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» V= U6<>\ Vi

>» YOV, YeVun

» Rank of Y is the least « such that Y C V,,.

> V,, is the hereditarily finite sets

» V, is a Grothendieck universe (satisfying ZF) if & is
strongly inaccessable

» “Everything is a set.” E.g., pairs are sets:
(5 y) ={{x} {x¥}}

> A model of, e.g., Tarski-Grothendieck is a kind of
“monster model” of mathematics.
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Define an operation / on sets such that
I(Y) ={I(x)Ix e YU {0}

Define an operation U on sets such that
U(Y) ={U(x)Ix € Y \{0}}

Both operations can be defined by &-recursion.
Prove U(I(Y)) =Y for all sets Y.

Proof: &-induction.

Goal: Formalize as a Mizar article.
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Mizar proofs

» New HO version: — THF TPTP version of the MML
(135K props [thms, defs, type hierarchy,. . .])

» HO version can handle schemes and Fraenkel operators
(See MKM Talk)

» HO provers (e.g., Satallax) can help Mizar users

» Side effect: can search the THF version of the MML for
theorems of a certain form

» Satallax extended to search for “similar’ theorems to a
conjecture

» Search for all theorems of the form

VY iset.x (x(Y)) =Y
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Searching the MML for U(I(Y))=Y Ltrares and
Read it, initial branch has 135002 elts ool
Searching for similar formulas.
Number of conclusion variants: 3 Brown
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rd2_xtuple 0 similarity measure 1
Total of 7 of measure 1

involutiveness k4 measureG similarity measure 2
+99 vhAaala 1 i
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s3_cgames_1 similarity measure
s2_nat_2 similarity measure 4
sl zf lang similarity measure 4
sl chord similarity measure 4
Total of 26 of measure 4

cd int 1 cimilaritv meacura §
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s3 afinsq_1 similarity measure 4
sl card _fil similarity measure 4
sl _fib_num similarity measure 4
sl zf langl similarity measure 4
sl modal_1 similarity measure 4
s2_ordinall similarity measure 4
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s2_finset_1 similarity measure 3 Flnlte Sets) NO Help
s17_ordinal2 similarity measure 3 H

B arainaL2 sintarty Natural Number Induction, No Help
sl _card_1 similarity measure 4
sl uniroots similarity measure
sl fib_num2 similarity measure
s3_finseq_l similarity measure
s2_fib_num2 similarity measure
s2_pre_poly similarity measure
s2_nat_d similarity measure 4
s5_funct_7 similarity measure 4
s3 afinsq_1 similarity measure 4

sl card _fil similarity measure 4

sl _fib_num similarity measure 4

sl zf langl similarity measure 4

sl modal 1 similarity measure 4 .. .
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» To prove €-induction we need:
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» To prove €-induction we need:
» Transfinite Induction and two facts:

1. If Y CV, and x € Y, then there is some 8 € « such
that x C V3.

2. For every set Y, there is an « such that Y C V.
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To prove €-induction we need:
Transfinite Induction and two facts:

1. If Y CV, and x € Y, then there is some 8 € « such
that x C V3.

2. For every set Y, there is an « such that Y C V.
Does the MML include V,,? (Yes...)
Search for theorems of the form VY .3a.Y C *(«).
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include('allofmizar-preface-types-axioms').

thf(invset,conjecture,

(7 [V: ($i>$1)] :
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(7 [A:$i]
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Searching the MML for V

include('allofmizar-preface-types-axioms').
thf(invset,conjecture,

(7 [V: ($i>$1)] :
(P [Y:$i] ¢ (? [A:$i] @ ((v3_ordinall @ A) & (rl_tarski @ Y @ (V @ A))))))).
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Read it, initial branch has 135002 elts Theorem Provers
Searching for similar formulas. Brown
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imp (v3 ordinall *3) False
rl tarski 2 (*1 *3)
Number of conclusion variants: 5
Total partial matches: 96 96 Partial Matches
t62 classesl similarity measure O Example
Total of 1 of measure 0 Development
eps_ax similarity measure 2
Total of 1 of measure 2
tll ordinal3 similarity measure 3
t4 ordinal3 similarity measure 3
s2 finset 1 similarity measure 3
s17 ordinal2 similarity measure 3

Total of 4 of measure 3
<l rard 1 cimilaritv meacure 4
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Searching for similar formulas. Brown
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imp (v3 ordinall *3) False
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Number of conclusion variants: 5
Total partial matches: 96 96 Partial Matches
t62 classesl similarity measure © Closest: CLASSES1:62 Example
Total of 1 of measure 0 Development
eps_ax similarity measure 2
Total of 1 of measure 2
tll ordinal3 similarity measure 3
t4 ordinal3 similarity measure 3
s2 finset 1 similarity measure 3
s17 ordinal2 similarity measure 3

Total of 4 of measure 3
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Searching the MML for V Lorares and

Automated
Read it, initial_branch has 135002 elts Theorem Provers
Searching for similar formulas. Brown

Conjunctions (2)

imp (v3 ordinall *3) False

rl tarski 2 (*1 *3)

Number of conclusion variants: 5

Total partial matches: 96 96 Partial Matches
t62 classesl similarity measure © Closest: CLASSES1:62 Example
Total of 1 of measure 0 Development
eps_ax similarity measure 2

Total of 1 of measure 2

tll ordinal3 similarity measure 3
t4 ordinal3 similarity measure 3
s2 finset 1 similarity measure 3
s17 ordinal2 similarity measure 3
Total of 4 of measure 3

el rard 1 cimilaritv meacire 4

theorem :: CLASSES1:62
A X c= Rank A;




Searching the MML for V Lorares and

Automated
Read it, initial_branch has 135002 elts Theorem Provers
Searching for similar formulas. Brown

Conjunctions (2)

imp (v3 ordinall *3) False

rl tarski 2 (*1 *3)

Number of conclusion variants: 5

Total partial matches: 96 96 Partial Matches
t62 classesl similarity measure © Closest: CLASSES1:62 Example
Total of 1 of measure 0 Development
eps_ax similarity measure 2

Total of 1 of measure 2

tll ordinal3 similarity measure 3
t4 ordinal3 similarity measure 3
s2 finset 1 similarity measure 3
s17 ordinal2 similarity measure 3
Total of 4 of measure 3

el rard 1 cimilaritv meacire 4

theorem :: CLASSES1:62
A X c= Rank A;

Rank A corresponds to V.
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L constructors CLASSES1;
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. schemes ORDINALL;
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provided
Al: for Y X st x in Y ho PIx] holds P[Y]
proof
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Partial Proof

scheme
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provided
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Partial Proof
scheme
EpsilonInduction { P[set] } : ~ ¥ holds P[Y]
provided
Al: for Y x st x in Y ho PIx] holds P[Y]
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let Y;
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scheme
EpsilonInduction { P[set] } : ~ ¥ holds P[Y]
provided
Al: for Y x st x in Y ho PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 | s PLY];

A3: A : Q[A]
let Y;
consider A such that A4: Y c= Rank A by CLASSES1:62;

Ja.Y C V,, by “Fact 2"
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EpsilonInduction { P[set] } : ~ ¥ holds P[Y]
provided
Al: for Y x st x in Y ho PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 | s PLY];

A3: A : Q[A]
let Y;
consider A such that A4: Y c= Rank A by CLASSES1:62;
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EpsilonInduction { P[set] } : -~ Y holds P[Y] ULESCUNHETER
provided Brown
Al: for ¥ Xx st x in Y ho PIx] holds P[Y]
proof
defpred Q[Ordinall means for Y Y c= Rank $1 holds P[Y];
Example
Development
A3: A h - QIA]
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;

it P[Y] since Q[o] and Y C V,




Partial Proof

scheme

EpsilonInduction { P[set] } :
provided
Al: for ¥ X x in Y
proof

defpred Q[Ordinal] means

A3: A
let Y;

: Q[A]

consider A such that A4: Y c= Rank A by CLASSES1:62;

thus P[Y] by A3,A4;
end;
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scheme
EpsilonInduction { P[set] } : ~ Y holds P[Y]
provided
Al: for ¥ Xx st x in Y ho PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c¢= Rank $1 holds P[Y];

A2: Yo . (VB € a. Q[A]) — Qo]

A3: A h 5 Q[A] from ORDINALl:sch 2(A2);
let Y;
consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;
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Partial Proof

scheme
EpsilonInduction { P[set] } : ~ Y holds P[Y]
provided
Al: for ¥ Xx st x in Y ho PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 |
A2: A st for B st B in A holds Q[B] Is Q[A]
proof
: something to prove
end;
A3: A h 5 Q[A] from ORDINALl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;
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EpsilonInduction { P[set] } : for Y holds P[Y] Brown
provided
Al: for Y st for x st x in Y PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 holds P[Y];
A2: for A st for B st B in A holds Q[B] Is Q[A] Example
P roof Development
:: something to prove
end;
A3: 1 A he Q[A] from ORDINALLl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

» Remaining subproof: By Al and “Fact 1.”




Pa rtla | P roof Developments,

Libraries and
Automated
Theorem Provers
scheme N
EpsilonInduction { P[set] } : for Y holds P[Y] Brown
provided
Al: for Y st for x st x in Y PIx] holds P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 holds P[Y];
A2: for A st for B st B in A holds Q[B] Is Q[A] Example
P roof Development
:: something to prove
end;
A3: 1 A he Q[A] from ORDINALLl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

» Remaining subproof: By Al and “Fact 1.”

» Fact 1 can be proven as a lemma by another transfinite
induction.




Partial Proof e

Automated

Theorem Provers

scheme )
EpsilonInduction { P[set] } : for Y hol PIY] Brown
provided
Al: for Y for x st x in Y PIx] s P[Y]
proof
defpred Q[Ordinal] means for Y Y c= Rank $1 = P[Y];
A2: for A st for B st B in A holds Q[B] Is Q[A] Example
P roof Development
:: something to prove
end;
A3: 1 A he Q[A] from ORDINALLl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

» Remaining subproof: By Al and “Fact 1.”

» Fact 1 can be proven as a lemma by another transfinite
induction.

» Given Fact 1, the gap can be completed by local
reasoning. Automation?
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Definition: Q[a] :=VY.Y C V., — P[Y] Development
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Lemma: For Y and o, if Y C V,, and x € Y, then
there is some 3 € a such that x C V.

Assumption: VY .(Vx € Y. P[x]) — P[Y]
Definition: Q[a] :=VY.Y C V, — P[Y]
Goal: Ya.(V5.56 € a — Q[B]) — Qo]

MPTP interface can try to automatically prove goals:
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v

Lemma: For Y and o, if Y C V,, and x € Y, then
there is some 3 € a such that x C V.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]
Definition: Q[a] :=VY.Y C V, — P[Y]
Goal: Ya.(V5.56 € a — Q[B]) — Qo]

MPTP interface can try to automatically prove goals:

v

v

v
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y, then

v

v

A2:

there is some 3 € a such that x C V.
Assumption: VY .(Vx € Y. P[x]) — P[Y]
Definition: Q[a] :=VY.Y C V, — P[Y]
Goal: Ya.(V5.56 € a — Q[B]) — Qo]

MPTP interface can try to automatically prove goals:

for A st for B st B in A holds Q[B] holds Q[A] ; ::

ATP asked ...
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there is some 3 € a such that x C V.

Assumption: VY .(Vx € Y. P[x]) — P[Y]
Definition: Q[a] :=VY.Y C V, — P[Y]
Goal: Ya.(V5.56 € a — Q[B]) — Qo]

MPTP interface can try to automatically prove goals:

for A st for B st B in A holds Q[B] holds Q[A] by EPSIND3E:1,Al,A2;
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Lemma: For Y and o, if Y C V,, and x € Y, then
there is some 3 € a such that x C V.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]
Definition: Q[a] :=VY.Y C V., — P[Y] Development
Goal: Ya.(V5.56 € a — Q[B]) — Qo]

MPTP interface can try to automatically prove goals:

v

v

v

A2: for A st for B st B in A holds Q[B] holds Q[A] by EPSIND3E:1,Al,A2;

A2: for A st for B st B in A holds Q[B] holds Q[A] by Thl,Al;
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y/, then
there is some 3 € a such that x C Vj.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]
» Definition: Q[a] :=VY.Y C V, — P[Y]
» Goal: Va.(VB.8 € a = Q[f]) — Qlo]

» Satallax can prove the corresponding HO THF problem
in < 0.1s.
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y/, then
there is some 3 € a such that x C Vj.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]

» Definition: Q[a] :=VY.Y C V, — P[Y]

» Goal: Va.(VB.8 € a = Q[f]) — Qlo]

» Satallax can prove the corresponding HO THF problem
in < 0.1s.

» Satallax can produce various kinds of proofs.

» Coq scripts (using tactics to simulate tableau rules)
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y/, then
there is some 3 € a such that x C Vj.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]

» Definition: Q[a] :=VY.Y C V, — P[Y]

» Goal: Va.(VB.8 € a = Q[f]) — Qlo]

» Satallax can prove the corresponding HO THF problem
in < 0.1s.

» Satallax can produce various kinds of proofs.

» Coq scripts (using tactics to simulate tableau rules)
» Coq proof terms (using lemmas corresponding to
tableau rules)
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y/, then
there is some 3 € a such that x C Vj.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]

» Definition: Q[a] :=VY.Y C V, — P[Y]

» Goal: Va.(V3.68 € a — Q[B]) — Q]

» Satallax can prove the corresponding HO THF problem
in < 0.1s.

» Satallax can produce various kinds of proofs.

» Coq scripts (using tactics to simulate tableau rules)

» Coq proof terms (using lemmas corresponding to
tableau rules)

» But not Mizar proofs (yet?)
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Filling the Gap

» Lemma: For Y and o, if Y C V,, and x € Y/, then
there is some 3 € a such that x C Vj.

» Assumption: VY.(Vx € Y.P[x]) — P[Y]

» Definition: Q[a] :=VY.Y C V, — P[Y]

» Goal: Va.(V3.68 € a — Q[B]) — Q]

» Satallax can prove the corresponding HO THF problem
in < 0.1s.

» Satallax can produce various kinds of proofs.

» Coq scripts (using tactics to simulate tableau rules)

» Coq proof terms (using lemmas corresponding to
tableau rules)

» But not Mizar proofs (yet?)

» Mizar could be extended to allow “byproofterm”
justifications with a small Curry-Howard-de Bruijn style
proof checker.
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Filling the Gap (Pf Term)

Satallax Produced Proof Term for the Gap:

exact (NNPP (forall (Xl:set), v3 ordinall X1 -> (forall (X2:set), v3 ordinall X2 -> r2_hidden X2 X1 -> (forall (X3:set), rl tarss
ki X3 (k4 _classesl X2) -> p X3)) -> (forall (X2:set), rl tarski X2 (k4 classesl X1) -> p X2)) (fun HO => TNALL set (fun (Xl:set)?
=>,v3.ordinall X1 -> (forall (X2:set), v3 ordinall X2 -> r2 hidden X2 x1 > q X2) ->q X1) HO (fun _ @ H1 => TNImp (v3_ordinalle
__0) ((forall (Xl:set), v3 ordinall X1 -> r2_hidden X1 _@ -> q X1) -> q _0) HL (fun H2 H3 => TNImp (forall (Xl:set), v3_ ordins
WUl XL -> r2 hidden X1 0 > q X1) (q __0) H3 (fun HA HS => TNALL set (fun (X1:set) => rl_tarski X1 (k4_classesl _0) -> p X1) @
HS (fun 1 H6 => TNImp (rl tarski 1 (k4 classesl ©)) (p 1) H6 (fun H7 H8 => TALL set (fun (Xl:set) =» forall (X2:set), v3»
+_ordinall X2 -> rl_tarski X1 (k4_classesl X2) -> (forall (X3:set), r2 hidden X3 X1 -> (exists X4:set, v3_ordinall X4 /\ r2_hiddes
in X4 X2 /\ rl_tarski X3 (k4_classesl X4)))) thl _1 (fun H9 => TALL set (fun (X1:set) => v3_ ordinall X1 -> rl tarski _1 (k4 clas
issesl X1) -> (forall (X2:set), r2 hidden X2 1 -> (exists X3:set, v3_ordinall X3 /\ r2_hidden X3 X1 /\ rl tarski X2 (k4_classes?
11X3)))) H9 0 (fun H10 => TALL set (fun (Xl:set) => (forall (X2:set), r2 hidden X2 X1 -> p X2) -> p X1) al _ 1 (fun H1l => TIme
+p_(v3_ordinall _0) (rl_tarski _1 (k4_classesl _ @) -> (forall (Xl:set), r2_hidden X1 _1 -> (exists X2:set, v3_ordinall X2 /\ »
ir2_hidden X2 __0 /\ rl_tarski X1 (k4_classesl X2)))) H10 (fun H12 => H12 H2) (fun H12 => TImp (rl_tarski _1 (k4_classesl _0)) »
i(forall (X1:set), r2 hidden X1 1 -> (exists X2:set, v3 ordinall X2 /\ r2 hidden X2 _ @ /\ rl tarski X1 (kd_classesl X2))) H12 »
+(fun H13 => H13 H7) (fun H13 => TImp (forall (Xl:set), r2 hidden X1 _1 -> p X1) (p 1) HIl (fun H14 => TNATL set (fun (Xl:set)s
r2_hidden X1 _1 -> p X1) H14 (fun _4 H15 => TNImp (r2_hidden 1) (p _4) HI5 (fun H16 H17 => TALL set (fun (Xl:set) =»
i> r2_hidden X1 _T -> (exists X2:set, v3_ordinall X2 /\ r2_hidden X2 _0 /\ rl tarski X1 (k4_classesl X2))) H13 __4 (fun H18 => »
iTImp (r2 hidden 4 _ 1) (exists X1:set, v3 ordinall X1 /\ r2 hidden X1 0 /\ rl tarski 4 (k4 classesl X1)) HI8 (fun H19 => H»
119 H16) (fun H19 => TEx set (fun (Xl:set) => v3 ordinall X1 /\ r2 hidden X1 _© /\ rl tarski _4 (k4_classesl X1)) H19 (fun 5 »
iH20 => TAnd (v3_ordinall _5) (r2_hidden _5 0 /\ rl tarski _4 (kd_classesl _5)) H20 (fun H21 H22 => TAnd (r2_hidden _5 _ 02
i) (rl tarski 4 (k4 classesl _5)) H22 (fun H23 H24 => TALL set (fun (Xl:set) => v3 ordinall X1 -> r2 hidden X1 _ 0 -> q X1) H4»
+ 5 (fun H25 => TImp (v3 ordinall 5) (r2 hidden 5 0 -> q _5) H25 (fun H26 => H26 H21) (fun H26 => TImp (r2 hidden 5 =
10) (q __5) H26 (fun H27 => H27 H23) (fun H27 => TALL set (fun (XI:set) => rl tarski X1 (k4 classesl _5) -> p X1) H27 _4 (fun H»
128 => TImp (rl_tarski _ 4 (k4_classesl _5)) (p _4) H28 (fun H29 => H29 H24) (fun H29 => H17 H29)))}))))))))) (fun H14 => H8 Hl:
4)))))))))))))
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If Mizar Accepted Proof Terms...

scheme

EpsilonInduction { P[set] } : Y PLY]
provided
Al: Y X X in Y P[x] PLY]
proof

defpred Q[Ordinal] means Y Y c= Rank %1

A2: A B B in A Q[B] Q[A]

byproofterm
A3: A Q[A] from ORDINALl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

Developments,
Libraries and
Automated

Theorem Provers

Brown

PIY];

Example
Development




If Mizar Accepted Proof Terms...

scheme

EpsilonInduction { P[set] } : Y PLY]
provided
Al: Y X X in Y P[x] PLY]
proof

defpred Q[Ordinal] means Y Y c= Rank %1

A2: A B B in A Q[B] Q[A]

byproofterm
A3: A Q[A] from ORDINALl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

» Problem: Not Robust.
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Hand-Written Mizar Subproof

A2: A B B in A Q[B] Q[A]
proof

let A be Ordinal;

assume Bl: B B in A Q[B];

let Y;

assume B2: Y c= Rank A;

X x in Y P[x]
proof
let x;

assume x in Y;
then consider B such that B3: B in A x c= Rank B by Thl, B2;
thus P[x] by B1,B3;
end;
hence P[Y] by Al;
end;
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Hand-Written Mizar Subproof Lorares and

) Automated
tab start Ho. A2: A B B in A Q[B] Q[A] Theorem Provers
tab_negall HO _ 0 H1. proof
tab_negimp H1 H2 H3. 5 . 3row
tab_negimp H3 H4 H5. let A be Ordinal; .
tab_negall H5 1 H6. assume Bl: B B in A Q[BI;
tab_negimp H6 H7 H8. .
tab all thl (1) H9. let ¥;
tab all HO (@) H10. assume B2: Y c= Rank A;
tab all al (1) HI1l. X X inY P[x]
tab_imp H10 H12.
tab_conflict H2 H12. proof
tab_imp H12 H13. let x;

tab_conflict H7 H13. ; .
tab_imp H11 H14. assume x in Y; ) Example
tab_negall H14 _ 4 H15. then consider B such that B3: B in A X c= Rank B by Thl, B2; NBEVIIII NI
tab_negimp H15 H16 H17. .

tab all H13 (__4) H18. thus PIx] by B1,B3;

tab_imp H18 HI9. end;

tab_conflict H16 H19. hence P[Y] by Al;

tab_ex H19 _ 5 H20. d:

tab_and H20 H21 H22. end;

tab_and H22 H23 H24.
tab_all H4 (__5) H25.
tab_imp H25 H26.
tab_conflict H21 H26.
tab_imp H26 H27.
tab_conflict H23 H27.
tab_all H27 (_4) H28.
tab_imp H28 H29.
tab_conflict H24 H29.
tab_conflict H29 H17.
tab conflict H14 H8.




Hand-Written Mizar Subproof

tab_start negA2.
tab_negall negA2 A HI.
tab_negimp H1 Aord H3.
tab_negimp H3 Bl HS.
tab_negall H5 Y H6.
tab_negimp H6 B2 negPY.
tab_all Thl (Y) H9.
tab all H9 (A) H10.
tab_all AL (Y) H1L.
tab_imp H10 H12.
tab_conflict Aord H12.
tab_imp H12 H13.
tab_conflict B2 H13.
tab_imp H11 H14.
tab_negall H14 x HIS.
tab_negimp H15 x_in_Y negPx.
tab_all H13 (x) H18.
tab_imp H18 H19.
tab_conflict x_in Y H19.
tab_ex H19 B H20.
tab_and H20 Bord B3.
tab_and B3 H23 H24.
tab all B1 (B) H25.
tab_imp H25 H26.
tab_conflict Bord H26.
tab_imp H26 H27.
tab_conflict H23 H27.
tab_all H27 (x) H28.
tab_imp H28 H29.
tab_conflict H24 H29.
tab_conflict H29 negPx.
tab_conflict H14 negPY.

end;

A2: A B B in A Q[B]
proof
let A be Ordinal;
assume Bl: B B in A Q[B];
let Y;
assume B2: Y c= Rank A;
X x in Y P[x]
proof
let x;

assume x in Y;
then consider B such that B3: B in A
thus P[x] by B1,B3;
end;

hence P[Y] by Al;

X Cc=

QIA]

Rank B by Thl,

B2;
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Proof of Epsilon Induction Liorares and.

Automated
scheme Theorem Provers
EpsilonInduction { P[set] } : Y ho PLY]
provided Brown
Al: Y X x inY ds P[x] h PLY]
proof
defpred Q[Ordinal] means Y Y c= Rank $1 | Is P[Y];
A2: rA for B st B in A hc Q[B] lds Q[A]
proof
let A be Ordinal;
assume Bl: r B B in A Q[B]; Example
let Y; Development
assume B2: Y c= Rank A;
X x in Y he P[x]
proof
let x;

assume x in Y;
then consider B such that B3: B in A & x c= Rank B by Thl, B2;
thus P[x] by B1,B3;

end;

hence P[Y] by Al;
end;
A3: for A holds Q[A] from ORDINALl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;




Developments,

Proof of Epsilon Induction Libraries and

Automated
scheme Theorem Provers
EpsilonInduction { P[set] } : Y ho PLY]
provided Brown
Al: Y X x inY ds P[x] h PLY]
proof
defpred Q[Ordinal] means Y Y c= Rank $1 | Is P[Y];
A2: rA for B st B in A hc Q[B] lds Q[A]
proof
let A be Ordinal;
assume Bl: r B B in A Q[B]; Example
let Y; Development
assume B2: Y c= Rank A;
X x in Y he P[x]
proof
let x;

assume x in Y;
then consider B such that B3: B in A & x c= Rank B by Thl, B2;
thus P[x] by B1,B3;

end;

hence P[Y] by Al;
end;
A3: for A holds Q[A] from ORDINALl:sch 2(A2);
let Y;

consider A such that A4: Y c= Rank A by CLASSES1:62;
thus P[Y] by A3,A4;
end;

Actually, MPTP could prove this too, finding the reference.
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Three Legs Supporting the Formalization Process

(Theorems, Definitions) (Filling Gaps)

Library Automation
search .

Developments
Documents/Articles/Theories)

—
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.

» For each closed proposition P, library tells you if P is
provable.
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.

» For each closed proposition P, library tells you if P is
provable.

» In practice, there is a finite approximation of this ideal
library, which becomes better after each development.
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.

» For each closed proposition P, library tells you if P is
provable.

» In practice, there is a finite approximation of this ideal
library, which becomes better after each development.
> After the incorporating the previous development:
» c-induction would be known to be provable.
» U and / each would have a unique entry (of type ¢ — ¢)

as a definition.
» YY.U(I/(Y)) = Y would be known to be provable.
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.

» For each closed proposition P, library tells you if P is
provable.

» In practice, there is a finite approximation of this ideal
library, which becomes better after each development.
> After the incorporating the previous development:
» c-induction would be known to be provable.
» U and / each would have a unique entry (of type ¢ — ¢)
as a definition.
» YY.U(I/(Y)) = Y would be known to be provable.
» Queries for exact matches (of definitions or theorems)
can be immediate (hashing).
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Ideal Mathematical Library

» Given a closed term t, library tells you a constant d
defined by d = t.

» For each closed proposition P, library tells you if P is
provable.

» In practice, there is a finite approximation of this ideal
library, which becomes better after each development.
> After the incorporating the previous development:

» c-induction would be known to be provable.

» U and / each would have a unique entry (of type ¢ — ¢)
as a definition.

» YY.U(I/(Y)) = Y would be known to be provable.

» Queries for exact matches (of definitions or theorems)
can be immediate (hashing).

» Bad for searching, but fine for importing.

Developments,
Libraries and
Automated

Theorem Provers

Brown

Idealized
Mathematical
Library




Library via Hashing: Knowns

» c-induction:
VP.(VY.(Vx € Y.P[x]) = P[Y]) = VY.P[Y]

Convert to nameless representation, serialize and hash.
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Library via Hashing: Knowns

» c-induction:
VP.(VY.(Vx € Y.P[x]) = P[Y]) = VY.P[Y]

Convert to nameless representation, serialize and hash.

» Remember the hash is “known"” so that every
proposition hashing to it can be used in future
developments without proof.
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Library via Hashing: Knowns

» c-induction:
VP.(VY.(Vx € Y.P[x]) = P[Y]) = VY.P[Y]

Convert to nameless representation, serialize and hash.

» Remember the hash is “known"” so that every
proposition hashing to it can be used in future
developments without proof.

scheme

EpsilonInduction { P[set] } : Y PLY]
provided
Al: Y X X in Y P[x] PLY]

by known;
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Library via Hashing: Knowns

» c-induction:
VP.(VY.(Vx € Y.P[x]) = P[Y]) = VY.P[Y]

Convert to nameless representation, serialize and hash.

» Remember the hash is “known"” so that every
proposition hashing to it can be used in future
developments without proof.

scheme
OtherEpsInduction { Q[set] } : Z QlZ]
provided
Z y y in Z Qly] Q[Z]

by known;
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» c-induction:
VP.(VY.(Vx € Y.P[x]) = P[Y]) = VY.P[Y]

Convert to nameless representation, serialize and hash.

» Remember the hash is “"known" so that every Idealized

Mathematical

proposition hashing to it can be used in future Library
developments without proof.

scheme
OtherEpsInduction { Q[set] } : Z QlZ]
provided
Z y y in Z Qly] Q[Z]
by known;

» Don't even need to know the article where it was
proven.




Library via Hashing: Definitions

> [ 11— ¢+ defined by a term d. Serialize nameless rep
and hash to obtain #d.
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Library via Hashing: Definitions

> [ 11— ¢+ defined by a term d. Serialize nameless rep
and hash to obtain #d.

» Remember #d is the hash of a term of type ¢ — ¢.
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Library via Hashing: Definitions

> [ 11— ¢+ defined by a term d. Serialize nameless rep
and hash to obtain #d.

» Remember #d is the hash of a term of type ¢ — ¢.

» Allow constants of type ¢ — ¢ to be declared to

correspond to f#d.
definition
let Y be set;
func I(Y) -> set
oo #d
end;
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Library via Hashing: Definitions Lorares and

Automated

Theorem Provers

» | 11— ¢ defined by a term d. Serialize nameless rep Brown
and hash to obtain #d.

» Remember #d is the hash of a term of type ¢ — ¢.

» Allow constants of type ¢ — ¢ to be declared to
correspond to f#d.

definition Motkamtical
let Y be set; Library
func I(Y) -> set

oo #d

end;

» U : 1 — ¢ defined by a term e — obtain fe.
definition
let Y be set;
func U(Y) -> set
i: #e
end;




Library via Hashing: Definitions Lorares and

Automated

Theorem Provers

» | 11— ¢ defined by a term d. Serialize nameless rep Brown
and hash to obtain #d.

» Remember #d is the hash of a term of type ¢ — ¢.

» Allow constants of type ¢ — ¢ to be declared to
correspond to f#d.

definition Motkamtical
let Y be set; Library
func I(Y) -> set

oo #d

end;

» U : 1 — ¢ defined by a term e — obtain fe.
definition
let Y be set;
func U(Y) -> set
i: #e
end;

» Opaque importation of definitions
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» Represent the theorem VY. U(I(Y)) =Y as

VY.ﬁe(ﬁd( Y)) Idealized
Mathematical
» Serialize nameless rep of VY .fe(#d(Y')) and hash. Library

» Remember hash is “known.” In new developments this

should be accepted:
theorem UIThm: for Y | s U(I(Y)) =Y by known;




Abstract Library

An abstract library is (D, K) where

» D is a partial function from hashes to types.
(definitions)

» KCis a set of hashes. (knowns)
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Abstract Library

An abstract library is (D, K) where

» D is a partial function from hashes to types.
(definitions)

» KCis a set of hashes. (knowns)

Importing a development into the library
increases D and/or K.
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» Sometimes Higher-Order (TPS, LEO, Satallax)
» Mizar is approximately FO, but not in the ATP sense.

» MPTP can't send Vampire a scheme.
» MPTP can send Satallax a scheme.

» Other Interactive Provers aren’t FO at all.
Instead of using general, complete procedures — try a Comments on
variety of incomplete ones. Automation

» HOL-light, MESON, techniques for instantiating type
vars

> Isabelle-HOL, Sledgehammer

» Coq, tactics
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» ATP: Usually First-Order (Vampire, E, ...) Brown
» Sometimes Higher-Order (TPS, LEO, Satallax)
» Mizar is approximately FO, but not in the ATP sense.

» MPTP can't send Vampire a scheme.
» MPTP can send Satallax a scheme.

Other Interactive Provers aren't FO at all.
Instead of using general, complete procedures — try a Comments on
variety of incomplete ones. Automation
» HOL-light, MESON, techniques for instantiating type
vars
> Isabelle-HOL, Sledgehammer
» Coq, tactics

v

v

Problems for having complete ATPs:

» Polymorphism (type variables)
» Type Definitions using Predicates
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» More Realistic Proposal:
Simple Type Theory+Set Theory

» Finite axiomatization of HO Tarski-Grothendieck
(HOTG)

» Support for term level binders like {x € A|P[x]}

Comments on

» The MML (and other libraries) could be translated into Auienieita
HOTG

» No need for polymorphism or type definitions
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» Unrealistic Proposal: Use NBG (Quaife, 1992)

» More Realistic Proposal:
Simple Type Theory+Set Theory

» Finite axiomatization of HO Tarski-Grothendieck
(HOTG)

» Support for term level binders like {x € A|P[x]}

Comments on

» The MML (and other libraries) could be translated into Auienieita
HOTG

» No need for polymorphism or type definitions
» (Henkin) Complete ATPs for STT Exist




Outline

Conclusion

Developments,
Libraries and
Automated

Theorem Provers

Brown

Conclusion




. Developments,
COﬂClUSlon Libraries and
Automated

Theorem Provers

Brown

» Write Formal Developments (Local)

» Contribute to a Growing Global Library

Conclusion




. Developments,
COﬂClUSlon Libraries and
Automated

Theorem Provers

Brown

» Write Formal Developments (Local)

» Contribute to a Growing Global Library

» Library as a Collection of Hashes

Conclusion




Conclusion

v

v

v

v

Write Formal Developments (Local)

Contribute to a Growing Global Library

Library as a Collection of Hashes

Automation to Fill Gaps

Developments,
Libraries and
Automated

Theorem Provers

Brown

Conclusion




. Developments,
COﬂClUSlon Libraries and
Automated
Theorem Provers

Brown

v

Write Formal Developments (Local)

v

Contribute to a Growing Global Library

v

Library as a Collection of Hashes

Conclusion

v

Automation to Fill Gaps

Automation: More than FO ...but not too much more

v




	Introduction
	Mathematics as Set Theory
	Example Development
	Idealized Mathematical Library
	Comments on Automation
	Conclusion

