
Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation
from Users’ Perspective

Walther Neuper

IICM, Institute for Computer Media,
University of Technology.

Graz, Austria

ThEdu: Theorem Proving Components
for Educational Software

at CICM, Bialystok, Poland
July 25, 2016

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Programmers’ View

Demonstration

Summary:
• Programming is painful presently . . .

• program syntax checked as Isabelle term
• rewrite-sets for execution compiled by hand

• . . . thus migration to Isabelle’s function package

• functional programs without input / output —
where comes user-interaction from ???

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Programmers’ View

Demonstration

Summary:
• Programming is painful presently . . .

• program syntax checked as Isabelle term
• rewrite-sets for execution compiled by hand

• . . . thus migration to Isabelle’s function package

• functional programs without input / output —
where comes user-interaction from ???

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Programmers’ View

Demonstration

Summary:
• Programming is painful presently . . .

• program syntax checked as Isabelle term
• rewrite-sets for execution compiled by hand

• . . . thus migration to Isabelle’s function package

• functional programs without input / output —
where comes user-interaction from ???

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Programmers’ View

Demonstration

Summary:
• Programming is painful presently . . .

• program syntax checked as Isabelle term
• rewrite-sets for execution compiled by hand

• . . . thus migration to Isabelle’s function package

• functional programs without input / output —
where comes user-interaction from ???

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Students’ View

Demonstration

Summary: Students require these services for learning . . .
1 check user input automatically, flexibly and reliably:

Input establishes a proof situation (for automated proving)
with respect to the logical context

2 give explanations on request by learners:
All underlying mathematics knowledge is transparent due to
the “LCF-paradigm” in Isabelle

3 propose a next step if learners get stuck:
“next-step-guidance” due to Lucas-Interpretation.

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Another program
with tactics ≈ break-points

. partial_function diffeq_2_mass_oscil (m, l_0, [c_1, c_2],
d, springs, dampers, sums) =

1 let
11 begin_parallel
1101 springs = Take springs “forces of springs”
111 parallel
1111 dampers = Take dampers “forces of dampers”
112 parallel
1121 sums = Take sums “mass times acceleration equals sum of all forces”
12 end_parallel
13 diffeq = Take sums “”
14 diffeq = Substitute [springs, dampers]
15 diffeq = Rewrite_Set normalise
16 diffeq = Rewrite_Set vectorify “switch to vector representation”
2 in
21 diffeq

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location interpretI: * location

* environment * environment

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

interpret

LI:

I: * location
* environment * environment

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

interpret

LI:

formula
or

tactic

I: * location
* environment * environment

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

LI:

formula
or

tactic

I: * location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

prove

LI:

formula
or

tactic

I: * location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

prove

LI:

formula
or

tactic

I:

computation

deduction

* location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

prove

LI:

formula
or

tactic

I:

computation

deduction

semantics of programming languages – settled!

* location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

prove

LI:

formula
or

tactic

I:

computation

deduction

semantics of programming languages – settled!

semantics of struct.derivations (R.J.Back) – settled!

* location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Lucas-Interpretation (LI)

program
location

* calculation

* theories
* context

interpret

prove

LI:

formula
or

tactic

I:

computation

deduction

semantics of programming languages – settled!

semantics of struct.derivations (R.J.Back) – settled!

?

* location
* environment

* context

* environment

* calculation

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

The Dialogue Module

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Summary

Lucas-Interpretation is a novel contribution, which

1 interprets a functional language
• “purely functional” no input / output: interaction −→ Pt.3
• programmer concerned with mathematics only
• TODO: embed into Isabelle’s function package

2 controls input / output as side-effects
• regards tactics as “break points” (like debugger)
• hands over control at tactics −→ Pt.3

3 delegates user-interaction
to a Dialogue Module:
• “dialogue authoring” by respective experts

(DialogRules)
• adaptive to courses
• adaptive to individual students UserModel

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Summary

Lucas-Interpretation is a novel contribution, which

1 interprets a functional language
• “purely functional” no input / output: interaction −→ Pt.3
• programmer concerned with mathematics only
• TODO: embed into Isabelle’s function package

2 controls input / output as side-effects
• regards tactics as “break points” (like debugger)
• hands over control at tactics −→ Pt.3

3 delegates user-interaction
to a Dialogue Module:
• “dialogue authoring” by respective experts

(DialogRules)
• adaptive to courses
• adaptive to individual students UserModel

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Summary

Lucas-Interpretation is a novel contribution, which

1 interprets a functional language
• “purely functional” no input / output: interaction −→ Pt.3
• programmer concerned with mathematics only
• TODO: embed into Isabelle’s function package

2 controls input / output as side-effects
• regards tactics as “break points” (like debugger)
• hands over control at tactics −→ Pt.3

3 delegates user-interaction
to a Dialogue Module:
• “dialogue authoring” by respective experts

(DialogRules)
• adaptive to courses
• adaptive to individual students UserModel

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Usability for Programmers

Programming in ISAC
• becomes comparable with Mathematica/Maple/. . .

if ISAC adopts Isabelle’s function package
• is embedded into mechanising mathematics, i.e.

• development of theories (definitions, laws, . . .)
• development of libraries of specifications
• development of verified Computer Algebra

• is separated from users’ interaction:
interaction is a side-effect managed by Lucas-Interpretation
• mathematicians focus mathematics
• interaction is covered by dialogue authors

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Outline

1 User’s Views
Demo: Programmers’ View
Demo: Students’ View

2 Lucas-Interpretation
The Language
The Interpreter
Where is Interaction from?
Summary

3 Conclusions for Users
Usability for Programmers
Self-explaning System for Students

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Self-explaning system . . .

. . . while step-wise applying a method (solving)
• during trial & error learning:

• feedback on input steps (formula | tactic)
• <next> step by system, if got stuck
• “next-step guidance” by dialogue component:

• suggest next step partially
• suggest next steps for selection
• auto-complete partial input

• in changing levels of abstraction:
• formal justification for each formula
• justification = meta-, formula = object-language
• another “meta-level”: instructions in program
• . . .

. . . while modelling and specifying an engineering
problem: −→ another talk

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Self-explaning system . . .

. . . while step-wise applying a method (solving)
• during trial & error learning:

• feedback on input steps (formula | tactic)
• <next> step by system, if got stuck
• “next-step guidance” by dialogue component:

• suggest next step partially
• suggest next steps for selection
• auto-complete partial input

• in changing levels of abstraction:
• formal justification for each formula
• justification = meta-, formula = object-language
• another “meta-level”: instructions in program
• . . .

. . . while modelling and specifying an engineering
problem: −→ another talk

Lucas-
Interpretation

Walther
Neuper

User’s Views
Programmers

Students

Lucas-
Interpretation
Language

Interpreter

Dialogue

Summary

Conclusions
Programmers

Students

Thank you for Attention!

F. Haftmann, A. Lochbihler & W. Schreiner.
Towards abstract and executable multivariate polynomials in
Isabelle.
Isabelle Workshop 2014, http://www.infsec.ethz.ch/
people/andreloc/publications/haftmann14iw.pdf.

http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf
http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf

	User's Views
	Demo: Programmers' View
	Demo: Students' View

	Lucas-Interpretation
	The Language
	The Interpreter
	Where is Interaction from?
	Summary

	Conclusions for Users
	Usability for Programmers
	Self-explaning System for Students

