y′] ,

∀x ∈ X, y′ ∈ Y ′, [(f ◦R′)(x, y′) ⇔ ∃x′ ∈ Y, f(x) = x′ ∧R′(x′, y′)] .

It will be possible to declare all sorts of transfer lemmas thanks to the re-
spectful arrow as can be seen in the following example.

Example 3. Let us consider a heterogeneous binary relation natN relating ele-
ments of nat with elements of N. One possible definition would be:

Definition natN x x’ := N.of_nat x = x’.

Then, we can declare how to transfer various functions and relations:

5 The Coq Morphisms library is part of the work of Matthieu Sozeau [8] to generalize
rewriting for equivalence relations that are not Leibniz equality. Its documentation
is available online at https://coq.inria.fr/library/Coq.Classes.Morphisms.html.

Theorem le_transfer : (natN ##> natN ##> impl) le N.le.

where le represents ≤nat, N.le represents ≤N and impl is a relation corre-
sponding to the implication (also, note that ##> is right-associative). That is,
after unfolding the definitions of natN, ##> and impl:

Theorem le_transfer :

∀ (x : nat) (x’ : N), N.of_nat x = x’ →

∀ (y : nat) (y’ : N), N.of_nat y = y’ → le x y → N.le x’ y’.

Considering two new Boolean functions iszero_nat and iszero_N, we can
make explicit how they relate in the following way:

Theorem iszero_transfer : (natN ##> @eq bool) iszero_nat iszero_N.

where @eq bool is the Boolean equality.

Finally, considering two operations Nat.add and N.add:

Theorem plus_transf : (natN ##> natN ##> natN) Nat.add N.add.

Surjection lemmas. That very same idea of respectful morphisms can be used
to replace the surjection declarations we used so far. Just as we had replaced
the implication → by a new relation impl, we will use a new relation @all to
represent ∀ :

@all A (λ x : A, B) := ∀ x : A, B .

Any surjection declaration in the style of Sec. 2:

Declare Surjection f by (g, proof).

can be equivalently replaced by the following three declarations:

Theorem R_surj : ((R ##> impl) ##> impl) (@all A) (@all A’).

Theorem R_tot : ((R−1 ##> impl) ##> impl) (@all A’) (@all A).

Theorem R_func : (R ##> R ##> impl) (@eq A) (@eq A’).

where R x x’ := f x = x’ and R−1 x’ x := R x x’ .

The first declaration corresponds to the surjectivity of relation R (also called
right-totality). The second and third declaration express the fact that R is a
mapping. More precisely, the second declaration corresponds to the surjectivity
of the inverse relation, that is the (left-)totality of R. The third declaration
expresses the knowledge that R is functional (also called univalent in [7, Ch. 5.1]
or right-unique elsewhere).

The three declarations provide interesting “point-free” formulations of a re-
lation totality and unicity properties. Let us unfold two of them to give more
intuition on what they mean:

Theorem R_surj :

∀ P P’, (∀ (x : A) (x’ : A’), R x x’ → P x → P’ x’) →

(∀ x : A, P x) → ∀ x’ : A’, P’ x’.

Theorem R_func :

∀ (x : A) (x’ : A’), R x x’ →

∀ (y : A) (y’ : A’), R y y’ → x = y → x’ = y’.

We immediately see that R_func indeed expresses that R is functional (each
input has at most one output). As for R_surj, while it is clearly a neces-
sary condition for surjectivity, we will have to instantiate the theorem with
P = λ _ : A, True and P’ = λ x’ : A’, ∃ x : A, R x x’ to see that it is
sufficient.

We can already foresee two advantages of this new formulation of surjectivity
lemmas. First, it is more general as it will allow considering data-types which
are related by a non-functional or non-total relation. Second, we can already
imagine replacing @eq by any equivalence relation and @all by any bounded
quantification, thus allowing to relate two partial quotients and not only classic
data-types.

3.2 Transfer to the context

In [8], Matthieu Sozeau gives a set of inference rules to find where a rewrite can
occur and the proof that the rewrite is correct. Building the proof will sometimes
require prior declarations that some functions are respectful morphisms for some
homogeneous relations. For our purpose, we need to generalize these rules to
heterogeneous relations.

As before, we take a theorem and a goal as arguments and we must produce
a proof of thm → goal, that is impl thm goal. We borrow the notation

Γ ⊢ τ R
p τ ′

which means that given an environment Γ in which τ and τ ′ are well-defined, p
is a proof of R(τ, τ ′).

Initially, given a theorem Γ ⊢ τ and a goal Γ ⊢ τ ′, we want to derive a
judgment of the form:

Γ ⊢ τ impl
p τ ′

Rules. We give in Fig. 1 the rules to get to that judgment, adapted from [8].
We have dropped the Unify rule as it was used for rewriting but does not apply
in our case. To avoid unnecessary complexity, we have also chosen to drop the
Sub rule in a first version.

From these rules, we plan to derive a deterministic algorithm, which we will
implement and test.

We will now illustrate each of these rules by a few examples, taken from the
transfer of Axiom 6 (transitivity of ≤nat) to Theorem 6 (transitivity of ≤N).

p : R(τ, τ ′) ∈ Γ

Γ ⊢ τ R
p τ ′

Env
p : R(τ, τ ′) ∈ Tables

Γ ⊢ τ R
p τ ′

Table

Γ, x : τ1, x
′ : τ ′

1, H : R(x, x′) ⊢ τ2
S
p τ ′

2

Γ ⊢ λx : τ1.τ2
R ##> S

λx:τ1,x′:τ ′

1
,H:R(x,x′).p

λx′ : τ ′

1.τ
′

2

Lambda

Γ ⊢ f R ##> S
pf

f ′ Γ ⊢ e R
pe e′

Γ ⊢ f(e) S
pf (e,e′,pe)

f ′(e′)
App

Γ ⊢ @all τ1 (λx : τ1.τ2)
R
p @all τ ′

1 (λx′ : τ ′

1.τ
′

2)

Γ ⊢ ∀x : τ1, τ2 R
p ∀x′ : τ ′

1, τ
′

2

Forall

Γ ⊢ impl τ1 τ2
R
p impl τ ′

1 τ ′

2

Γ ⊢ τ1 → τ2 R
p τ ′

1 → τ ′

2

Arrow

Fig. 1. exact modulo inference rules.

Example 4. Initially, we want to find a judgment of the form

⊢ ∀x, y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl ∀x′, y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

By rule Forall, this reduces to

⊢ @all nat (λx : nat, ∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z)

impl @all N (λx′ : N, ∀y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′) .

By rule App, this reduces to

⊢ λx : nat, ∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

R λx′ : N, ∀y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ , (8)

⊢ @all nat R ##> impl @all N . (9)

Then (9) is solved by applying rule Table. We get R = natN ##> impl . Finally,
we can report the value of R in (8) and apply rule Lambda and thus our initial
problem reduces to

x : nat, x′ : N, H : natN x x′ ⊢∀y, z ∈ nat, x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl ∀y′, z′ ∈ N, x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

From now on,

Γ = x : nat, x′ : N, H : natN x x′,

y : nat, y′ : N, H1 : natN y y′,

z : nat, z′ : N, H2 : natN z z′ .

We now consider the problem of finding a judgment of the form

Γ ⊢ x ≤nat y ⇒ y ≤nat z ⇒ x ≤nat z

impl x′ ≤N y′ ⇒ y′ ≤N z′ ⇒ x′ ≤N z′ .

By rule Impl, this reduces to

Γ ⊢ impl (x ≤nat y) (y ≤nat z ⇒ x ≤nat z)

impl impl (x′ ≤N y′) (y′ ≤N z′ ⇒ x′ ≤N z′) .

By rule App, this reduces to

Γ ⊢ y ≤nat z ⇒ x ≤nat z
R y′ ≤N z′ ⇒ x′ ≤N z′ , (10)

Γ ⊢ impl (x ≤nat y)
R##>impl impl (x′ ≤N y′) . (11)

By rule App, (11) reduces again to

Γ ⊢ x ≤nat y
S x′ ≤N y′ , (12)

Γ ⊢ impl S##>R##>impl impl . (13)

We will make sure that the tables are pre-filled so that judgments such as (13)
can be solved with rule Table. In that case, we will get S = impl−1 and R =
impl . Now by rule App, (12) reduces to

Γ ⊢ y T y′ , (14)

Γ ⊢ le x T##>impl
−1

N.le x′ . (15)

Rule Env allows us to derive (14) with T = natN .
As for (15), it can be solved after a few more steps by using the knowledge

that (natN ##> natN ##> impl−1) le N.le, which is equivalent to (natN−1

##> natN−1 ##> impl) N.le le, which will be one of the user-provided transfer
lemmas (it corresponds to Axiom 4). Therefore, there only remains to solve (10)
in ways similar to this example.

4 Related work

4.1 Proof reuse

More than ten years ago, Nicolas Magaud [6] proposed an extension of Coq that
seemed to share our objectives. Notably, he was able to transfer all the theorems
that were, at the time, in the standard Arith library, from nat to N.

The approach was quite intricate because it was able to transfer proofs, and
not just theorems. Given two isomorphic data-types, one will be considered as
the origin type and the other one as the target type. The first step is to define
functions to model the origin constructors within the target type. Moreover, new

recursion operators behaving like the ones of the origin type are added to the
target type.

With such a projection of the origin type into the target type, it is easy to
project operators and relations. Proofs are transferred in the same way. The last
step is to establish extensional equality between projected operators and the
corresponding native operators of the target type.

While interesting, we do not need to take such a complicated path for our
objective which is only theorem reuse. Using Magaud’s approach requires much
more work in establishing the relations between the two data-types. Moreover,
our approach is more powerful in a sense: we can transfer properties between
two data-types even if we know nothing of their content and the transfer lemmas
where provided as axioms.

4.2 Algorithm reuse

A much more recent work by Cohen et al. [2] has been of much inspiration to
us. However, the focus is not the same. In the context of program verification,
the authors propose a general method for algorithm reuse through parametric-
ity when refining proof-oriented data-types into efficient computation-oriented
data-types. Parametricity then enables the automatic transfer of algorithm cor-
rectness proofs. Although they give this general method, they explain why they
do not provide a plugin. Our focus being on transparency and usability by math-
ematicians, we decided to create such a plugin.

An other inspiring characteristic of their work lies in that they typically al-
low refined types to contain more objects, including objects which would have
no meaning (no specification). Although we currently require precisely the op-
posite so as to be able to translate theorems stating properties for all elements,
including unicity properties, we could quite easily add support for bounded quan-
tification. Bounded quantification would be useful for transferring theorems from
a subset type to the corresponding elements of a larger type (for instance from
N to non-negative elements of Z). Similarly, the new way to declare links be-
tween two data-types presented in Sec. 3.1 makes it easy to use other equivalence
relations than just Leibniz equality.

4.3 Other works proposing a heterogeneous respectful arrow

While Cohen et al. [2] inspired us to use a generalized heterogeneous respectful
arrow to allow for more precise transfer declarations and remove the limitations
of Algorithm 1, there are many other (and sometimes older) works proposing
the same definition. One example of such a work is [4, Def. 13]. But this is not
surprising as we have remarked in Sec. 3.1 that this arrow just encodes for an
already existing mathematical notion of homomorphism.

Huffman and Kunčar [5] go further as they also show how the relational
unicity and totality properties can be expressed in terms of the respectful arrow.
They produced a Transfer package for Isabelle/HOL with comparable objec-
tives to ours, and their transfer tactic is based on a two-step algorithm sharing

many ideas with Matthieu Sozeau’s [8]. Nothing going as far as their Transfer
package has yet been created for Coq.

5 Conclusion

In this paper, we have shown how a simple algorithm can make use of a few
initial declarations to ease the reuse of results from one data-type to another.

As we improve our algorithm and become able to transfer more theorems,
we will still have a lot to do in order to make our plugin as simple-to-use as
possible. A first easy step will be to transform our exact modulo tactic into an
apply modulo tactic. Then, we will need to allow for compositionality in ways
similar to [2] and [5]. First, by allowing and handling transfer declarations for
parametrized types. Then, by finding paths from one type to another, even when
the relation between the two was not declared, but can be established by going
through a sequence of transfers.

We view this work as a little but quite interesting step in the enormous task
of making the use of a formal proof system as easy as a pen-and-paper proof.

Acknowledgments

The authors wish to thank the anonymous reviewers for their helpful comments.

References

1. Jacek Chrzaszcz. Implementing modules in the Coq system. In Theorem Proving

in Higher Order Logics, pages 270–286. Springer, 2003.
2. Cyril Cohen, Maxime Dénes, and Anders Mörtberg. Refinements for free! In Cer-

tified Programs and Proofs, pages 147–162. Springer, 2013.
3. Coq development team. The Coq proof assistant reference manual. Inria, 2015.

Version 8.5.
4. Peter V Homeier. A design structure for higher order quotients. In Theorem Proving

in Higher Order Logics, pages 130–146. Springer, 2005.
5. Brian Huffman and Ondřej Kunčar. Lifting and transfer: A modular design for quo-

tients in Isabelle/HOL. In Certified Programs and Proofs, pages 131–146. Springer,
2013.

6. Nicolas Magaud. Changing data representation within the Coq system. In Theorem

Proving in Higher Order Logics, pages 87–102. Springer, 2003.
7. Gunther Schmidt. Relational mathematics, volume 132 of Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, 2011.
8. Matthieu Sozeau. A new look at generalized rewriting in type theory. J. Formalized

Reasoning, 2(1):41–62, 2009.

	Auto-hyperlinking the Stacks Project
	A Web Environment for Geometry

