Theory Presentation Combinators

Jacques Carette, and Russell O'Connor

McMaster University

CICM 2012, Bremen, Germany

12th July 2012

Motivation

- As part of MathScheme, we wish to efficiently encode mathematical knowledge.
 - 1. Efficient for the library developper
 - 2. Efficient for the user
 - 3. Efficient for processing
- Focus first on Theory Presentations
 - Over a (dependently) typed expression language
 - Syntax for meaningful content

```
Monoid := Theory {
  U : type;
  * : (U, U) -> U;
  e : U;
  axiom rightIdentity_*_e : forall x:U. x*e = x;
  axiom leftIdentity_*_e : forall x:U. e*x = x;
  axiom associative_* : forall x,y,z:U. (x*y)*z=x*(y*z)
}
```

```
Monoid := Theory {
 U: type;
 * : (U, U) \rightarrow U;
 e : U;
 axiom rightIdentity_*e : forall x:U. x*e = x;
 axiom leftIdentity_*e : forall x:U. e*x = x;
 axiom associative_*: forall x,y,z:U. (x*y)*z=x*(y*z)
CommutativeMonoid := Theory {
 U: type;
 * : (U, U) \rightarrow U;
 e : U:
 axiom rightIdentity_*e : forall x:U. x*e = x;
  axiom leftIdentity_*e : forall x:U. e*x = x;
 axiom associative_*: forall x,y,z:U. (x*y)*z=x*(y*z)
 axiom commutative_* : forall x,y,z:U. x*y=y*x
```

```
Monoid := Theory {
 U : type;
 * : (U, U) \rightarrow U;
 e : U;
 axiom rightIdentity_*e : forall x:U. x*e = x;
 axiom leftIdentity_*e : forall x:U. e*x = x;
 axiom associative_*: forall x,y,z:U. (x*y)*z=x*(y*z)
AdditiveMonoid := Theory {
 U: type;
 + : (U, U) \rightarrow U;
 0 : U:
 axiom rightIdentity_+_0 : forall x:U. x+0 = x;
  axiom leftIdentity_+_0 : forall x:U. 0+x = x;
 axiom associative_+ : forall x,y,z:U. (x+y)+z=x+(y+z)
```

```
Monoid := Theory {
 U : type;
 * : (U, U) \rightarrow U;
 e : U;
 axiom rightIdentity_*e : forall x:U. x*e = x;
 axiom leftIdentity_*e : forall x:U. e*x = x;
 axiom associative_*: forall x,y,z:U. (x*y)*z=x*(y*z)
AdditiveCommutativeMonoid := Theory {
 U : type;
 + : (U, U) \rightarrow U;
 0 : U:
 axiom rightIdentity_+_0 : forall x:U. x+0 = x;
 axiom leftIdentity_+_0 : forall x:U. 0+x = x;
 axiom associative_+ : forall x,y,z:U. (x+y)+z=x+(y+z)
 axiom commutative_+ : forall x, y, z:U. x+y=y+x
```

Combinators for theories

Extension:

```
CommutativeMonoid := Monoid extended by { axiom commutative_* : forall x,y,z:U. x*y=y*x }
```

Combinators for theories

Extension:

```
CommutativeMonoid := Monoid extended by {
  axiom commutative_* : forall x,y,z:U. x*y=y*x }
  Renaming:
AdditiveMonoid := Monoid[ * |-> +, e |-> 0 ]
```

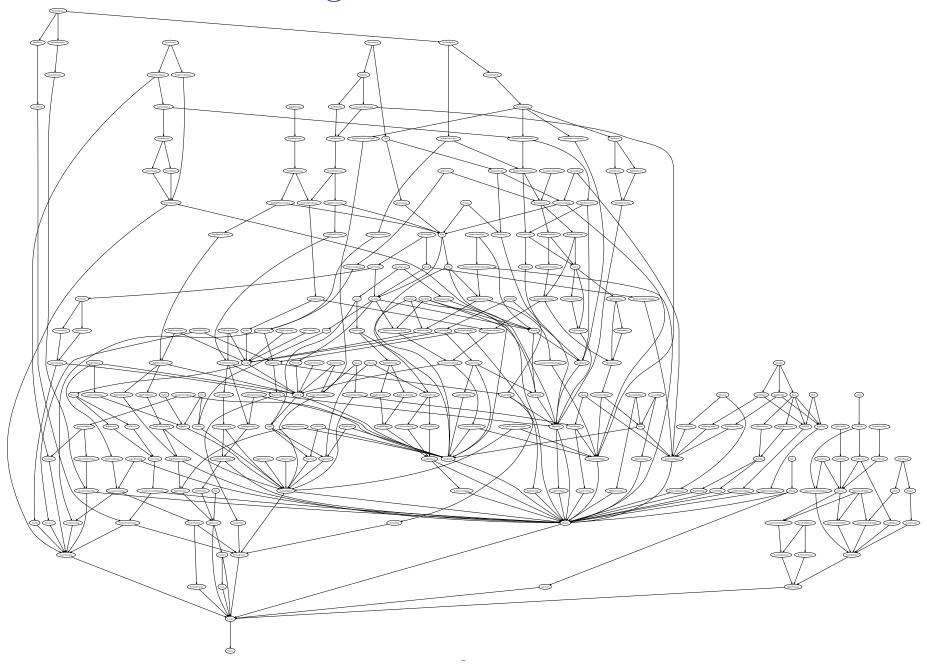
Combinators for theories

Extension:

```
CommutativeMonoid := Monoid extended by {
   axiom commutative_* : forall x,y,z:U. x*y=y*x }
   Renaming:
AdditiveMonoid := Monoid[ * |-> +, e |-> 0 ]
   Combination:
AdditiveCommutativeMonoid :=
```

combine AdditiveMonoid, CommutativeMonoid over Monoid

A fraction of the Algebraic Zoo



Library fragment 1

```
NearSemiring := combine AdditiveSemigroup, Semigroup, RightRingoid over F
NearSemifield := combine NearSemiring, Group over Semigroup
Semifield := combine NearSemifield, LeftRingoid over RingoidSig
NearRing := combine AdditiveGroup, Semigroup, RightRingoid over RingoidSi
Rng := combine Abelian Additive Group, Semigroup, Ringoid over Ringoid Sig
Semiring := combine AdditiveCommutativeMonoid, Monoid1, Ringoid, Left0 ov
SemiRng := combine AdditiveCommutativeMonoid, Semigroup, Ringoid over Ringoid
Dioid := combine Semiring, IdempotentAdditiveMagma over AdditiveMagma
Ring := combine Rng, Semiring over SemiRng
CommutativeRing := combine Ring, CommutativeMagma over Magma
BooleanRing := combine CommutativeRing, IdempotentMagma over Magma
NoZeroDivisors := RingoidOSig extended by {
  axiom onlyZeroDivisor_*_0: forall x:U.
    ((exists b:U. x*b = 0) and (exists b:U. b*x = 0)) implies (x = 0)
Domain := combine Ring, NoZeroDivisors over RingoidOSig
IntegralDomain := combine CommutativeRing, NoZeroDivisors over RingoidOSi
DivisionRing := Ring extended by {
  axiom divisible : forall x:U. not (x=0) implies
    ((exists! y:U. y*x = 1) and (exists! y:U. x*y = 1)) }
Field := combine DivisionRing, IntegralDomain over Ring
```

Library fragment 2

```
MoufangLoop := combine Loop, MoufangIdentity over Magma
LeftShelfSig := Magma[ * |-> |> ]
LeftShelf := LeftDistributiveMagma [ * |-> |> ]
RightShelfSig := Magma[ * |-> <| ]
RightShelf := RightDistributiveMagma[ * |-> < ]
RackSig := combine LeftShelfSig , RightShelfSig over Carrier
Shelf := combine LeftShelf, RightShelf over RackSig
LeftBinaryInverse := RackSig extended by {
    axiom leftInverse_|>_-<| : forall x,y:U. (x |> y) <| x = y }
RightBinaryInverse := RackSig extended by {
    axiom rightInverse_|>_<| : forall x,y:U. x |> (y <| x) = y }
Rack := combine RightShelf, LeftShelf, LeftBinaryInverse,
    RightBinaryInverse over RackSig
LeftIdempotence := IdempotentMagma[ * |-> |> ]
RightIdempotence := IdempotentMagma[ * |-> < ]
LeftSpindle := combine LeftShelf, LeftIdempotence over LeftShelfSig
RightSpindle := combine RightShelf, RightIdempotence over RightShelfSig
Quandle := combine Rack, LeftSpindle, RightSpindle over Shelf
```

What we have

- A decent library of theories
- An expander
- Mostly complete export (of expanded version) to MMT/OpenMath
- Mostly complete export (of expanded version) to Matita
- In-progress: "export" to metaocaml and Template Haskell

- Intuitively: work in some category of signatures
 - extend: embedding
 - renaming: renaming!
 - combine: pushout
- Lots of precedent (Goguen and Burstall, D. Smith, and many many followers)

- Intuitively: work in some category of signatures
 - extend: embedding
 - renaming: renaming!
 - combine: pushout
- Lots of precedent (Goguen and Burstall, D. Smith, and many many followers)
- We don't think it works well enough!

```
T1 := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty
result(s):
```

- Intuitively: work in some category of signatures
 - extend: embedding
 - renaming: renaming!
 - combine: pushout
- Lots of precedent (Goguen and Burstall, D. Smith, and many many followers)
- We don't think it works well enough!

```
T1 := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty
  result(s):

T3 := Theory {
  n$234 : Integer
  n$235 : Natural
}
```

- Intuitively: work in some category of signatures
 - extend: embedding
 - renaming: renaming!
 - combine: pushout
- Lots of precedent (Goguen and Burstall, D. Smith, and many many followers)
- We don't think it works well enough!

```
T1 := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty
  result(s):

T3 := Theory {
   T1/n : Integer
   T2/n : Natural
}
```

- Intuitively: work in some category of signatures
 - extend: embedding
 - renaming: renaming!
 - combine: pushout
- Lots of precedent (Goguen and Burstall, D. Smith, and many many followers)
- We don't think it works well enough!

```
T1 := Theory { n : Integer }
T2 := Theory { n : Natural }
T3 := combine T1, T2 over Empty
result(s):
```

The problem:

- 1. theory does not distinguish between isomorphic presentations
- 2. humans distinguish them, to a point

The Semantics of Syntax qua Syntax

We need a semantics of our language(s) as syntax.

Requirements:

- Names matter in the presentation
- Arrows matter (categorical thinking)
- Independent of the underlying logic and type theory
- Coherent with semantics (aka models)
 - Induces transport of conservative extensions
 - Induces transport of theorems

Focus on: the intensional content of Theory Presentations

Crucial Observation

Observation

 $ext{ThyPres} \simeq ext{Context}^{op}$

Theory Presentation + translations

```
Theory {
    U : type;
    * : (U, U) -> U;
    axiom associative_* : forall x,y,z:U. (x*y)*z=x*(y*z)
}
```

 λ -calculus (or logical) context + substitutions

```
U: \mathsf{type}, *: (U,U) \rightarrow U, \mathsf{assoc}: \forall x,y,z: U.(x*y)*z = x*(y*z)
```

Basic definitions

Definition

A context Γ is a sequence of pairs of labels and types (or kinds or propositions), $\Gamma := \langle x_0 : \sigma_0; \dots; x_{n-1} : \sigma_{n-1} \rangle$, such that for i < n

$$\langle x_0 : \sigma_0; \ldots; x_{i-1} : \sigma_{i-1} \rangle \vdash \sigma_i : \mathsf{Type}$$

holds (resp. : Kind, or : Prop)

Notation: $\Gamma = \langle x : \sigma \rangle_0^{n-1}$ and $\Delta = \langle y : \tau \rangle_0^{m-1}$.

Definition

 $\mathbb C$ has as objects contexts Γ , and morphisms $\Gamma \to \Delta$ are assignments $[y_0 \mapsto t_0, \ldots, y_m \mapsto t_{m-1}]$, abbreviated as $[y \mapsto t]_0^{m-1}$ where the t_0, \ldots, t_{m-1} are terms such that

$$\Gamma \vdash t_0 : \tau_0 \qquad \dots \qquad \Gamma \vdash t_{m-1} : \tau_{m-1} [y \mapsto t]_0^{m-2}$$

all hold, where $\tau [y \mapsto t]_0^i$ denotes substitution application.

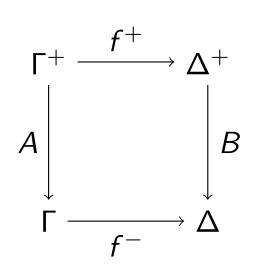
More definitions

Definition

The category of nominal assignments, \mathbb{B} , has the same objects as \mathbb{C} , but only those morphisms whose terms are labels.

Definition

Those nominal assignments where every label occurs at most once will be called general extensions (\approx no confusion).



Definition

 $\Gamma^+ \xrightarrow{f^+} \Lambda^+$ The category of general extensions $\mathbb E$ has all general extensions from $\mathbb B$ as objects, and given two general extensions $A:\Gamma^+\to\Gamma$ and $B:\Delta^+\to\Delta$, a morphism $f:A\to B$ is a commutative square from $\mathbb B$. We will denote this commutative square by this commutative square by $\langle f^+, f^- \rangle : A \to B$.

Structure Theorem

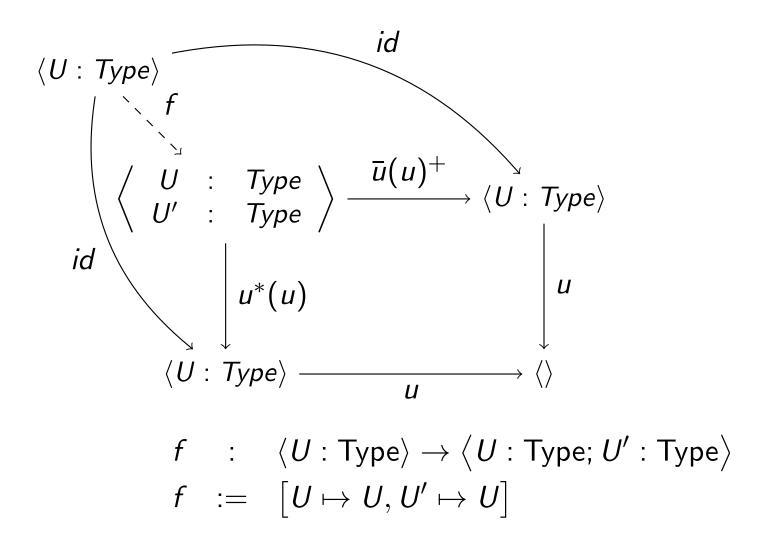
Theorem

The functor cod : $\mathbb{E} \to \mathbb{B}$ is a fibration.

Structure Theorem

Theorem

The functor cod : $\mathbb{E} \to \mathbb{B}$ is a fibration.



The MathScheme Theory Presentation Language

```
a,b,c \in \mathsf{labels}
A,B,C \in \mathsf{names}
I \in \mathsf{judgments}^*
r \in (a_i \mapsto b_i)^*
```

```
tpc ::= extend A by \{I\}

| combine A r_1, B r_2

| A; B

| A r

| Empty

| Theory \{I\}
```

Note: completely generic over the underlying type theory.

Object-level semantics

$$D \xrightarrow{\llbracket r_1
bracket}_{\pi} \delta_{A_1} \ A_1 \ igg|_{\llbracket r_2
bracket}_{\pi} \circ \delta_{A_2} \ igg|_{\delta_A} \ A_2 \xrightarrow{\delta_A} A$$
 where $A = \llbracket A_1
bracket_{\mathbb{B}} \sqcap \llbracket A_2
bracket_{\mathbb{B}}.$

Object-level semantics

```
\llbracket - \rrbracket_{\mathbb{B}} : \mathsf{tpc} \rightharpoonup | \mathbb{B} |
\llbracket \mathsf{Empty} \rrbracket_{\mathbb{B}} = \langle \rangle
\llbracket \mathsf{Theory} \; \{I\} \rrbracket_{\mathbb{B}} \cong \langle I \rangle
\llbracket A \; r \rrbracket_{\mathbb{B}} = \llbracket r \rrbracket_{\pi} \cdot \llbracket A \rrbracket_{\mathbb{B}}
\llbracket A; B \rrbracket_{\mathbb{B}} = \llbracket B \rrbracket_{\mathbb{B}}
\llbracket \mathsf{extend} \; A \; \mathsf{by} \; \{I\} \rrbracket_{\mathbb{B}} \cong \llbracket A \rrbracket_{\mathbb{B}} \; \langle I \rangle
\llbracket \mathsf{combine} \; A_1 r_1, A_2 r_2 \rrbracket_{\mathbb{B}} \cong D
\mathsf{T1} \; := \; \mathsf{Theory} \; \{ \; \mathsf{n} \; : \; \mathsf{Integer} \; \}
\mathsf{T2} \; := \; \mathsf{Theory} \; \{ \; \mathsf{n} \; : \; \mathsf{Natural} \; \}
```

T3 := combine T1 [n | -> m], T2

$$D \xrightarrow{\llbracket r_1 \rrbracket_{\pi} \circ \delta_{A_1}} A_1$$

$$\downarrow \llbracket r_2 \rrbracket_{\pi} \circ \delta_{A_2} \qquad \qquad \qquad \qquad \delta_A$$

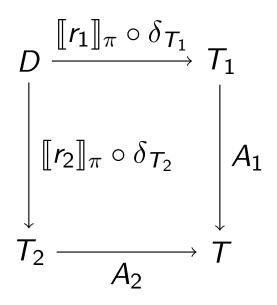
$$A_2 \xrightarrow{\delta_A} A$$
ere $A = \llbracket A_1 \rrbracket_{\pi} \sqcap \llbracket A_2 \rrbracket_{\pi}$

where $A = \llbracket A_1 \rrbracket_{\mathbb{B}} \sqcap \llbracket A_2 \rrbracket_{\mathbb{B}}$.

Object-level semantics

```
\llbracket - \rrbracket_{\mathbb{B}} : \mathsf{tpc} \rightharpoonup |\mathbb{B}|
                   [Empty]_{\mathbb{B}} = \langle \rangle
            [Theory \{I\}]_{\mathbb{B}} \cong \langle I \rangle
                       [\![A\ r]\!]_{\mathbb{B}} = [\![r]\!]_{\pi} \cdot [\![A]\!]_{\mathbb{B}}
                      [A; B]_{\mathbb{B}} = [B]_{\mathbb{B}}
    where A = [A_1]_{\mathbb{B}} \cap [A_2]_{\mathbb{B}}.
[ combine A_1 r_1, A_2 r_2 ]_{\mathbb{B}} \cong D
T1 := Theory \{ n : Integer \}
T2 := Theory \{ n : Natural \}
T3 := combine T1 [n | -> m], T2
T3 := Theory \{ m : Integer, n : Natural \}
```

Morphism-level semantics



Future Work and Conclusion

Future Work

- Functorial semantics diagram-level "constructions"
- Definitions [done]
- Port library to new semantics [ongoing]

Future Work and Conclusion

Future Work

- Functorial semantics diagram-level "constructions"
- Definitions [done]
- Port library to new semantics [ongoing]

Conclusion

- There is a lot of structure in Mathematics, and it can be leveraged to simplify builder's lives.
- Category theory can really help you
- Follow the math, don't follow what you think the math should be