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2012-2014 Egal

Proof Checker, Higher Order Tarski-Grothendieck Set Theory

2005-2007 Scunak
Proof Checker, Interactive Prover

Dependently Typed Set Theory, Pf Terms, Pf Irrelevance

early 1990s Math Student
Shouldn’t computers be able to do this?

mid 1990s
Otter (McCune)? Foundation? NBG (Quaife)?
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◮ Vα sets as of stage α (“von Neumann hierarchy”)
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◮ Vα sets as of stage α (“von Neumann hierarchy”)

◮ V0 = ∅

◮ Vβ+1 = P(Vβ)

◮ Vλ =
⋃

β<λ Vβ

◮ Y ⊆ Vα ↔ Y ∈ Vα+1

◮ Rank of Y is the least α such that Y ⊆ Vα.

◮ Vω is the hereditarily finite sets

◮ Vκ is a Grothendieck universe (satisfying ZF) if κ is
strongly inaccessable

◮ “Everything is a set.” E.g., pairs are sets:
(x , y) = {{x}, {x , y}}

◮ A model of, e.g., Tarski-Grothendieck is a kind of
“monster model” of mathematics.
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◮ Well, not everything is a set:

◮ The relation λxy .x ∈ y is not a set.

◮ The pairing operation λxy .(x , y) is not a set.
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◮ The relation λxy .x ∈ y is not a set.

◮ The pairing operation λxy .(x , y) is not a set.

◮ ι : sets

◮ ι → · · · → ι → o: predicates/classes

◮ ι → · · · → ι → ι: metafunctions
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I (Y ) = {I (x)|x ∈ Y } ∪ {∅}
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◮ Both operations can be defined by ∈-recursion.
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◮ Prove U(I (Y )) = Y for all sets Y .
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◮ Define an operation I on sets such that

I (Y ) = {I (x)|x ∈ Y } ∪ {∅}

◮ Define an operation U on sets such that

U(Y ) = {U(x)|x ∈ Y \ {∅}}

◮ Both operations can be defined by ∈-recursion.

◮ Prove U(I (Y )) = Y for all sets Y .

◮ Proof: ∈-induction.

◮ Goal: Formalize as a Mizar article.
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A Small Mathematical Development

◮ Define an operation I on sets such that

I (Y ) = {I (x)|x ∈ Y } ∪ {∅}

◮ Define an operation U on sets such that

U(Y ) = {U(x)|x ∈ Y \ {∅}}

◮ Both operations can be defined by ∈-recursion.

◮ Prove U(I (Y )) = Y for all sets Y .

◮ Proof: ∈-induction.

◮ Goal: Formalize as a Mizar article.

◮ Question: Is this already in the MML?
(Mizar Mathematical Library)
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Mizar proofs
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Searching the Library

◮ MPTP (Urban) – FOF TPTP version of the MML

◮ Primary purpose: help users automatically complete
Mizar proofs

◮ New HO version: – THF TPTP version of the MML
(135K props [thms, defs, type hierarchy,. . .])

◮ HO version can handle schemes and Fraenkel operators
(See MKM Talk)

◮ HO provers (e.g., Satallax) can help Mizar users

◮ Side effect: can search the THF version of the MML for
theorems of a certain form

◮ Satallax extended to search for “similar” theorems to a
conjecture

◮ Search for all theorems of the form

∀Y : set. ∗ (∗(Y )) = Y
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∈-induction: For every property P of sets,

(∀Y .(∀x ∈ Y .P(x)) → P(Y )) → ∀Y .P(Y )

In Mizar this needs to be a “scheme”:

◮ Is this already in the MML?

◮ Does it easily follow from the MML?
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◮ After the incorporating the previous development:
◮ ∈-induction would be known to be provable.
◮ U and I each would have a unique entry (of type ι → ι)

as a definition.
◮ ∀Y .U(I (Y )) = Y would be known to be provable.
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as a definition.
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◮ Queries for exact matches (of definitions or theorems)
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Ideal Mathematical Library

◮ Given a closed term t, library tells you a constant d
defined by d = t.

◮ For each closed proposition P , library tells you if P is
provable.

◮ In practice, there is a finite approximation of this ideal
library, which becomes better after each development.

◮ After the incorporating the previous development:
◮ ∈-induction would be known to be provable.
◮ U and I each would have a unique entry (of type ι → ι)

as a definition.
◮ ∀Y .U(I (Y )) = Y would be known to be provable.

◮ Queries for exact matches (of definitions or theorems)
can be immediate (hashing).

◮ Bad for searching, but fine for importing.
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Library via Hashing: Knowns

◮ ∈-induction:

∀P .(∀Y .(∀x ∈ Y .P[x ]) → P[Y ]) → ∀Y .P[Y ]

Convert to nameless representation, serialize and hash.
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◮ Remember the hash is “known” so that every
proposition hashing to it can be used in future
developments without proof.
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Library via Hashing: Knowns

◮ ∈-induction:

∀P .(∀Y .(∀x ∈ Y .P[x ]) → P[Y ]) → ∀Y .P[Y ]

Convert to nameless representation, serialize and hash.

◮ Remember the hash is “known” so that every
proposition hashing to it can be used in future
developments without proof.

◮ Don’t even need to know the article where it was
proven.
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◮ I : ι → ι defined by a term d . Serialize nameless rep
and hash to obtain ♯d .
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◮ Remember ♯d is the hash of a term of type ι → ι.

◮ Allow constants of type ι → ι to be declared to
correspond to ♯d .
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◮ I : ι → ι defined by a term d . Serialize nameless rep
and hash to obtain ♯d .

◮ Remember ♯d is the hash of a term of type ι → ι.

◮ Allow constants of type ι → ι to be declared to
correspond to ♯d .

◮ U : ι → ι defined by a term e – obtain ♯e.
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Library via Hashing: Definitions

◮ I : ι → ι defined by a term d . Serialize nameless rep
and hash to obtain ♯d .

◮ Remember ♯d is the hash of a term of type ι → ι.

◮ Allow constants of type ι → ι to be declared to
correspond to ♯d .

◮ U : ι → ι defined by a term e – obtain ♯e.

◮ Opaque importation of definitions
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Library via Hashing

◮ Represent the theorem ∀Y .U(I (Y )) = Y as
∀Y .♯e(♯d(Y )).

◮ Serialize nameless rep of ∀Y .♯e(♯d(Y )) and hash.

◮ Remember hash is “known.” In new developments this
should be accepted:
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An abstract library is (D,K) where

◮ D is a partial function from hashes to types.
(definitions)

◮ K is a set of hashes. (knowns)
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Abstract Library

An abstract library is (D,K) where

◮ D is a partial function from hashes to types.
(definitions)

◮ K is a set of hashes. (knowns)

Importing a development into the library
increases D and/or K.
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Automation

◮ ATP: Usually First-Order (Vampire, E, . . .)

◮ Sometimes Higher-Order (TPS, LEO, Satallax)



Developments,

Libraries and

Automated

Theorem Provers

Brown

Introduction

Mathematics as

Set Theory

Example

Development

Idealized

Mathematical

Library

Comments on

Automation

Conclusion

Automation

◮ ATP: Usually First-Order (Vampire, E, . . .)

◮ Sometimes Higher-Order (TPS, LEO, Satallax)

◮ Mizar is approximately FO, but not in the ATP sense.

◮ MPTP can’t send Vampire a scheme.
◮ MPTP can send Satallax a scheme.
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Automation

◮ ATP: Usually First-Order (Vampire, E, . . .)

◮ Sometimes Higher-Order (TPS, LEO, Satallax)

◮ Mizar is approximately FO, but not in the ATP sense.

◮ MPTP can’t send Vampire a scheme.
◮ MPTP can send Satallax a scheme.

◮ Other Interactive Provers aren’t FO at all.
Instead of using general, complete procedures – try a
variety of incomplete ones.

◮ HOL-light, MESON, techniques for instantiating type
vars

◮ Isabelle-HOL, Sledgehammer
◮ Coq, tactics
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Automation

◮ ATP: Usually First-Order (Vampire, E, . . .)

◮ Sometimes Higher-Order (TPS, LEO, Satallax)

◮ Mizar is approximately FO, but not in the ATP sense.

◮ MPTP can’t send Vampire a scheme.
◮ MPTP can send Satallax a scheme.

◮ Other Interactive Provers aren’t FO at all.
Instead of using general, complete procedures – try a
variety of incomplete ones.

◮ HOL-light, MESON, techniques for instantiating type
vars

◮ Isabelle-HOL, Sledgehammer
◮ Coq, tactics

◮ Problems for having complete ATPs:
◮ Polymorphism (type variables)
◮ Type Definitions using Predicates
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Frameworks for Leveraging Automation

◮ Unrealistic Proposal: Use NBG (Quaife, 1992)
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◮ The MML (and other libraries) could be translated into
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◮ No need for polymorphism or type definitions
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Frameworks for Leveraging Automation

◮ Unrealistic Proposal: Use NBG (Quaife, 1992)

◮ More Realistic Proposal:
Simple Type Theory+Set Theory

◮ Finite axiomatization of HO Tarski-Grothendieck
(HOTG)

◮ Support for term level binders like {x ∈ A|P[x ]}

◮ The MML (and other libraries) could be translated into
HOTG

◮ No need for polymorphism or type definitions

◮ (Henkin) Complete ATPs for STT Exist
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Conclusion

◮ Write Formal Developments (Local)

◮ Contribute to a Growing Global Library



Developments,

Libraries and

Automated

Theorem Provers

Brown

Introduction

Mathematics as

Set Theory

Example

Development

Idealized

Mathematical

Library

Comments on

Automation

Conclusion

Conclusion

◮ Write Formal Developments (Local)

◮ Contribute to a Growing Global Library

◮ Library as a Collection of Hashes
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Conclusion

◮ Write Formal Developments (Local)

◮ Contribute to a Growing Global Library

◮ Library as a Collection of Hashes

◮ Automation to Fill Gaps

◮ Automation: More than FO ...but not too much more
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