

Formalization of Normal Random Variables

M. Qasim, O. Hasan, M. Elleuch, S. Tahar

Hardware Verification Group ECE Department, Concordia University, Montreal, Canada

CICM 16 July 28, 2016

- Introduction and Motivation
- Formalization
- Case Study: Clock Synchronization in WSNs

Conclusions

Motivation

Probabilistic Analysis

Probabilistic Analysis Basics -Random Variables

- Discrete Random Variables
 - Attain a countable number of values
 - Example
 - Dice[1, 6]
- Continuous Random Variables
 - Attain an uncountable number of values
 - Examples
 - Uniform (all real numbers in an interval [a,b])

Probabilistic Analysis Basics -Probabilistic Properties

Property	Description	Examples	
		Discrete	Continuous
Probability Mass Function (PMF)	Probability that the random variable is equal to some number <i>n</i>	PMF(n)	
Cumulative Distribution Function (CDF)	Probability that the random variable is less than or equal to some number <i>n</i>	CDF(n) 1 1/6 0 1 2 3 4 5 6 7 8 n	CDF (x)
Probability Density Function (PDF)	Slope of CDF for continuous random variables		PDF (x) 1/(b-a) a bx

Probabilistic Analysis Basics -Statistical Properties

Property	Description	Illustration
		Expectation
Expectation	Long-run average value of a random variable	Lowest Variance Highest Variance
Variance	Measure of dispersion of a random variable	Tail Distribution

Probabilistic Analysis Approaches

	Simulation	Formal Methods	
		Model Checking	Theorem Proving
Random Components	Approximate random variable functions	Probabilistic State Machine	Random variable functions
Analysis	Observing some test cases	Exhaustive Verification	Mathematical Reasoning
Accuracy	×	\checkmark	\checkmark
Expressiveness	✓	×	\checkmark
Automation	\checkmark	\checkmark	×
Maturity	\checkmark	×	×

Probabilistic Analysis using Theorem Proving

- [Hurd, 2002]: Probability Theory, Discrete Random Variables (RVs), PMF
- [Hasan, 2007]: Statistical Properties for Discrete RVs, CDF, Continuous RVs
- [Mhamdi, 2011] Probability (Arbitrary space) Lebesgue Integration, Multiple Continuous RVs Statistical Properties
- [Hölzl, 2012] Isabelle/HOL: Probability, Measure and Lebesgue Integration, Markov, Central Limit Theorem

٠

Paper Contributions

- Formalization of Probability Density Function (PDF)
- Formalization of Normal Random Variable
 Enormous Applications
 - Sample mean of most distributions can be treated as Normally Distributed

Case Study: Clock Synchronization in WSNs

Probability Density Function

PDF p(x) of a random variable x is used to define its distribution

$$P(x_1 < x < x_2) = \int_{x_1}^{x_2} p(x) \, dx$$

- The PDF of a random variable is formally defined as the Radon-Nikodym (RN) derivative of the probability measure with respect to the Lebesgue-Borel measure
 - RN derivative and probability measure was available in HOL4
 - Lebesgue-Borel measure
 - Ported from Isabelle/HOL [Hölzl, 2012]
 - Some theorems and tactics (e.g. SET_TAC) also ported from the Lebesgue measure theory of HOL-Light [Harrison, 2013]

Probability Density Function

The PDF of a random variable is formally defined as the Radon-Nikodym (RN) derivative of the probability measure with respect to the Lebesgue-Borel measure

Definition: Probability Density Function				
⊢ PDF X p = RN_deriv lborel				
(space borel, subsets borel, measurable_distr p X)				

Normal Random Variable

Normal PDF

$$N(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$$

where μ represents its mean and σ is the standard deviation

X is a real random variable, i.e., it is measurable from the probability space (p) to Borel space

The distribution of X is that of the Normal random variable

Normal Random Variable -Properties

Normal Random Variable -Properties

$$\int_{\mu-a}^{\mu} PDF \ p \ X \ dx = \int_{\mu}^{\mu+a} PDF \ p \ X \ dx$$

Theorem: PDF of a Normal random variable is symmetric around its mean

$$\vdash \forall X \ p \ \mu \ \sigma \ a. \ normal_rv \ X \ p \ \mu \ \sigma \Rightarrow \\ pos_fn_integral \ lborel \\ (\lambda x. \ PDF \ p \ X \ x \ indicator_fn \ \{x \ \mid \ \mu \ -a \ \leq \ x \ \wedge \ x \ \leq \ \mu\} \ x) = \\ pos_fn_integral \ lborel \\ (\lambda x. \ PDF \ p \ X \ x \ indicator_fn \ \{x \ \mid \ \mu \ \leq \ x \ \wedge \ x \ \leq \ \mu+a \ \} \ x) \\ \hline \int_{-\infty}^{\mu} p(x) \ dx = \int_{\mu}^{\infty} p(x) \ dx = \frac{1}{2} \\ \hline Theorem: \ PDF \ of \ a \ Normal \ random \ variable \ is \ symmetric \ around \ its \ mean \\ \vdash \ \forall X \ p \ \mu \ \sigma. \ normal_rv \ X \ p \ \mu \ \sigma \ \wedge \ A = \{x \ \mid \ x \ \leq \ \mu\} \ \wedge \ B = \{x \ \mid \ \mu \ \leq \ x\} \Rightarrow \\ (pos_fn_integral \ lborel \ (\lambda x. \ PDF \ p \ X \ x \ indicator_fn \ A \ x) = 1 \ / \ 2) \ \land \\ (pos_fn_integral \ lborel \ (\lambda x. \ PDF \ p \ X \ x \ indicator_fn \ B \ x) = 1 \ / \ 2) \\ \end{cases}$$

Normal Random Variable -Properties

If $X_i \sim N(\mu_i, \sigma_i^2)$ is a finite set of independent Normal random variables, and $Z = \Sigma X_i$ then, $\hat{Z} \sim N(\Sigma \mu_i, \Sigma \sigma_i^2)$.

The proofs of these properties not only ensure the correctness of our definitions but also facilitate the formal reasoning process about the Normal Random Variable

Application: Probabilistic Clock Synchronization in WSNs

- Synchronizing receivers with one another
 - Randomness in Message delivery latency
 - Probabilistic bounds on clock synchronization error
 - single hop
 - & multi-hop networks

Capturing the Randomness in the Latency

Multiple pulses are sent from the sender to the set of receivers
 The difference in reception time at the receivers is plotted

Pairwise difference in packet reception time – Normally Distributed with mean = 0

Error Bounds - Single Hop

$$P(|\epsilon| \le \epsilon_{max}) = 2 \ erf\left(\frac{\sqrt{n}\epsilon_{max}}{\sigma}\right)$$

 ϵ is the synchronization error ϵ_{max} is the maximum allowable error n is the minimum number of synchronization messages $erf(z) = \frac{\int_0^z \exp^{-\frac{x^2}{2}} dx}{\sqrt{2\pi}}$

Theorem: Probability of synchronization error for single hop network $\vdash \forall p \ X \ \mu \ \sigma \ n \ \text{Emax.} \ \text{prob_space} \ p \ \land \ (I = (1 \ .. \ n)) \ \land \\ (0 < \sigma) \ \land \ (0 < n) \ \land \ (\forall i. \ i \in I \Rightarrow \text{sync_error} \ (X \ i) \ p \ \mu \ \sigma) \ \land \\ (Z = (\lambda x. \ \text{sum I} \ (\lambda i. \ X \ i \ x) \ / \ n)) \ \land \ (\mu = 0) \ \land \ 0 \le \text{Emax} \Rightarrow \\ (\text{prob_sync_error} \ p \ Z \ \{x \ | \ -\text{Emax} \le x \ \land \ x \le \text{Emax}\} = \\ 2 \ \ast \ \text{err_func} \ (\text{Emax} \ \ast \ \text{sqrt} \ n \ / \ \sigma))$

Conclusions

Probabilistic Theorem Proving

- Exact Answers
- Useful for the analysis of Safety critical application

Our Contributions

- Formalization of Probability Density Functions and Normal random variables
- Case Study
 - Clock Synchronization in WSNs

Future Work

More Applications - Probabilistic Round off Error Bounds in Computer Arithmetic

Thank you!

