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Abstract. We present a computer formalisation of metric spaces in the
HOL Light theorem prover. Basic results of the theory of complete metric
spaces are proved. A simple decision procedure for the theory of metric
space is implemented.
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1 Introduction

Metric spaces constitute an unavoidable concept in several mathematical fields
like geometry, topology, and analysis. We introduce the definition of metric space
in HOL Light and we prove some classical results and applications.1

1.1 Background

Several important results of the theory of metric spaces have been already for-
malised by Harrison in HOL Light in the context of euclidean geometry [Har05].
The main point of the present work is to setup in HOL Light a general theory
of abstract metric space in which the theorems of metric geometry can be stated
and exploited in its full generality, as it is required for their application in various
fields, like in algebra or in functional analysis.

Part of the code presented in this paper is based on a previous work of
Claudia Carapelle who developed the definition of metric spaces in HOL Light
for her master thesis in Mathematics at the University of Florence [Car11].

1.2 Related works

Being such a fundamental tool, the theory of metric spaces, up to a variable
degree of details and generality, appears in several formalisation efforts. We
limit ourselves to cite only two very recent achievements.
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Immler and Hölzl use metric spaces [IH12] to give a proof of the Picard-
Lindelöf theorem with a constructive approach, thus providing a numerical ap-
proximation method for the solution of ordinary differential equations.

Another work with a strong emphasis on constructivity has been carried on
in Coq by Makarov and Spitters in [MS13] where they give an intuitionistic proof
of the Picard-Lindelöf theorem.

2 Metric spaces in Higher-Order Logic

In mainstream mathematics, with the language of sets, a metric space M is
defined as a pair (X, d) where X is a set of points and d is a metric on X, that
is a function d : X ×X → R such that the following holds: for any three points
x, y, z of X

1. d(x, y) ≥ 0,
2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x),
4. d(x, z) ≤ d(x, y) + d(y, z).

Our definition in Higher-Order Logic mimic the set-theoretical one:2

let is_metric_space = new_definition

‘is_metric_space (s,d) <=>

(!x y:X. x IN s /\ y IN s ==> &0 <= d(x,y)) /\

(!x y. x IN s /\ y IN s ==> (d(x,y) = &0 <=> x = y)) /\

(!x y. x IN s /\ y IN s ==> d(x,y) = d(y,x)) /\

(!x y z. x IN s /\ y IN s /\ z IN s

==> d(x,z) <= d(x,y) + d(y,z))‘;;

Notice that for the elements outside the ‘set of points’ s, nothing can be deduced
about the behaviour of the metric d.

In the Multivariate_Analysis library of Isabelle/HOL, a slight different
definition is adopted, where the set of points is made to coincide with the whole
ambient type ‘:X‘. This is especially convenient in Isabelle, since it allows to
exploit the mechanism of axiomatic classes provided by the system. However, our
definition is more general, since, in particular, it allows to formalise in a natural
way families of metric spaces, like the Lp spaces used in functional analysis.

3 Complete metric spaces

Most topological and metric phenomena are best studied and understood trough
the behaviour of sequences. We prove various metric and topological results about
sequences in metric spaces.

2 The symbol ‘&‘ is the embedding N → R. Other syntax elements should be clear
from the context.



In particular, a crucial notion in metric space is the one of Cauchy sequence,
which means that the distance between its elements become arbitrary small after
a certain index. It is an easy but fundamental fact that every convergent sequence
is Cauchy sequence. A metric space is said to be complete if the converse it is
also true.

We formalise the basics of the theory of complete metric spaces. In particular,
we show the completeness of certain metric spaces and we prove certain classical
results, like the Banach Fixed-point Theorem and the Baire Category Theorem.

As an example, we illustrate the statement of the Baire Category Theorem:

METRIC_BAIRE_CATEGORY

|- !m g.

mcomplete m /\

COUNTABLE g /\

(!t. t IN g ==> open_in (mtopology m) t /\

mtopology m closure_of t = mspace m)

==> mtopology m closure_of INTERS g = mspace m

In the above statement, we have a complete metric space ‘m‘ (whose associated
set of points is ‘mspace m‘ and whose associated topology is ‘mtopology m‘)
and a countable family of dense open sets ‘g‘. The thesis is that the intersection
of the family ‘g‘ is dense in ‘m‘.

One key example in this work is the space of continuous bounded functions,
which is endowed with a structure of metric space with the L∞-metric: given
a topological space X and a metric space M , the distance in L∞ between two
bounded continuous functions f, g : X −→M is defined by

d∞(f, g) = sup
x∈X

dM (f(x), g(x)).

Such space (denoted ‘cfunspace top m‘) is complete when the target space M
is complete:

MCOMPLETE_CFUNSPACE

|- !top m. mcomplete m ==> mcomplete (cfunspace top m)

We will use this fact in the proof of the Picard-Lindelöf theorem (see below).
There is one technical point which is worth to mention about the formalisa-

tion of function spaces. We want to work with partial function, i.e., functions
whose intended domain is a subset of their domain type. Hence, to preserve the
property of indiscernibility (the fact that two functions are the same if their
distance is zero), we are forced to setup a mechanism for ’truncating’ a function
to its ’domain of definition’. For the sake of brevity, we won’t delve into the
technical details in this extended abstract.

To give a significant application of our formalisation, we prove one classical
corollary of the Banach fixed-point theorem in analysis: the Picard-Lindelöf the-
orem about the existence and uniqueness of the solution of ordinary differential
equations. Beside being an interesting achievement in its own, we present this
further development as a testbed for the soundness of our approach and the
applicability of our constructions.



4 A decision procedure for the theory of metric spaces

Solovay, Arthan and Harrison provide in [SAH09] a collection of decidability
results for various algebraic and geometric theories, including metric spaces.
On that basis we have implemented a decision procedure, METRIC_ARITH, which
automate certain proofs such as reasoning with the triangular law.

We give an example of its usage: we will show that the distance between the
centers x, y of two balls B(y, s) and B(z, t) containing a common ball B(x, r)
is lower than the sum of their radius s + t. The complete proof script is the
following:

g ‘!m x y z:Y r s t.

x IN mspace m /\ y IN mspace m /\ z IN mspace m /\ &0 < r /\

mball m (x,r) SUBSET mball m (y,s) /\

mball m (x,r) SUBSET mball m (z,t)

==> mdist m (y,z) <= s + t‘;;

e (SIMP_TAC[SUBSET; IN_MBALL]);;

e METRIC_ARITH_TAC;;

top_thm();;

5 Conclusions

Metric spaces are an indispensable tool in modern mathematics. We introduced
a definition of metric space which allow to state and prove theorems about metric
geometry in its full generality. We implemented a simple decision procedure, we
proved some notable results about complete metric spaces and we gave some
basic applications to functional analysis and ordinary differential equations. Our
hope is that the present work can lay a foundation for the theory of metric spaces
in the HOL Light theorem prover.
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