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@ mathematical knowledge grows relentlessly
@ mathematics is intrinsically inter-connected
o formal mathematical libraries already too large to oversee

@ need for adequate change management solutions



Motivation: LATIN Library

@ LATIN : an atlas of logic formalizations

e inter-connected network of ~1000 modules
e based on the MMT/LF logical framework
o highly modular (Little Theories approach)

o difficult to keep an overview (modularity helps but is not enough)

e which declarations does the symbol s depend on
o which declarations depend on the symbol s



LATIN Library : Modularity
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@ a Module System for Mathematical Theories

@ generic declarative language
theories, morphisms, declarations, expressions
module system

e OMDoc/OPENMATH-based XML syntax with Scala-based API
o foundationally independent
e no commitment to a particular logic or logical framework
both represented as MMT theories

e concise and natural representation of a variety of systems
e.g. Twelf, Mizar, TPTP, OWL



MwmT-based MKM services

Foundation independence — MMT services carry over to languages
represented in MMT

@ presentation MKM 2008
@ interactive browsing MKM 2009
o database MKM 2010
@ archival, project management MKM 2011
@ querying Tuesday, MKM 2012
e editing (work in progress) Wednesday, UITP 2012
e management of change (MoC) now, AISC 2012



Outline

Management of Change

@ MoC is not a new topic; usually involves
e detect changes

see if/how something changed

e compute affected items
maintain some notion of dependency

o handle/identify conflicts

in SE typically re-compile e.g. Eclipse
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@ MoC is not a new topic; usually involves
e detect changes

see if/how something changed
e compute affected items
maintain some notion of dependency
o handle/identify conflicts
in SE typically re-compile e.g. Eclipse)

@ semantic differencing

@ fine-grained dependencies

@ impact propagation

@ some form of a validity guarantee




MwMT Example

theories contain constant declarations

constants have components (type and definiens)
components represented as MMT/OPENMATH terms

URIs for each theory/constant/component

Rev1 Rev2
PL={ PL={

bool : type form : type

= : bool — bool — bool - : form — form

A . bool — bool — bool A . bool — bool — bool

& bool — bool — bool & bool — bool — bool

=M Ay.(x=y)A(y = x) =M Ay.(x=y)A(y = x)
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Semantic Differencing

@ we extend MMT with a language of changes

o add (\A) and delete (D) constants
e update (/) components
e rename (R) constants

Diff A = |A)S

Change § = A(T,c:w=uw)|D(T,c:w=uw")|
U(T,c,o,w,') | R(T,c,c)

Component o == tp|def




Example Revisited

Rev Rev,
PL={ PL={
bool : type form : type
=: bool — bool — bool - : form — form
A : bool = bool — bool A : bool — bool — bool
& bool — bool — bool & bool — bool — bool
=AxAy.(x = y)A(y = x) = AxAy.(x = y) A (y = x)
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Semantic Differencing: Formal Properties

@ change detection (G’ — G)
identify differences between two theory graphs

e change application (G < A)
apply changes to a theory graph
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Semantic Differencing: Formal Properties

@ change detection (G’ — G)
identify differences between two theory graphs

e change application (G < A)
apply changes to a theory graph

@ G-applicability
A, applicable to G iff it can be applied to G
e G-equivalence (=¢)
A=¢g M iff GK A =G <K Ay
@ normal diffs
minimal representatives w.r.t. =g

@ inversability of diffs
G<AKA =g
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Semantic Differencing: Implementation

Change Detection (G' — G)

@ view theory graphs as (nested) URI-indexed tables of declarations.

e new URIs — adds, old URIs — deletes, preserved URIs — (if
changed) updates.

@ refine the resulting diff by replacing add-delete pairs that represent a
rename with the corresponding rename

12 /22
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Change Detection (G' — G)

@ view theory graphs as (nested) URI-indexed tables of declarations.

e new URIs — adds, old URIs — deletes, preserved URIs — (if
changed) updates.

@ refine the resulting diff by replacing add-delete pairs that represent a
rename with the corresponding rename

.

Change Application (G < A)

o follow the intuitive semantics of each change

@ apply (in order) the changes from A to G (if G-applicable)
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Fine-grained dependencies

@ in MMT, validation units are individual components (types and
definiens)
@ we distinguish two types of dependencies
e syntactic dependencies
o declaration level
o foundation-independent
@ occurs-in relation
e semantic dependencies
@ component level
e foundation-dependent
o trace lookups during foundational validation
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Fine-grained dependencies

@ in MMT, validation units are individual components (types and
definiens)
@ we distinguish two types of dependencies
e syntactic dependencies

@ declaration level
o foundation-independent
@ occurs-in relation

e semantic dependencies

@ component level
e foundation-dependent
o trace lookups during foundational validation

@ dependencies are indexed by MMT and are available at any time
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Example Revisited - Again

bool /t
Revy Jvp
PL={
bool : type
= bool — bool — bool =/tp A/tp &/tp

A : bool — bool — bool
& bool — bool — bool
=XAy.(x=y)A(y = x)

} & /def
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Impact Propagation

@ key idea : propagation as diff enrichment process
@ impact propagation of a diff A is another diff A that :

e marks impacted components
by surrounding with OPENMATH error terms
e automatically propagates renames
updates in-term references
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Impact Propagation

@ key idea : propagation as diff enrichment process
@ impact propagation of a diff A is another diff A that :
e marks impacted components
by surrounding with OPENMATH error terms
e automatically propagates renames
updates in-term references

After all error terms are replaced with valid terms in G < A < A, the
resulting theory graph is valid.
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Workflow Example (relative to a graph G)

————{(Fromeo




Example Revisited - Yet Again

A =U(PL, <, def, sx.\y.(x = y) A (y = x),‘ AXAy.(x = y)A (y = x) ‘),
U(PL, A, tp, bool — bool — bool, form — form — form),
U(PL, <, tp, bool = bool — bool, form — form— form)

PL={
form : type
- : form — form
A : form — form — form
& form — form — form

_ ’ A Ay (x = y) A(y = x)) ‘
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Evaluation : LATIN

Dependencies

Components (%)

0-5
6—10
11-15
16 — 26

1373 (79)
271 (15.6)
81 (4.7)
13 (0.7)

@ generally low number of impacts

@ however, high variance of impacts

Impacts

Components (%)

0-5

6 —10
11-25
26 — 50
50 — 449

1504 (86.5)
101 (5.8)
76 (4.4)

31 (1.8)

26 (1.5)

due to modularity

creates need for detection tools

@ on average, types have 3 times more impacts than definiens
validates our fine-grained approach
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@ at all steps renames (R) require special treatment
e good at the user level
more change types means more change semantics
e bad at the system level
more change types means more complex formalization
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Workflow Example (relative to a graph G) — Again

AN
————{(Fromero
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Workflow Example (relative to a graph G) — Better

N NV
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Conclusion and Future Work

@ MMT MoC : a change management solution for MMT
o formal definition, theorems
e supports transactions and roll-backs
e uses fine-grained semantic dependencies
e implemented in the MMT API
e future work (currently in progress)

o refinement (add flexibility to the change language)
towards an MMT theory of refactoring
e integration with user interfaces
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