
Dependencies in Formal Mathematics:
Applications and extraction for Coq and Mizar

Jesse Alama1, Lionel Mamane, Josef Urban2

1Center for Artificial Intelligence, New University of Lisbon, Portugal

2Institute for Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands

MKM 2012, Bremen, 2012-07-09



Outline

I Senses of dependency
I Extracting/eliciting fine-grained dependency info

I For Mizar and the Mizar Mathematical Library
I For Coq and the Constructive Coq Repository at Nijmegen

(CoRN)
I Exploiting dependency info

I Editing support
I Ensuring library coherence in the face of changes to its

contents
I Training automated theorem provers
I Speeding up dependency extraction



Dependencies: many senses

Possible definitions: A depends on B iff:
I All proofs of A need (use, pass through, require) B
I This proof/definition of A uses B
I This proof/definition of A tries to use B
I Evaluating this proof script (of A ) will error out in the

absence of B
I If B ’s statement/type is changed, this proof/definition of A

may become invalid (while keeping the same semantics)
I If B ’s proof/body is changed, this proof/definition of A may

become invalid (while keeping the same semantics)
I If B ’s type is changed, this definition of A changes

semantics
I If B ’s body is changed, this definition of A changes

semantics



What depends on what?

Definition (Needs)
A definition/theorem T depends on some
definition/lemma/theorem T ′, (or equivalently, that T ′ is a
dependency of T ) if T “needs” T ′ to exist or hold.

I Well-formedness/justification for/provability of T fails in the
absence of T ′.



Dependencies: harder than you think (Coq)

I But for Coq, dependencies are easy: walk the λ-term!
I No: For items A and B, in the absence of B, A ’s proof

script has another behaviour:
try solve apply B;

solve apply C.

I What can B be?
I Definition / lemma
I user-defined tactic: not visible in λ-term
I parametrisation of a tactic, e.g. search depth, morphism

declaration, . . .
Need knowledge about each and every tactic!

I parser / lexer parametrisation: notation; hook into
lexer/parser?



Dependencies: harder than you think (Mizar)

I Explicit dependencies are easy to gather
I If a proof of statement A looks like

A by Def1, Lemma2, Theorem5

then this step obviously depends on Def1, Lemma2, and
Theorem5 for some senses, but not necessarily for others

I Much dependency information is implicit: cannot be
computed from the text alone

I Typing of terms in Mizar’s type hierarchy (functions are
relations; a field is a group; etc.) are not explicit

I A number of equations may be implicitly available when
doing reasoning, e.g. ∀X(X − ∅ = X)



Mizar

I Mizar is a proof assistant/interactive theorem prover built
on classical first-order logic and set theory.

I Declarative, natural deduction-tyle proof language.
I One directly writes the proof (no tactics).

Simple Mizar proof

theorem

for X being set holds X is empty implies X = {}

proof

let X be set;

assume not ex x st x in X;

then x in {} iff x in X by Def1; :: def. of {}

hence thesis by TARSKI:1; :: extensionality

end;



Dependency extraction for Mizar

I Every Mizar article (unified collection of definitions,
theorems, proofs, etc.) has its own environment.

I The environment is a (very) conservative overestimate of
all items on which the article depends.

I Split up every article of the Mizar Mathematical Library into
its constituent items, then minimize (brute-force) its
environment.

I Minimization in the sense: what does this proof depend
upon? Unique minimal set of needed items.

I Potential incompleteness: dependencies are extracted up
to the level of Mizar automation.



Coq: coverage of dependencies

Dependencies on logical constructs.
Dependency logical or non-logical.



Coq: theoretical structure

I Curry-Howard-de Bruijn isomorphism: pCIC
I Statement-as-type
I theorem = definition = name→ (type, body)
I axiom = parameter = name→ type



Coq: tactic command structure

I parsing
I Ltac (domain-specific programming language) evaluation

expression tree; nodes: OCaml tactics
I OCaml tactics evaluation expression tree; nodes: atomic

tactics (refine, intro, . . . )

Result of each step kept in proof tree: can inspect there
I arguments passed to tactics
I references pulled by user-defined tactics
I references pulled by OCaml tactics



Coq: proof script structure

Command types:
I Register new logical construct from scratch.
Definition Name : type := body.

I Start a new theorem.
Theorem Name : type.

I Register finished in-progress proof
Qed.

I Make progress in proof
tactics

Hook into common functions these commands eventually call.



Coq: hook into commands

I Register new logical construct from scratch.
Walk over type & body, collect references.

I Start a new theorem.
Walk over type, collect references.

I Register finished in-progress proof
Walk over body, collect references.

I Make progress in proof
Walk over top node of proof tree, all three levels.



Interactive front-end: tmEgg

I Allow interleaving work on different theorems
I When asked “load this theorem”, load only necessary

lemmas
I When changing loaded theorem, invalidate those that use

it
(environment well-formed)



Library recompilation, I: Coq
Change in a definition or lemma: is the library still consistent?

I Want to do the least work possible: recheck only reverse
dependencies.

I State-of-the-art: per-file dependencies
Recompile whole file when any item inside depends on any
(un)changed item in changed file.

I Our contribution: fine-grained per-item dependencies
Result: recompile whole file whenever any item inside
depends on changed item

I With system support: recompile only those items that
depend in changed item

MathWiki Project ar RU Nijmegen

Coq/CoRN http://mws.cs.ru.nl/cwiki
Mizar http://mws.cs.ru.nl/mwiki

http://mws.cs.ru.nl/cwiki
http://mws.cs.ru.nl/mwiki


Library recompilation: gains
CoRN/item CoRN/file MML-100/item MML-100/file

Items 9 462 9 462 9 553 9 553
Deps 175 407 2 214 396 704 513 21 082 287
TDeps 3 614 445 24 385 358 7 258 546 34 974 804
P(%) 8 54.5 15.9 76.7
ARL 382 2 577.2 759.8 3 661.1
MRL 12.5 1 183 155.5 2 377.5

Deps Number of dependency edges

TDeps Number of transitive dependency edges

P Probability that given two randomly chosen items, one
depends (directly or indirectly) on the other, or vice
versa.

ARL Average number of items recompiled if one item is
changed.

MRL Median number of items recompiled if one item is
changed.



Learning dependencies

I One can train a machine learner with dependency info.
I Automated theorem proving (ATP) in mathematics. Prove

theorems from earlier knowledge.
I Premise selection problem: of many available (and

logically admissible) premises, which should we use?
I Given a Mizar item, use the fine-grained dependency info

to train a machine learner.
I Result: improvement of ATP performance compared to

unassisted premise selection by about 40–50%.



Dependencies aiding dependencies

I Dependency extraction for Mizar is very expensive:
brute-force search taking weeks for the entire Mizar library.

I Knowing the exact dependencies for all items logically
preceding I can help significantly in extracting the
dependencies of I.

I Machine learner can provide a good guess. Use exact
information to train.

I Speedup: roughly 2x.



Conclusion and future work

I Multiple senses of ’dependency’ in formal mathematics are
available.

I Extracting dependencies can be quite complex. But big
rewards can be reaped.

I We have done an analysis and extraction of dependencies
for Coq (specifically, the CoRN library) and for Mizar.

I Future work:
I Speed up dependency extraction (ideal: more-or-less live

dependency extraction. Web interface.)
I Handle non-logical objects: tactics, notations, . . .
I Trial by fire in mature applications

I interactive UI front-end (≈ tmEgg)
I library-wide fast rechecking / recompilation (≈ MathWiki)

I Support in systems to make better use of deps


	Senses of 'dependency'
	Dependency extraction
	Experiments

