Theory Presentation Combinators

Jacques Carette, and Russell O’Connor

McMaster University

CICM 2012, Bremen, Germany

12t July 2012

S

Motivation

@ As part of MathScheme, we wish to efficiently encode
mathematical knowledge.

1. Efficient for the library developper
2. Efficient for the user
3. Efficient for processing

@ Focus first on Theory Presentations

» Over a (dependently) typed expression language
» Syntax for meaningful content

Carette, O’Connor Theory Presentation Combinators 2/18

Theories

Monoid := Theory {

U : type;

x* : (U, U) —> U;

e : U;

axiom rightldentity_x_e : forall x:U. xxe = x;

axiom leftldentity_x_e : forall x:U. exx = x;

axiom associative_x : forall x,y,z:U. (xx*xy)xz=xx*x(yx*z)

Carette, O’Connor Theory Presentation Combinators 3/18

Theories

Monoid := Theory {

U : type;

x* : (U, U) —> U;

e : U;

axiom rightldentity_x_e : forall x:U. xxe = x;

axiom leftldentity_x_e : forall x:U. exx = x;

axiom associative_x : forall x,y,z:U. (xx*xy)xz=xx*x(yx*z)
}
CommutativeMonoid := Theory {

U : type;

x : (U, U) —> U;

e : U;

axiom rightldentity_x_e : forall x:U. xxe = x;

axiom leftldentity_x_e : forall x:U. exx = x;

axiom associative_x : forall x,y,z:U. (xx*xy)xz=xx*(yx*z)

axiom commutative_x : forall x,y,z:U. xxy=yxx

Carette, O’Connor Theory Presentation Combinators 3/18

Theories

Monoid := Theory {

U : type;

x* : (U, U) —> U;

e : U;

axiom rightldentity_x_e : forall x:U. xxe = x;

axiom leftldentity_x_e : forall x:U. exx = x;

axiom associative_x : forall x,y,z:U. (xx*xy)xz=xx*x(yx*z)

}

AdditiveMonoid := Theory {

U : type;
+ : (U, U) —> U;
0 : U;

axiom rightldentity_+_0 : forall x:U. x40 = x;
axiom leftldentity_+_0 : forall x:U. 0+x = x;
axiom associative_+ : forall x,y,z:U. (x+y)+z=x+(y+z)

Carette, O’Connor Theory Presentation Combinators 3/18

Theories

Monoid := Theory {
U : type;
x* : (U, U) —> U;
e : U;
axiom rightldentity_x_e : forall x:U. xxe = x;
axiom leftldentity_x_e : forall x:U. exx = x;
axiom associative_x : forall x,y,z:U. (x*xy)xz=xx(y*z)
}
AdditiveCommutativeMonoid := Theory {
U : type;
+ : (U, U) — U;
0 : U;

axiom rightldentity_+_0 : forall x:U. x40 = x;
axiom leftldentity_+_0 : forall x:U. 0+x = x;
axiom associative_+ : forall x,y,z:U. (x+y)+z=x+(y+z)
axiom commutative_+ : forall x,y,z:U. x4+y=y+x

Carette, O’Connor Theory Presentation Combinators 3/18

Combinators for theories

Extension:
CommutativeMonoid := Monoid extended by {
axiom commutative_x : forall x,y,z:U. xxy=yxx }

Carette, O’Connor Theory Presentation Combinators 4/18

Combinators for theories

Extension:

CommutativeMonoid := Monoid extended by {
axiom commutative_x : forall x,y,z:U. xxy=yxx }
Renaming:

AdditiveMonoid := Monoid[* |-> +, e |-> 0]

Carette, O’Connor Theory Presentation Combinators 4/18

Combinators for theories

Extension:

CommutativeMonoid := Monoid extended by {
axiom commutative_x : forall x,y,z:U. xxy=yxx }
Renaming:

AdditiveMonoid := Monoid[* |-> +, e |-> 0]

Combination:

AdditiveCommutativeMonoid :=
combine AdditiveMonoid, CommutativeMonoid over Monoid

Carette, O’Connor Theory Presentation Combinators 4/18

A fraction of the Algebraic Zoo

eeeeeee O’Connor Theory Presentation Combinators 5/18

Library fragment 1

NearSemiring := combine AdditiveSemigroup, Semigroup, RightRingoid over |
NearSemifield := combine NearSemiring , Group over Semigroup

Semifield := combine NearSemifield, LeftRingoid over RingoidSig

NearRing := combine AdditiveGroup, Semigroup, RightRingoid over RingoidSi
Rng := combine AbelianAdditiveGroup , Semigroup, Ringoid over RingoidSig
Semiring := combine AdditiveCommutativeMonoid, Monoidl, Ringoid, Left0O o\
SemiRng := combine AdditiveCommutativeMonoid, Semigroup, Ringoid over Rir
Dioid := combine Semiring , lIldempotentAdditiveMagma over AdditiveMagma
Ring := combine Rng, Semiring over SemiRng

CommutativeRing := combine Ring, CommutativeMagma over Magma

BooleanRing := combine CommutativeRing, ldempotentMagma over Magma
NoZeroDivisors := Ringoid0Sig extended by {

axiom onlyZeroDivisor_x_0: forall x:U.
((exists b:U. xxb = 0) and (exists b:U. bxx = 0)) implies (x = 0) }

Domain := combine Ring, NoZeroDivisors over Ringoid0Sig
IntegralDomain := combine CommutativeRing, NoZeroDivisors over Ringoid0Si
DivisionRing := Ring extended by {
axiom divisible : forall x:U. not (x=0) implies
((exists! y:U. yxx = 1) and (exists! y:U. xxy = 1)) }
Field := combine DivisionRing , IntegralDomain over Ring

Carette, O’Connor Theory Presentation Combinators 6/18

Library fragment 2

MoufanglLoop := combine Loop, Moufangldentity over Magma
LeftShelfSig := Magma[*x |—> [>]
LeftShelf := LeftDistributiveMagma [*x |[—> |>]
RightShelfSig := Magma[* |—> <|]
RightShelf := RightDistributiveMagmal|[*x |—> <|]
RackSig := combine LeftShelfSig, RightShelfSig over Carrier
Shelf := combine LeftShelf, RightShelf over RackSig
LeftBinarylnverse := RackSig extended by {
axiom leftlnverse_|>_<]| : forall x,y:U. (x |>vy) <| x=y }
RightBinarylnverse := RackSig extended by {
axiom rightlnverse_|>_<| : forall x,y:U. x |> (y <| x) =y }
Rack := combine RightShelf, LeftShelf, LeftBinarylnverse ,
RightBinarylnverse over RackSig
Leftldempotence := ldempotentMagmal| * |—> [>]
Rightldempotence := IdempotentMagmal[* |—> <|]
LeftSpindle := combine LeftShelf, Leftldempotence over LeftShelfSig
RightSpindle := combine RightShelf, Rightldempotence over RightShelfSig
Quandle := combine Rack, LeftSpindle, RightSpindle over Shelf

Carette, O’Connor Theory Presentation Combinators 7/18

What we have

@ A decent library of theories

@ An expander

@ Mostly complete export (of expanded version) to
MMT /OpenMath

@ Mostly complete export (of expanded version) to Matita

@ In-progress: “export” to metaocaml and Template Haskell

Carette, O’Connor Theory Presentation Combinators 8/18

But what does it mean?

@ Intuitively: work in some category of signatures
» extend: embedding
> renaming: renaming!
» combine: pushout
e Lots of precedent (Goguen and Burstall, D. Smith, and many
many followers)

Carette, O’Connor Theory Presentation Combinators 9/18

But what does it mean?

@ Intuitively: work in some category of signatures

» extend: embedding
> renaming: renaming!
» combine: pushout

e Lots of precedent (Goguen and Burstall, D. Smith, and many

many followers)

@ We don't think it works well enough!

T1
T2

Theory { n
Theory { n

T3 := combine T1,

result(s):

Integer }
Natural }
T2 over Empty

Carette, O’Connor

Theory Presentation Combinators

9/18

But what does it mean?

@ Intuitively: work in some category of signatures

» extend: embedding
> renaming: renaming!
» combine: pushout

e Lots of precedent (Goguen and Burstall, D. Smith, and many
many followers)

@ We don't think it works well enough!

Tl := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty

result(s):

T3 := Theory {
n$234 : Integer
n$235 : Natural

}

Carette, O’Connor Theory Presentation Combinators 9/18

But what does it mean?

@ Intuitively: work in some category of signatures

» extend: embedding
> renaming: renaming!
» combine: pushout

e Lots of precedent (Goguen and Burstall, D. Smith, and many
many followers)

@ We don't think it works well enough!

Tl := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty

result(s):

T3 := Theory {
T1l/n : Integer
T2/n : Natural

}

Carette, O’Connor Theory Presentation Combinators 9/18

But what does it mean?

@ Intuitively: work in some category of signatures

» extend: embedding
> renaming: renaming!
» combine: pushout

e Lots of precedent (Goguen and Burstall, D. Smith, and many
many followers)

@ We don't think it works well enough!

Tl := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty
result(s):
The problem:

1. theory does not distinguish between isomorphic presentations

2. humans distinguish them, to a point

Carette, O’Connor Theory Presentation Combinators 9/18

The Semantics of Syntax qua Syntax

We need a semantics of our language(s) as syntax.

Requirements:
@ Names matter in the presentation
e Arrows matter (categorical thinking)

@ Independent of the underlying logic and type theory

@ Coherent with semantics (aka models)

» Induces transport of conservative extensions
» Induces transport of theorems

Focus on: the intensional content of Theory Presentations

Carette, O’Connor Theory Presentation Combinators

10/18

Crucial Observation

Observation
ThyPres ~ ContextP

Theory Presentation + translations

Theory {

U : type;

x* : (U, U) —> U;

axiom associative_x : forall x,y,z:U. (xxy)xz=xx*x(yx*xz)
}

A-calculus (or logical) context + substitutions

U:type,*: (U, U) — U,assoc : Vx,y,z: U.(xxy)*xz = xx(y*2)

Carette, O’Connor Theory Presentation Combinators 11/18

Basic definitions

Definition
A context I is a sequence of pairs of labels and types (or kinds or
propositions), I := (xp : 00;...;Xp—1 : On—1), such that for i < n

(X0 : 00} ...} Xi—1:0i_1) Foj: Type
holds (resp. : Kind, or : Prop)
Notation: T'= (x : o) " and A= (y : 7)J" .

Definition

C has as objects contexts [, and morphisms [— A are
assignments [yo — to,...,¥Ym +> tm—1|, abbreviated as [y — t“]gﬂ'_1
where the ty, ..., t,,—1 are terms such that

[+ to: 10 r|—tm_127'm_1[yl%t]6n_2

all hold, where 7 [y — t]é) denotes substitution application.

Carette, O’Connor Theory Presentation Combinators 12/18

More definitions

Definition

The category of nominal assignments, B, has the same objects as

C, but only those morphisms whose terms are labels.

Definition

Those nominal assignments where every label occurs at most once

will be called general extensions (= no confusion).

+
r—|— f > A‘i‘
A
r A
f_

Definition

The category of general extensions IE has all
general extensions from B as objects, and
given two general extensions A : ™ — I and
B: AT — A, a morphism f : A— Bis a
commutative square from B. We will denote

this commutative square by
(fT,f7)y: A— B.

Carette, O’Connor

Theory Presentation Combinators

13/18

Structure Theorem

Theorem
The functor cod : [E — B is a fibration.

Carette, O’Connor Theory Presentation Combinators 14/18

Structure Theorem

Theorem
The functor cod : [E — B is a fibration.

(U Type) y)
f (U : Type) — <U - Type; U’ : Type>
f = (U~ U U~ U]
Carette, O’Connor Theory Presentation Combinators 14/18

The MathScheme Theory Presentation Language

tpc ;= extend A by {/
a, b, c € labels P e y i}

combine A ry, B nr
A, B, C € names
_ A: B
| € judgments®
i} Ar

r (a,- —> b,')
Empty
Theory {/}

Note: completely generic over the underlying type theory.

Carette, O’Connor Theory Presentation Combinators

15/18

Object-level semantics

[—]B : tpc — |B|

[Empty] = ()
[Theory {/}]s = (/)
[A r]s = [r]~- [AlB
[A; Ble = [B]=B
[extend A by {/}[B = [AlB§ (/)
[combine Air, Ao = D

[[rl]]w O 5/\1\

[[r2]]7T 05/42 5A

A A
2 5a

where A = [[Al]]]]g [HAQ]]]B.

Carette, O’Connor Theory Presentation Combinators

16/18

Object-level semantics

[-]B : tpc — [B| Al
[Empty]s = ()
[Theory {/}]s = (/) [r2]x00a, |64
[A rls = [r]= - [Als
[A: Bl = [Bls Ao ———— A
[extend A by {/}|B = [Als§ (/) A

[combine Air, Ao = D where A = [Ai]g M [A2]B.
Tl := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1 [n |—> m], T2

[[rl]]w O 5/\1\

Carette, O’Connor

Theory Presentation Combinators

16/18

Object-level semantics

[[rl]]w O 5/\1\

[~]B : tpc — [B| A1
[Empty]s = ()
[Theory {/}]B = (/) [r2]x 0 da, A
[A rls = [r]= - [AlB
[A; Ble = [B]s A, A
Textend A by (Vg = [Alg 3 (/) 0A
[combine Air, Ao = D where A = [A1]B M [A2]B.

Tl := Theory { n : Integer }

T2 := Theory { n : Natural }

T3 := combine T1 [n |—> m], T2

T3 := Theory { m : Integer, n : Natural }

Carette, O’Connor Theory Presentation Combinators

16/18

Morphism-level semantics

[l : tpc — [E]|
[Empty]r = id) [n]xodT,

[Theory {/}]z = 1 D gt
[Arle = [rl~-[Ale il 067, | A
[A; Ble = [Alec [Blr T :

lextend A by {/}|g = da v
[combine A1, Aon]r = [n]rodr o [Al]E E Ao T
= [r]zodT, o [A2]E
Carette, O’Connor Theory Presentation Combinators 17/18

Future Work and Conclusion

Future Work
@ Functorial semantics — diagram-level “constructions”
@ Definitions [done]

@ Port library to new semantics [ongoing]

Carette, O’Connor Theory Presentation Combinators 18/18

Future Work and Conclusion

Future Work
@ Functorial semantics — diagram-level “constructions”
@ Definitions [done]
@ Port library to new semantics [ongoing]

Conclusion

@ Thereis a lot of structure in Mathematics, and
it can be leveraged to simplify builder’s lives.

e Category theory can really help you

@ Follow the math, don’t follow what you think the math should
be

Carette, O’Connor Theory Presentation Combinators 18/18

