

Challenges and Experiences in Managing Large-Scale Proofs

T. Bourke¹ M. Daum^{1,2} G. Klein^{1,2} R. Kolanski^{1,2}

¹NICTA, Sydney, Australia ²The University of NSW, Sydney, Australia

9 July 2012

Basic Claim

Scale changes everything—be it code or mathematical proof.

Basic Claim

Scale changes everything—be it code or mathematical proof.

Some examples of mechanised proofs:

- four-colour theorem: around 60,000 lines in Coq
- higher-order logic (HOL) library in Isabelle: around 66,000 lines
- Archive of Formal Proofs (AFP): entries range between 145 and 80,917 lines in Isabelle
- CompCert verified compiler: about 100,000 lines in Coq

Basic Claim

Scale changes everything—be it code or mathematical proof.

Some examples of **mechanised** proofs:

- four-colour theorem: around 60,000 lines in Coq
- higher-order logic (HOL) library in Isabelle: around 66,000 lines
- Archive of Formal Proofs (AFP): entries range between 145 and 80,917 lines in Isabelle
- CompCert verified compiler: about 100,000 lines in Coq
- L4.verified project repository: around 390,000 lines in Isabelle
- Verisoft project published over 500,000 lines in Isabelle

O • NICTA

Size Distribution of AFP Entries

Size distribution of AFP entries in lines of proof, sorted by submission date

Lines of Proof in Comparison

- four-color theorem, Isabelle/HOL, CompCert
- L4.verified, Verisoft

Estimated Runtime for a Full Proof Check

- Isabelle/HOL: 10 minutes
- L4.verified: 8 hours
- Verisoft: 12 hours

Note: checking times vary significantly with the utilization of the processor.

Our Notion of "Large"

- different possible measures: lines, theorems, theories, ...
- numbers vary with person, language, tool, problem, ...
- hence: less stress on precise figures

Our Notion of "Large"

- different possible measures: lines, theorems, theories, ...
- numbers vary with person, language, tool, problem, . . .
- hence: less stress on precise figures

Classification

Large-scale developments

- concern multiple people over multiple years and
- no single person understands the whole proof at any given time.

Our Notion of "Large"

- different possible measures: lines, theorems, theories, ...
- numbers vary with person, language, tool, problem, . . .
- hence: less stress on precise figures

Classification

Large-scale developments

- concern multiple people over multiple years and
- no single person understands the whole proof at any given time.

L4.verified: 12⁺ people over 7⁺ years

Overview: Challenges

Four perspectives:

- proof introspection finding existing definitions and theorems
- proof development proving new statements
- proof maintenance keeping the proof base alive
- social and management aspects from many brains to one proof

Overview: Challenges

Four perspectives:

- proof introspection finding existing definitions and theorems
- proof development proving new statements
- proof maintenance keeping the proof base alive
- social and management aspects from many brains to one proof

Rafal's Observation

I still maintain that the introspection of proof and theories is an essential part of working on a large-scale verification development.

Rafal's Observation

I still maintain that the introspection of proof and theories is an essential part of working on a large-scale verification development.

Our experience in training new team members:

- Learning Isabelle? Easy.
- Understanding the verification subject? No big deal.
- Understanding the proofs is the hard part!

How do you find your way through this jungle?

Theory-file dependencies in L4.verified

How do you find your way through this jungle?

Theory-file dependencies in L4.verified

Solutions - L4.verified Tools

- find theorems tool with
 - pattern-matching against theorem statements and names
 - filtering rules against current goal
 - ranking by most accurate match
- auto-solve function warn if existing lemma is restated
- context-independent search over a web-interface
- locate tool¹ find definitions; decode syntactic sugar

¹inspired by Coq.

Solutions - L4.verified Tools

- find theorems tool with
 - pattern-matching against theorem statem
 - filtering rules against current goal
 - ranking by most accurate match
- auto-solve function warn if existing lem
- context-independent search over a web-i
- locate tool¹ find definitions; decode syr

¹inspired by Coq.

- find theorems tool with
 - pattern-matching against theorem statements and names
 - filtering rules against current goal
 - ranking by most accurate match
- auto-solve function warn if existing lemma is restated
- context-independent search over a web-interface
- locate tool¹ find definitions; decode syntactic sugar

lemma trancl_refcl:
$$(r^{-})^{+} = r^{*}$$

¹inspired by Coq.

Overview: Challenges

Four perspectives:

- proof introspection finding existing definitions and theorems
- proof development proving new statements
- proof maintenance keeping the proof base alive
- social and management aspects from many brains to one proof

Answer, Quick!

Answer, Quick!

Matthias' Conjecture

Over the years, I must have waited weeks for Isabelle. Productivity hinges on a short edit-check cycle; for that, I am even willing to (temporarily) sacrifice soundness.

- Challenges:
 - non-local change
 - speculative change
 - distributed development
- Solutions:
 - skip-proof mode (Isabelle)
 - proof cache (L4.verified)
 - concurrency (recent improvement)

Answer, Quick!

Matthias' Conjecture

Over the years, I must have waited weeks for Isabelle. Productivity hinges on a short edit-check cycle:

for that, I am even willing to (temporarily) sacr

- Challenges:
 - non-local change
 - speculative change
 - distributed development
- Solutions:
 - skip-proof mode (Isabelle)
 - proof cache (L4.verified)
 - concurrency (recent improvement)

by auto

Tim's Statement

Automating "donkey work" allows attention and effort to be focussed where most needed – but it must be done judiciously.

Focus: domain-specific automation

- extensions boost productivity
- unsoundness strikes back!

- lemma placement solutions:
 - Gravity tool (Verisoft)
 - Levity tool (L4.verified)

- lemma placement solutions:
 - Gravity tool (Verisoft)
 - Levity tool (L4.verified)
- dealing with duplication
 - avoid spot & mark remove
 - generalise automation?

- lemma placement solutions:
 - Gravity tool (Verisoft)
 - Levity tool (L4.verified)
- dealing with duplication
 - avoid spot & mark remove
 - generalise automation?
- proof and specification patterns
 Fight re-invention!
 Needs community-wide awareness.

- lemma placement solutions:
 - Gravity tool (Verisoft)
 - Levity tool (L4.verified)
- dealing with duplication
 - avoid spot & mark remove
 - generalise automation?
- proof and specification patterns
 Fight re-invention!
 Needs community-wide awareness.
- scope and name spaces
 - more important but harder than in programming
 - balancing locality is tricky definitions vs. theorems

Overview: Challenges

Four perspectives:

- proof introspection finding existing definitions and theorems
- proof development proving new statements
- proof maintenance keeping the proof base alive
- social and management aspects from many brains to one proof

Proof Maintenance

Lines of proof over time in one L4.verified module

Gerwin's Conclusion

Proof time is short but maintenance is for life.

Proof Maintenance

Need Sophisticated Refactoring Tools

WANTED

Native proof-refactoring tools to

- rename constants, types, and lemmas;
- reformulate definitions or properties for more consistency;
- move lemmas for better accessibility and reusablity;
- disentangle dependencies;
- remove duplication.
- largely unexplored, challenging research area
- even simple renaming requires semantic analysis
- non-local changes automation paramount

Overview: Challenges

Four perspectives:

- proof introspection finding existing definitions and theorems
- proof development proving new statements
- proof maintenance keeping the proof base alive
- social and management aspects from many brains to one proof

Social and Management Aspects

From Many Brains to One Proof

- Discipline: lemma bloody_obvious: "..."
 - overwhelming need for meaningful names challenging
 - self-discipline decreases over time tools!
- State of Proof regression tests
- Concurrent Development
 - compositionality under side-conditions,
 effective communication if side-conditions change
 - state the final top-level theorem first
 - continuous regression test

Social and Management Aspects

From Many Brains to One Proof

- Discipline: lemma bloody_obvious: "..."
 - overwhelming need for meaningful names challenging
 - self-discipline decreases over time tools!
- State of Proof –
- Concurrent Deve
 - compositiona effective com
 - state the final
 - continuous re

tions, anditions change rst

Summary

Scale changes everything

Rafal: **Proof introspection** is essential.

Matthias: Productivity hinges on a short edit-check cycle.

Tim: Customisable automation is crucial.

Gerwin: Maintenance is for life.

Thank you for your attention!