
A Web Interface for Isabelle: The Next Generation
Christoph Lüth and Martin Ring

Introduction

In the past years the role of web development has completely changed. Today,
with the finalization of the HTML5 standard in sight, it’s possible to create
complex, interactive and comfortable desktop-like user interfaces living in any
modern browser on a classic computer, a tablet or even a smartphone.

Web interfaces do not use much resources on the client side, are portable and
mobile and require no effort to set up and use. There can be no missing
requirements.

� Breaking new ground

These new possibilities lead to the idea of a next-generation user interface for
a contemporary interactive theorem prover.

Our question (and challenge) was: how far can we push that idea of combining
two completely different worlds?

Implementation

The basic system architecture is clear: we need a web server to connect with
Isabelle on one side, and with web browsers on the other side. Hence, the
questions to address are: Firstly, how to connect Isabelle with a web server,
and secondly, how to use a browser to edit Isabelle theory Files?

editor

user

server

isabelle

input

input

timeout reset 700ms

processing
...

syntax highlighting
error information
prover states

input

The single most important design constraint was the asynchronous
communication between server and browser

� System Architecture

Isabelle/
Scala

Isabelle/
ML

Play!

Session.scala

Document Model

Server

HTTP
Browser

Isabelle.coffee

Document Model

Editor

User

Websocket

File
System

� The Editor

The editor needs to be able to
display special symbols; perform
on-the-fly replacements; use
variable-width fonts; allow super-
and subscripts; and allow tooltips for
text spans. We extended the
CodeMirror editor and use the
MathJax fonts, which results in a
seamless editing environment for
mathematical notation on the web.

� Communication

The asynchronous document model
is implemented by two modules,
which run on the server and in the
browser respectively. They
communicate via WebSockets, using
a self-developed thin dynamically
typed communication layer, which
allows to call JS functions from
Scala nearly as if they were native,
and vice versa.

� A lot of players

Clide ...

• has a much richer user experience than previous web interfaces

• has a better rendering of mathematical notation than other interfaces

• equals them in terms of responsiveness

• is easier to set up and use

Web technology is ready for theorem proving! Try it here:

http://clide.informatik.uni-bremen.de

(Use a recent WebKit-based client)

Research supported by Contact: Christoph Lüth and Martin Ring
Cyber Physical Systems
DFKI Bremen

E-mail: {martin.ring,christoph.lueth}@dfki.de
Website: http://clide.informatik.uni-bremen.de


